(Viperidae Causus) with Short and Long
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Snake Charming and the Exploitation of Snakes in Morocco
Snake charming and the exploitation of snakes in Morocco J UAN M. PLEGUEZUELOS,MÓNICA F ERICHE,JOSÉ C. BRITO and S OUMÍA F AHD Abstract Traditional activities that potentially threaten bio- also for clothing, tools, medicine and pets, as well as in diversity represent a challenge to conservationists as they try magic and religious activities (review in Alves & Rosa, to reconcile the cultural dimensions of such activities. ). Vertebrates, particularly reptiles, have frequently Quantifying the impact of traditional activities on biodiver- been used for traditional medicine. Alves et al. () iden- sity is always helpful for decision making in conservation. In tified reptile species ( families, genera) currently the case of snake charming in Morocco, the practice was in- used in traditional folk medicine, % of which are included troduced there years ago by the religious order the on the IUCN Red List (IUCN, ) and/or the CITES Aissawas, and is now an attraction in the country’s growing Appendices (CITES, ). Among the reptile species tourism industry. As a consequence wild snake populations being used for medicine, % are snakes. may be threatened by overexploitation. The focal species for Snakes have always both fascinated and repelled people, snake charming, the Egyptian cobra Naja haje, is undergo- and the reported use of snakes in magic and religious activ- ing both range and population declines. We estimated the ities is global (Alves et al., ). The sacred role of snakes level of exploitation of snakes based on field surveys and may be related to a traditional association with health and questionnaires administered to Aissawas during – eternity in some cultures (Angeletti et al., ) and many , and compared our results with those of a study con- species are under pressure from exploitation as a result ducted years previously. -
The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters. -
Nyika and Vwaza Reptiles & Amphibians Checklist
LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika, -
An in Vivo Examination of the Differences Between Rapid
www.nature.com/scientificreports OPEN An in vivo examination of the diferences between rapid cardiovascular collapse and prolonged hypotension induced by snake venom Rahini Kakumanu1, Barbara K. Kemp-Harper1, Anjana Silva 1,2, Sanjaya Kuruppu3, Geofrey K. Isbister 1,4 & Wayne C. Hodgson1* We investigated the cardiovascular efects of venoms from seven medically important species of snakes: Australian Eastern Brown snake (Pseudonaja textilis), Sri Lankan Russell’s viper (Daboia russelii), Javanese Russell’s viper (D. siamensis), Gaboon viper (Bitis gabonica), Uracoan rattlesnake (Crotalus vegrandis), Carpet viper (Echis ocellatus) and Puf adder (Bitis arietans), and identifed two distinct patterns of efects: i.e. rapid cardiovascular collapse and prolonged hypotension. P. textilis (5 µg/kg, i.v.) and E. ocellatus (50 µg/kg, i.v.) venoms induced rapid (i.e. within 2 min) cardiovascular collapse in anaesthetised rats. P. textilis (20 mg/kg, i.m.) caused collapse within 10 min. D. russelii (100 µg/kg, i.v.) and D. siamensis (100 µg/kg, i.v.) venoms caused ‘prolonged hypotension’, characterised by a persistent decrease in blood pressure with recovery. D. russelii venom (50 mg/kg and 100 mg/kg, i.m.) also caused prolonged hypotension. A priming dose of P. textilis venom (2 µg/kg, i.v.) prevented collapse by E. ocellatus venom (50 µg/kg, i.v.), but had no signifcant efect on subsequent addition of D. russelii venom (1 mg/kg, i.v). Two priming doses (1 µg/kg, i.v.) of E. ocellatus venom prevented collapse by E. ocellatus venom (50 µg/kg, i.v.). B. gabonica, C. vegrandis and B. -
Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis Bivirgatus
toxins Article Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus Daniel Dashevsky 1,2 , Darin Rokyta 3 , Nathaniel Frank 4, Amanda Nouwens 5 and Bryan G. Fry 1,* 1 Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] 2 Australian National Insect Collection, Commonwealth Science and Industry Research Organization, Canberra, ACT 2601, Australia 3 Department of Biological Sciences, Florida State University, Tallahassee, FL 24105, USA; [email protected] 4 MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI 54902, USA; [email protected] 5 School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia; [email protected] * Correspondence: [email protected], Tel.: +61-7-336-58515 Abstract: The genus Calliophis is the most basal branch of the family Elapidae and several species in it have developed highly elongated venom glands. Recent research has shown that C. bivirgatus has evolved a seemingly unique toxin (calliotoxin) that produces spastic paralysis in their prey by acting on the voltage-gated sodium (NaV) channels. We assembled a transcriptome from C. bivirgatus to investigate the molecular characteristics of these toxins and the venom as a whole. We find strong confirmation that this genus produces the classic elapid eight-cysteine three-finger toxins, that δ-elapitoxins (toxins that resemble calliotoxin) are responsible for a substantial portion of the venom composition, and that these toxins form a distinct clade within a larger, more diverse clade of C. bivirgatus three-finger toxins. This broader clade of C. -
Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors. -
Snakes of Durban
SNakes of durban Brown House Snake Herald Snake Non - venomous Boaedon capensis Crotaphopeltis hotamboeia Often found near human habitation where they Also referred to as the Red-lipped herald. hunt rodents, lizards and small birds. This nocturnal (active at night) snake feeds They are active at night and often collected mainlyly on frogs and is one of the more common for the pet trade. snakes found around human dwellings. SPOTTED BUSH Snake Eastern Natal Green Snake Southern Brown Egg eater Philothamnus semivariegatus Philothamnus natalensis natalensis Dasypeltis inornata Probably the most commonly found snake in This green snake is often confused with the This snake has heavily keeled body scales and urban areas. They are very good climbers, Green mamba. This diurnal species, (active during is nocturnal (active at night) . Although harmless, often seen hunting geckos and lizards the day) actively hunts frogs and geckos. they put up an impressive aggression display, in the rafters of homes. Max length 1.1 metres. with striking and open mouth gaping. Can reach This diurnal species (active during the day) over 1 metre in length and when they are that big is often confused with the Green mamba. they can eat chicken eggs. Habitat includes Max length 1.1 metres. grasslands, coastal forests and it frequents suburban gardens where they are known to enter aviaries in search of eggs. night adder Causus rhombeatus A common snake often found near ponds and dams because they feed exclusively on amphibians. They have a cytotoxic venom and bite symptoms will include pain and swelling. Max length 1 metre. -
RJHS 6(2).Cdr
Management of snakebite victims Ayinbuomwan et al. Management of snakebite victims using low dose antisnake venom in a tertiary hospital in Southern Nigeria: A 5-year Retrospective study *Ayinbuomwan A.S.1,2, Opadeyi A.O.1,2, and Isah A.O.1,2 Abstract Objective: Antisnake venom (ASV) is a specific antidote for the management of snake bite envenomations. This study profiled the treatment and outcome of adult snake bite victims managed using low dose antisnake venom. Methods: This was a 5-year retrospective study that involved all adult patients who presented in University of Benin Teaching Hospital, Benin City, Nigeria, with a history of snake bite. Information obtained were demographic characteristics, clinical features, and administered treatment per established. All patients with a diagnosis of snake bite envenomation were administered ASV. Results: Sixty patients were seen during the study period, 35(58.3%) males, 25(41.7%) females with a mean age was 34.7±13.3. The mean time from bite to presentation was 14.67±14.05 hours with range of 1- 48 hours. Twenty patients (33.3%) had snake bite envenomations, of these eleven (57.9%) were managed and discharged after administration of 30 to 40 mls of polyvalent ASV. The mean dose of PASV used was 3.9 ± 2.0 vials. The most encountered clinical indication for ASV administration was progressive painful swelling. No death was recorded throughout this period studied. Conclusion: Adoption of the low dose regimen in the management of snake bite envenomations may be as effective as the traditional high dose regimen. -
Substrate Thermal Properties Influence Ventral Brightness Evolution In
ARTICLE https://doi.org/10.1038/s42003-020-01524-w OPEN Substrate thermal properties influence ventral brightness evolution in ectotherms ✉ Jonathan Goldenberg 1 , Liliana D’Alba 1, Karen Bisschop 2,3, Bram Vanthournout1 & Matthew D. Shawkey 1 1234567890():,; The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squa- mata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms. 1 Evolution and Optics of Nanostructures group, Department -
Venomous Snakes of the Horn of Africa
VENOMOUS SNAKES OF THE HORN OF AFRICA Venomous Snake Identification Burrowing Asps Boomslang, Vine and Tree Snakes Snakebite Prevention Behavior: Venomous snakes are found throughout the Horn of Africa. Assume that any snake you encounter is venomous. Leave Long, Flattened Head, Round Fixed Front Smooth Long, Cylindrical Behavior: Burrowing asps spend the majority of time underground in burrows under stones, concrete slabs, logs, snakes alone. Many people are bitten because they try to kill a snake or get a closer look at it. Slightly Distinct from Neck Pupils Fangs Scales Body, Thin Tail They are active during both the daytime and nighttime. or wooden planks. 5-8 feet in length They live in trees and feed on bats, birds, and lizards. They are active on the surface only during the nighttime hours or after heavy rains flood their burrows. They are not aggressive: will quickly flee to nearest tree or bush if surprised on ground. Snakebites occur most often: MAMBAS They feed on small reptiles and rodents found in holes or underground. They do not climb. When molested, they inflate their bodies or necks as threat posture before biting. After rainstorms that follow long, dry spells or after rains in desert areas. Dendroaspis spp. SAVANNA VINE They are not aggressive: bites usually occur at night when snakes are stepped on accidentally. SNAKE During the half-hour before total darkness and the first two hours after dark. Habitats: Trees next to caves, coastal bush and reeds, tropical forests, open savannas, Thelotornis Habitats: Burrows in sand or soft soil, semi-desert areas, woodlands, and savannas. -
Snake Communities Worldwide
Web Ecology 6: 44–58. Testing hypotheses on the ecological patterns of rarity using a novel model of study: snake communities worldwide L. Luiselli Luiselli, L. 2006. Testing hypotheses on the ecological patterns of rarity using a novel model of study: snake communities worldwide. – Web Ecol. 6: 44–58. The theoretical and empirical causes and consequences of rarity are of central impor- tance for both ecological theory and conservation. It is not surprising that studies of the biology of rarity have grown tremendously during the past two decades, with particular emphasis on patterns observed in insects, birds, mammals, and plants. I analyse the patterns of the biology of rarity by using a novel model system: snake communities worldwide. I also test some of the main hypotheses that have been proposed to explain and predict rarity in species. I use two operational definitions for rarity in snakes: Rare species (RAR) are those that accounted for 1% to 2% of the total number of individuals captured within a given community; Very rare species (VER) account for ≤ 1% of individuals captured. I analyse each community by sample size, species richness, conti- nent, climatic region, habitat and ecological characteristics of the RAR and VER spe- cies. Positive correlations between total species number and the fraction of RAR and VER species and between sample size and rare species in general were found. As shown in previous insect studies, there is a clear trend for the percentage of RAR and VER snake species to increase in species-rich, tropical African and South American commu- nities. This study also shows that rare species are particularly common in the tropics, although habitat type did not influence the frequency of RAR and VER species. -
The Snakes of Niger
Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 9(2) [Special Section]: 39–55 (e110). The snakes of Niger 1Jean-François Trape and Youssouph Mané 1Institut de Recherche pour le Développement (IRD), UMR MIVEGEC, Laboratoire de Paludologie et de Zoologie Médicale, B.P. 1386, Dakar, SENEGAL Abstract.—We present here the results of a study of 1,714 snakes from the Republic of Niger, West Africa, collected from 2004 to 2008 at 28 localities within the country. Based on this data, supplemented with additional museum specimens (23 selected specimens belonging to 10 species) and reliable literature reports, we present an annotated checklist of the 51 snake species known from Niger. Psammophis sudanensis is added to the snake fauna of Niger. Known localities for all species are presented and, where necessary, taxonomic and biogeographic issues discussed. Key words. Reptilia; Squamata; Ophidia; taxonomy; biogeography; species richness; venomous snakes; Niger Re- public; West Africa Citation: Trape J-F and Mané Y. 2015. The snakes of Niger. Amphibian & Reptile Conservation 9(2) [Special Section]: 39–55 (e110). Copyright: © 2015 Trape and Mané. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International License, which permits unrestricted use for non-commercial and education purposes only, in any medium, provided the original author and the official and authorized publication sources are recognized and properly credited.