The Cricket As a Model Organism Hadley Wilson Horch • Taro Mito Aleksandar Popadic´ • Hideyo Ohuchi Sumihare Noji Editors

Total Page:16

File Type:pdf, Size:1020Kb

The Cricket As a Model Organism Hadley Wilson Horch • Taro Mito Aleksandar Popadic´ • Hideyo Ohuchi Sumihare Noji Editors The Cricket as a Model Organism Hadley Wilson Horch • Taro Mito Aleksandar Popadic´ • Hideyo Ohuchi Sumihare Noji Editors The Cricket as a Model Organism Development, Regeneration, and Behavior Editors Hadley Wilson Horch Taro Mito Departments of Biology and Graduate school of Bioscience and Bioindustry Neuroscience Tokushima University Bowdoin College Tokushima, Japan Brunswick, ME, USA Aleksandar Popadic´ Hideyo Ohuchi Biological Sciences Department Department of Cytology and Histology Wayne State University Okayama University Detroit, MI, USA Okayama, Japan Dentistry and Pharmaceutical Sciences Sumihare Noji Okayama University Graduate School Graduate school of Bioscience of Medicine and Bioindustry Tokushima University Okayama, Japan Tokushima, Japan ISBN 978-4-431-56476-8 ISBN 978-4-431-56478-2 (eBook) DOI 10.1007/978-4-431-56478-2 Library of Congress Control Number: 2016960036 © Springer Japan KK 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer Japan KK The registered company address is: Chiyoda First Bldg. East, 3-8-1 Nishi-Kanda, Chiyoda-ku, Tokyo 101-0065, Japan Preface Crickets inhabit all areas of the world with the exception of subarctic and arctic regions. Encompassing about 2,400 species, they are the most diverse lineage of the “leaping” insects. Their defining characteristic is the chirping sound made by males during mating. For the past 100 years, detailed studies at the behavioral, acoustic, and neurophysiological level have revealed fundamental aspects of mating behav- ior and the complexity of the aggressive interactions among males. Around the world, crickets are also considered an important food source. They are frequently reared on an industrial scale to satisfy demands from zoos and pet stores as well as from food processing plants. Crickets are served as a common street snack through- out Southeast Asia and can frequently be found as an ingredient in commercially produced protein bars and baked goods. Remarkably, the food conversion effi- ciency of house crickets (Acheta domesticus) is five times higher than beef, and if their fecundity is taken into account, this efficiency increases 15–20-fold (Nakagaki and Defoliart 1991). If one considers the ever-increasing human population growth, our survival on Earth may depend on altering our eating habits and consuming new sources of food, such as insects (O. Deroy 2015). The present volume aims to provide recent scientific updates on research on crickets in general, with the emphasis on Gryllus bimaculatus. We believe that this species can serve as a representative model for basal, hemimetabolous insect lineages. In this mode of development, an embryo develops into a miniature adult (first nymph), which in turn undergoes a number of successive molts before turning into an adult. In comparison, the development and overall biology of the premier insect genetic model system, Drosophila melanogaster, are highly derived and representative of only one insect group (Diptera – flies). As this book demonstrates, it is rather the cricket, as exemplified by Gryllus, which should be considered to represent a typical insect. Until recently, though, only very limited functional and genetic manipulation studies were feasible in non-drosophilid species. This all changed dramatically in the past 10 years, as the cricket community made rapid progress adapting existing and new experimental techniques in Gryllus. The main impetus behind all these advancements can be traced to the 2006 Nobel Prize in v vi Preface Physiology or Medicine to Andrew Z. Fire and Craig C. Mello for their discovery of RNA interference (RNAi). The advent of the RNAi methodology provided a powerful tool to study almost any insect species. As shown in this book, many researchers have performed functional analyses of a variety of cricket genes, yielding important information about the biology and development of this organism. In 2015, the first available rough draft assembly of the whole genome of Gryllus bimaculatus was completed at Tokushima University. This was a milestone event, enabling researchers to study hundreds of new genes (public access is planned for 2017). In addition to making transgenic crickets, it is now possible to use site-specific approaches such as TALENs and zinc-finger nucleases to alter the Gryllus genome at a targeted region. Furthermore, the CRISPR/Cas-based genome- editing system has been adapted for use in the cricket. These newly available genome-editing techniques can spearhead the detailed examination of gene func- tion and the production of gene-edited crickets that can serve as models for human diseases. In theory, such genetically engineered crickets can be used to screen various chemicals to find drug candidates for genetic disorders and to produce human therapeutic proteins or metabolites. In 2012, we organized the 2nd International Conference on Cricket Research in Tokushima, Japan. (In fact, the first conference was canceled because of the Great East Japan Earthquake of March 11, 2011.) At that second meeting, we proposed the publication of this book and invited participants to contribute chapters representing their fields and their work. We want to thank all the authors for their contributions and support throughout the development of this book. We hope that this volume will inspire scientists in various disciplines to use the cricket model system to ask interesting and innovative questions. Brunswick, ME, USA Hadley Wilson Horch Tokushima, Japan Taro Mito Tokushima, Japan Sumihare Noji Okayama, Japan Hideyo Ohuchi Detroit, MI, USA Aleksandar Popadic´ September, 2015 References Nakagaki BJ, Defoliart GR (1991) Comparison of diets for mass-rearing Acheta domesticus (Orthoptera: Gryllidae) as a novelty food, and comparison for food conversion efficiency with values reported for livestock. J Econ Entomol 84:891–896 O’Deroy O (2015) Eat insects for fun, not to help the environment. Nature 521:395 Contents Part I Development and Regeneration 1 History of Cricket Biology ............................... 3 Gerald S. Pollack and Sumihare Noji 2 Early Development and Diversity of Gryllus Appendages ........ 17 Jin Liu and Aleksandar Popadic´ 3 Leg Formation and Regeneration .......................... 31 Tetsuya Bando, Yoshimasa Hamada, and Sumihare Noji 4 Eye Development and Photoreception of a Hemimetabolous Insect, Gryllus bimaculatus ............................... 49 Hideyo Ohuchi, Tetsuya Bando, Taro Mito, and Sumihare Noji 5 An Early Embryonic Diapause Stage and Developmental Plasticity in the Band-Legged Ground Cricket Dianemobius nigrofasciatus ......................................... 63 Sakiko Shiga and Hideharu Numata Part II Physiology, Nervous System, and Behavior 6 Molecular Approach to the Circadian Clock Mechanism in the Cricket ......................................... 77 Kenji Tomioka, Outa Uryu, Yuichi Kamae, Yoshiyuki Moriyama, ASM Saifullah, and Taishi Yoshii 7 Hormonal Circadian Rhythm in the Wing-Polymorphic Cricket Gryllus firmus: Integrating Chronobiology, Endocrinology, and Evolution ............................ 91 Anthony J. Zera, Neetha Nanoth Vellichirammal, and Jennifer A. Brisson vii viii Contents 8 Plasticity in the Cricket Central Nervous System .............. 105 Hadley Wilson Horch, Alexandra Pfister, Olaf Ellers, and Amy S. Johnson 9 Learning and Memory .................................. 129 Makoto Mizunami and Yukihisa Matsumoto 10 Neurons and Networks Underlying Singing Behaviour .......... 141 Stefan Schoneich€ and Berthold Hedwig 11 The Cricket Auditory Pathway: Neural Processing of Acoustic Signals ..................................... 155 Gerald S. Pollack and Berthold Hedwig 12 Neuromodulators and the Control of Aggression in Crickets ..... 169 Paul A. Stevenson and Jan Rillich 13 Fighting Behavior: Understanding the Mechanisms of Group-Size-Dependent Aggression ....................... 197 Hitoshi Aonuma 14 Cercal System-Mediated Antipredator Behaviors .............. 211 Yoshichika Baba and Hiroto Ogawa 15 The Biochemical Basis of Life History Adaptation: Gryllus Studies Lead the Way ............................. 229 Anthony J. Zera 16 Reproductive Behavior and Physiology in the Cricket Gryllus bimaculatus ........................................... 245 Masaki Sakai, Mikihiko Kumashiro, Yukihisa Matsumoto, Masakatsu Ureshi, and Takahiro Otsubo Part III Experimental Approaches 17 Protocols for Olfactory Conditioning Experiments ............. 273 Yukihisa Matsumoto, Chihiro Sato Matsumoto, and Makoto Mizunami 18 Optical Recording Methods: How to Measure Neural Activities with Calcium Imaging ........................... 285 Hiroto Ogawa and John P. Miller 19 Trackball Systems for Analysing Cricket Phonotaxis ........... 303 Berthold Hedwig Contents ix 20 Synthetic Approaches for Observing and Measuring Cricket Behaviors ...................................... 313 Hitoshi Aonuma 21 Protocols in the Cricket ................................. 327 Hadley Horch, Jin Liu, Taro Mito, Aleksandar Popadic´, and Takahito Watanabe Index ................................................... 371.
Recommended publications
  • Soundscape of Urban-Tolerant Crickets (Orthoptera: Gryllidae, Trigonidiidae) in a Tropical Southeast Asia City, Singapore Ming Kai Tan
    Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore Ming Kai Tan To cite this version: Ming Kai Tan. Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a tropical Southeast Asia city, Singapore. 2020. hal-02946307 HAL Id: hal-02946307 https://hal.archives-ouvertes.fr/hal-02946307 Preprint submitted on 23 Sep 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Soundscape of urban-tolerant crickets (Orthoptera: Gryllidae, Trigonidiidae) in a 2 tropical Southeast Asia city, Singapore 3 4 Ming Kai Tan 1 5 6 1 Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d’Histoire 7 naturelle, CNRS, SU, EPHE, UA, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France; 8 Email: [email protected] 9 10 11 1 12 Abstract 13 14 Urbanisation impact biodiversity tremendously, but a few species can still tolerate the harsh 15 conditions of urban habitats. Studies regarding the impact of urbanisation on the soundscape 16 and acoustic behaviours of sound-producing animals tend to overlook invertebrates, including 17 the crickets. Almost nothing is known about their acoustic community in the urban 18 environment, especially for Southeast Asia where rapid urbanisation is widespread.
    [Show full text]
  • Hyphal Ontogeny in : a Model Organism for All Neurospora Crassa
    F1000Research 2016, 5(F1000 Faculty Rev):2801 Last updated: 17 JUL 2019 REVIEW Hyphal ontogeny in Neurospora crassa: a model organism for all seasons [version 1; peer review: 3 approved] Meritxell Riquelme, Leonora Martínez-Núñez Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Baja California, 22860, Mexico First published: 30 Nov 2016, 5(F1000 Faculty Rev):2801 ( Open Peer Review v1 https://doi.org/10.12688/f1000research.9679.1) Latest published: 30 Nov 2016, 5(F1000 Faculty Rev):2801 ( https://doi.org/10.12688/f1000research.9679.1) Reviewer Status Abstract Invited Reviewers Filamentous fungi have proven to be a better-suited model system than 1 2 3 unicellular yeasts in analyses of cellular processes such as polarized growth, exocytosis, endocytosis, and cytoskeleton-based organelle traffic. version 1 For example, the filamentous fungus Neurospora crassa develops a variety published of cellular forms. Studying the molecular basis of these forms has led to a 30 Nov 2016 better, yet incipient, understanding of polarized growth. Polarity factors as well as Rho GTPases, septins, and a localized delivery of vesicles are the central elements described so far that participate in the shift from isotropic F1000 Faculty Reviews are written by members of to polarized growth. The growth of the cell wall by apical biosynthesis and the prestigious F1000 Faculty. They are remodeling of polysaccharide components is a key process in hyphal commissioned and are peer reviewed before morphogenesis. The coordinated action of motor proteins and Rab publication to ensure that the final, published version GTPases mediates the vesicular journey along the hyphae toward the apex, where the exocyst mediates vesicle fusion with the plasma membrane.
    [Show full text]
  • Are Model Organisms Theoretical Models?
    Are Model Organisms Theoretical Models? Veli-Pekka Parkkinen University of Bergen BIBLID [0873-626X (2017) 47; pp. 471–498] DOI: 10.1515/disp-2017-0015 Abstract This article compares the epistemic roles of theoretical models and model organisms in science, and specifically the role of non-human animal models in biomedicine. Much of the previous literature on this topic shares an assumption that animal models and theoretical models have a broadly similar epistemic role—that of indirect representation of a target through the study of a surrogate system. Recently, Levy and Currie (2015) have argued that model organism research and theoreti- cal modelling differ in the justification of model-to-target inferences, such that a unified account based on the widely accepted idea of model- ling as indirect representation does not similarly apply to both. I defend a similar conclusion, but argue that the distinction between animal models and theoretical models does not always track a difference in the justification of model-to-target inferences. Case studies of the use of animal models in biomedicine are presented to illustrate this. How- ever, Levy and Currie’s point can be argued for in a different way. I argue for the following distinction. Model organisms (and other con- crete models) function as surrogate sources of evidence, from which results are transferred to their targets by empirical extrapolation. By contrast, theoretical modelling does not involve such an inductive step. Rather, theoretical models are used for drawing conclusions from what is already known or assumed about the target system. Codifying as- sumptions about the causal structure of the target in external repre- sentational media (e.g.
    [Show full text]
  • Pet-Feeder Crickets.Pdf
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3504: 67–88 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2012 · Magnolia Press Article ISSN 1175-5334 (online edition) urn:lsid:zoobank.org:pub:12E82B54-D5AC-4E73-B61C-7CB03189DED6 Billions and billions sold: Pet-feeder crickets (Orthoptera: Gryllidae), commercial cricket farms, an epizootic densovirus, and government regulations make for a potential disaster DAVID B. WEISSMAN1, DAVID A. GRAY2, HANH THI PHAM3 & PETER TIJSSEN3 1Department of Entomology, California Academy of Sciences, San Francisco, CA 94118. E-mail: [email protected] 2Department of Biology, California State University, Northridge, CA 91330. E-mail: [email protected] 3INRS-Institut Armand-Frappier, Laval QC, Canada H7V 1B7. E-mail: [email protected]; [email protected] Abstract The cricket pet food industry in the United States, where as many as 50 million crickets are shipped a week, is a multi- million dollar business that has been devastated by epizootic Acheta domesticus densovirus (AdDNV) outbreaks. Efforts to find an alternative, virus-resistant field cricket species have led to the widespread USA (and European) distribution of a previously unnamed Gryllus species despite existing USA federal regulations to prevent such movement. We analyze and describe this previously unnamed Gryllus and propose additional measures to minimize its potential risk to native fauna and agriculture. Additionally, and more worrisome, is our incidental finding that the naturally widespread African, European, and Asian “black cricket,” G.
    [Show full text]
  • 1 What's So Special About Model Organisms?
    ORE Open Research Exeter TITLE What makes a model organism? AUTHORS Leonelli, Sabina; Ankeny, Rachel A. JOURNAL Endeavour DEPOSITED IN ORE 15 January 2015 This version available at http://hdl.handle.net/10871/20864 COPYRIGHT AND REUSE Open Research Exeter makes this work available in accordance with publisher policies. A NOTE ON VERSIONS The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication What’s So Special About Model Organisms? Rachel A. Ankeny* and Sabina Leonelli *Corresponding author: email: [email protected] , mailing address: School of History and Politics, Napier 423, University of Adelaide, Adelaide 5005 SA, Australia, telephone: +61-8-8303-5570, fax: +61-8-8303-3443. Abstract This paper aims to identify the key characteristics of model organisms that make them a specific type of model within the contemporary life sciences: in particular, we argue that the term “model organism” does not apply to all organisms used for the purposes of experimental research. We explore the differences between experimental and model organisms in terms of their material and epistemic features, and argue that it is essential to distinguish between their representational scope and representational target . We also examine the characteristics of the communities who use these two types of models, including their research goals, disciplinary affiliations, and preferred practices to show how these have contributed to the conceptualization of a model organism. We conclude that model organisms are a specific subgroup of organisms that have been standardized to fit an integrative and comparative mode of research, and that must be clearly distinguished from the broader class of experimental organisms.
    [Show full text]
  • Food Fights in House Crickets, Acheta Domesticus, and the Effects of Body Size and Hunger Level
    Color profile: Disabled Composite Default screen 409 Food fights in house crickets, Acheta domesticus, and the effects of body size and hunger level P. Nosil Abstract: Animals often compete directly with conspecifics for food resources, and fighting success can be positively related to relative resource-holding power (RHP) and relative resource value (i.e., motivation to fight). Despite the ease of manipulating resource value during fights over food (by manipulating hunger levels), most studies have focused on male fighting in relation to gaining access to mates. In this study, pairwise contests over single food items were used to examine the effects of being the first to acquire a resource, relative body mass, relative body size (femur length), and relative level of food deprivation (i.e., hunger) on competitive feeding ability in male and female house crickets, Acheta domesticus. Only when the food pellet was movable did acquiring the resource first improve fighting success. When the pellet was fastened to the test arena, increased relative hunger level and high relative body mass both in- creased the likelihood of a takeover. However, the effects of body mass disappeared when scaled to body size. When the attacker and defender were equally hungry, larger relative body size increased takeover success but, when the at- tacker was either more or less hungry, body size had little effect on the likelihood of a takeover. Thus fight outcomes were dependent on an interaction between RHP and motivational asymmetries and on whether the resource was movable or stationary. Contest duration was not related to the magnitude of morphological differences between opponents, suggest- ing that assessment of fighting ability may be brief or nonexistent during time-limited animal contests over food items.
    [Show full text]
  • Model Organisms Are Not (Theoretical) Models
    Model Organisms are not (Theoretical) Models Arnon Levy and Adrian Currie Forthcoming in The British Journal for the Philosophy of Science. Abstract Many biological investigations are organized around a small group of species, often referred to as “model organisms”, such as the fruit fly Drosophila melanogaster. The terms “model” and “modeling” also occur in biology in association with mathematical and mechanistic theorizing, as in the Lotka-Volterra model of predator-prey dynamics. What is the relation between theoretical models and model organisms? Are these models in the same sense? We offer an account on which the two practices are shown to have different epistemic characters. Theoretical modeling is grounded in explicit and known analogies between model and target. By contrast, inferences from model organisms are empirical extrapolations. Often such extrapolation is based on shared ancestry, sometimes in conjunction with other empirical information. One implication is that such inferences are unique to biology, whereas theoretical models are common across many disciplines. We close by discussing the diversity of uses to which model organisms are put, suggesting how these relate to our overall account. 1. Introduction 2. Volterra and Theoretical Modeling 3. Drosophila as a model organism 4. Generalizing from work on a model organisms 5. Phylogenetic inference and model organisms 6. Further roles of model organisms 6.1 Preparative experimentation. 6.2. Model organisms as paradigms 6.3. Model organisms as theoretical models. 6.4. Inspiration for engineers 6.5. Anchoring a research community. 7. Conclusion 1. Introduction Many biological investigations are organized around a small group of species, often referred to as “model organisms”, such as the bacterium Escherichia coli, the fruit fly Drosophila melanogaster and the house mouse, Mus musculus.
    [Show full text]
  • GSA Response to NIH Request for Information On
    Genetics Society of America Response to NIH Request for Information FY 2016-2020 Strategic Plan for the Office of Research Infrastructure Programs: Division of Comparative Medicine and Division of Construction and Instruments Programs Request for Information (NOT-OD-15-056) • Response Form Submitted March 16, 2015 Responses are limited to 1,500 characters per topic. All responses must be submitted by March 16, 2015. Disease Models, Informational Resources, and Other Resources Disease models, informational resources and other resources that should be modified or expanded in parallel with ongoing advances in biomedical research The Genetics Society of America (GSA) emphasizes the importance of model organisms for advancing knowledge in biomedical research. We believe that continued investment in model organisms—and the resources needed for supporting this research—is one of the most effective and efficient ways for NIH to continue to advance our understanding of living systems and improvement in human health. Model organism researchers depend upon shared community resources that serve the entire community, including stock centers and model organism databases, several of which depend upon ORIP funding. The long-term and consistent support of these community resources has been a crucial component of the strength and success of biomedical research in the United States and assures its future vigor. Centralized stock centers and databases provide optimal resource sharing that maximizes the return on the investments made by NIH and other government agencies. These community resources provide “off-the-shelf” research tools and thus increase the efficiency and speed of hypothesis-driven research supported by other grants. In addition, NIH support for these community resources allows them to operate on an open access model, thus assuring that all researchers have the tools they need for discovery.
    [Show full text]
  • Genomic Data Integration for Ecological and Evolutionary Traits in Non-Model Organisms Denis Tagu, John K
    Genomic data integration for ecological and evolutionary traits in non-model organisms Denis Tagu, John K. Colbourne, Nicolas Negre To cite this version: Denis Tagu, John K. Colbourne, Nicolas Negre. Genomic data integration for ecological and evolution- ary traits in non-model organisms. BMC Genomics, BioMed Central, 2014, 15, pp.490. 10.1186/1471- 2164-15-490. hal-01208730 HAL Id: hal-01208730 https://hal.archives-ouvertes.fr/hal-01208730 Submitted on 27 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tagu et al. BMC Genomics 2014, 15:490 http://www.biomedcentral.com/1471-2164/15/490 CORRESPONDENCE Open Access Genomic data integration for ecological and evolutionary traits in non-model organisms Denis Tagu1*, John K Colbourne2 and Nicolas Nègre3,4 Abstract Why is it needed to develop system biology initiatives such as ENCODE on non-model organisms? The next generation genomics era includes in the laboratory. Yeast, for example, does not form multi- non-model organisms cellular hyphae and A. thaliana has no known root symbi- Genetics, and now genomics, applied to model organ- oses. C. elegans and D. melanogaster are not pathogens or isms continues to be hugely successful at identifying and pests and the zebra fish is certainly not adapted to living in characterizing DNA elements and mechanisms involved marine environments.
    [Show full text]
  • Pre-Meeting to the Workshop on Validation of Animal Models and Tools for Biomedical Research
    PRE-MEETING REPORT Pre-meeting to the Workshop on Validation of Animal Models and Tools for Biomedical Research May 29, 2020 Office of Research Infrastructure Programs, NIH Virtual Meeting Table of Contents Background ................................................................................................................................................. 1 Executive Summary .................................................................................................................................... 1 Introduction and Welcome ......................................................................................................................... 2 Keynote Presentation: The Multiple Facets of Validation of Animal Models ....................................... 2 Discussion ............................................................................................................................................ 2 Invertebrate Models and Validation ......................................................................................................... 3 Flies Facilitate Rare Disease Diagnosis and Therapeutic Avenues......................................................... 3 Discussion ............................................................................................................................................ 3 Fundamentals of Mouse Biology and Genetics to Optimize Model Validation ..................................... 4 General Comments and “Macro-Genetics” ............................................................................................
    [Show full text]
  • Alternatives to Animal Testing: a Review
    Saudi Pharmaceutical Journal (2015) 23, 223–229 King Saud University Saudi Pharmaceutical Journal www.ksu.edu.sa www.sciencedirect.com REVIEW Alternatives to animal testing: A review Sonali K. Doke, Shashikant C. Dhawale * School of Pharmacy, SRTM University, Nanded 431 606, MS, India Received 13 August 2013; accepted 10 November 2013 Available online 18 November 2013 KEYWORDS Abstract The number of animals used in research has increased with the advancement of research Alternative organism; and development in medical technology. Every year, millions of experimental animals are used all Model organism; over the world. The pain, distress and death experienced by the animals during scientific experi- 3 Rs; ments have been a debating issue for a long time. Besides the major concern of ethics, there are Laboratory animal; few more disadvantages of animal experimentation like requirement of skilled manpower, time con- Animal ethics suming protocols and high cost. Various alternatives to animal testing were proposed to overcome the drawbacks associated with animal experiments and avoid the unethical procedures. A strategy of 3 Rs (i.e. reduction, refinement and replacement) is being applied for laboratory use of animals. Different methods and alternative organisms are applied to implement this strategy. These methods provide an alternative means for the drug and chemical testing, up to some levels. A brief account of these alternatives and advantages associated is discussed in this review with examples. An integrated application of these approaches would give an insight into minimum use of animals in scientific experiments. ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
    [Show full text]
  • Application of Genetically Engineered Pigs in Biomedical Research
    G C A T T A C G G C A T genes Review Application of Genetically Engineered Pigs in Biomedical Research Magdalena Hryhorowicz 1,*, Daniel Lipi ´nski 1 , Szymon Hryhorowicz 2 , Agnieszka Nowak-Terpiłowska 1, Natalia Ryczek 1 and Joanna Zeyland 1 1 Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Pozna´n,Poland; [email protected] (D.L.); [email protected] (A.N.-T.); [email protected] (N.R.); [email protected] (J.Z.) 2 Institute of Human Genetics, Polish Academy of Sciences, Strzeszy´nska32, 60-479 Pozna´n,Poland; [email protected] * Correspondence: [email protected] Received: 4 May 2020; Accepted: 17 June 2020; Published: 19 June 2020 Abstract: Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation.
    [Show full text]