Sustainable Construction Timber’ Has Been Written to Help Building Designers and Contractors Source and Specify Local Timber Products

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Construction Timber’ Has Been Written to Help Building Designers and Contractors Source and Specify Local Timber Products Timber is a versatile and high performance construction material that can be produced in most parts of the UK. ‘Sustainable construction timber’ has been written to help building designers and contractors source and specify local timber products. The report explains why local sourcing of timber is important, reviews the range of timber species and products currently obtainable in the UK and explores the ways in which local sourcing can be achieved within a construction project. Sustainable construction timber is applicable to designers and contractors wanting to source and specify UK grown timber products, people considering using their own timber on a construction project and those involved in building refurbishment or conservation. Research Report Sustainable construction timber Sourcing and specifying local timber Silvan House 231 Corstorphine Road Edinburgh EH12 7AT £13.00 www.forestry.gov.uk 1199964_Cover_Spread.indd99964_Cover_Spread.indd 1 119/04/20169/04/2016 117:517:51 1199964_Cover_Spread.indd99964_Cover_Spread.indd 2 119/04/20169/04/2016 117:517:51 Research Report Sustainable construction timber Sourcing and specifying local timber Ivor Davies European Union European Regional Development Fund Investing in a Smart, Sustainable and Inclusive Future Forestry Commission: Edinburgh 1199964.indd99964.indd i 118/04/20168/04/2016 08:4808:48 © Crown Copyright 2016 You may re-use this information (not including logos or material identifi ed as being the copyright of a third party) free of charge in any format or medium, under the terms of the Open Government Licence. To view this licence, visit: www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team at The National Archives, Kew, London TW9 4DU, or e-mail: [email protected]. This publication is also available on our website at: www.forestry.gov.uk/publications First published by arcamedia in 2009. This second edition published by the Forestry Commission in 2016. ISBN: 978-0-85538-945-1 Davies, I. (2016). Sustainable construction timber: sourcing and specifying local timber. Forestry Commission Research Report Forestry Commission, Edinburgh. i-vi + 1-54 pp. Keywords: construction, local sourcing, specifi cation, sustainable, timber, UK grown. FCRP025/PURE/MLG-1K/APR16 Enquiries relating to this publication should be addressed to: Forestry Commission Silvan House 231 Corstorphine Road Edinburgh EH12 7AT 0300 067 5000 [email protected] The author can be contacted at: Centre for Wood Science and Technology Edinburgh Napier University Merchiston Campus 10 Colinton Road Edinburgh EH10 5DT [email protected] Acknowledgements Producing this second edition of Sustainable Construction Timber would not have been possible without the support of Forestry Commission Scotland, Historic Scotland and the European Regional Development Fund (ERDF) through the East of Scotland European Partnership. The author is grateful for the advice and comments received from: John Alexander (Acsys Technologies), Gordon Callander (James Callander & Son), Dave Cook (Scottish Procurement Directorate), Roger Curtis (Historic Scotland), Stuart Goodall (Confor), Robert Hairstans (Edinburgh Napier University), Paul Hands (James Callander & Son), Alastair Kerr (Wood Panel Industries Federation), John Kissock (formerly of James Jones & Sons), Andy Leitch (Forestry Commission Scotland), Ian Pirie (James Jones and Sons), Una Lee (The Highland Council), Neil May (Natural Building Technologies), Paul McLean (Forest Research), Chris Morgan (Locate Architects), Derek Nelson (Forestry Commission Scotland), Dan Ridley-Ellis (Edinburgh Napier University), Steven Streets (formerly of UK Timber Frame Association), David Sulman (UK Forest Products Association), Deb Turnbull (Edinburgh Napier University) Mark Williams (HRI Architects), Peter Wilson (Timber Design Initiatives) and John Wood (Edinburgh Napier University). Unless otherwise acknowledged, all photographs are by Edinburgh Napier University staff or from the Forestry Commission picture library. The Forestry Commission will consider all requests to make the content of publications available in alternative formats. Please send any such requests to: [email protected]. Cover image: Scottish grown larch cladding on Culloden Battlefi eld Visitor Centre, near Inverness. Designed by Hoskins Architects. Photograph courtesy of Andrew Lee. ii 1199964.indd99964.indd iiii 118/04/20168/04/2016 08:4808:48 Contents Introduction 1 What is a timber building? 3 UK forestry and forest products 5 Sourcing and specifying UK timber 7 How to achieve fi tness for purpose 7 Design within constraints 7 Know who sells what to whom 10 Ensure the timber is legal and sustainable 11 Begin the procurement process as early as possible 11 Ensuring appropriate moisture content 13 Moisture content 13 Fibre saturation point 13 Equilibrium moisture content 13 Timber drying 14 Dimensional change 16 Shrinkage and movement 16 Construction detailing 17 Structural timber 18 Strength variation in timber 18 Strength grading 18 Strength classes 20 Strength classes of UK timber 21 Specifying UK grown strength graded timber 22 Growth rate and density 22 Service classes 22 Fire performance 24 Reaction to fi re 24 Fire resistance 26 Cavity fi res 26 Resistance to wood destroying organisms 27 Fungal decay and insect attack 27 Use classes 27 Natural durability 27 Durability classifi cation 28 Preventing biodeterioration 29 Timber in repair and refurbishment work 32 History of timber use in the UK 32 Selecting the appropriate timber for repairs 33 Moisture content of timber used in repairs 34 Grading structural timber in-situ 34 iii 1199964.indd99964.indd iiiiii 118/04/20168/04/2016 08:4808:48 Hygrothermal materials 35 Assessing moisture risks in existing buildings 36 Sourcing and processing timber yourself 38 Appropriate design 38 Log conversion 38 Strength grading 39 Drying 39 Machining 39 Resistance to wood destroying organisms 39 References 40 British Standards 41 Appendix 1: Carbon impacts of timber 43 Carbon storage 43 Embodied energy 43 Appendix 2: CE marking and local timber 45 Appendix 3: Timber sizes produced in the UK 46 Sizes of softwood sawn timber 46 Sizes of visually graded timber 46 Sizes of external cladding timber 46 Appendix 4: Substituting UK timber for imports 47 Appendix 5: Ensuring timber is legal and sustainable 48 European Union timber regulations 48 Placing UK timber on the European market 48 Forest certifi cation schemes 49 Timber procurement in the private sector 49 Timber procurement in the public sector 49 Appendix 6: Sources of further information 52 iv 1199964.indd99964.indd iivv 118/04/20168/04/2016 08:4808:48 Introduction Timber is a versatile and high performance construction • Minimising the carbon footprint of construction: timber material: is almost carbon neutral, has low embodied energy and can store carbon in the fabric of the building. • It has a high strength to weight ratio. • It is easily shaped and fastened. • Supporting the local economy: the use of locally sourced • It is available in a wide range of colours, textures, material supports a region’s woodland managers, timber densities and chemical compositions. processors and manufacturers. • It can be readily treated or modifi ed to increase its resistance to biodeterioration. • Helping local woodland management: income from timber • At the end of its initial service life it can often be reused sales helps support woodland management and expansion, or recycled. responsible management benefi ts wildlife and increased use of UK timber encourages more planting of trees. Timber is also renewable. This means that – uniquely among mainstream construction materials – it can be produced in • Stimulating timber demand: government policy in the most parts of the UK (Figures 1 and 2). UK – and particularly in Scotland – involves a signifi cant expansion of forest cover and, in order to achieve the targets In addition to a growing recognition of the immediate set, demand for timber products will have to increase. performance benefi ts of timber construction, the material’s popularity is also being driven by an increasing awareness of Finally, let us not forget that knowledge of where the timber climate change and the environmental consequences of has originated from can generate additional interest in a development. Accordingly, government policies supporting building’s design. timber construction span planning, forestry, sustainable development and climate change. Examples of where timber – and particularly local timber – can contribute to achieving these policies include: Figure 1 The headquarters building for Scottish Natural Heritage in Inverness uses locally sourced larch for the external cladding and solar shading. Keppie Design. Courtesy of Michael Wolchover. 1 1199964.indd99964.indd 1 118/04/20168/04/2016 08:4808:48 Figure 2 UK grown Douglas fir is used to spectacular effect in the roof trusses of Grizedale Forest Visitor Centre by Sutherland Hussey Architects. Courtesy of Sutherland Hussey Architects. 2 1199964.indd99964.indd 2 118/04/20168/04/2016 08:4808:48 What is a timber building? In the UK, the term timber frame describes a construction Figure 3 A timber-framed building during construction. system where all vertical and lateral loads are transferred to the foundations through a structural framework of small section timber studs sheathed with a wood-based sheet material such as orientated strand board (Figure 3). The framework is then
Recommended publications
  • TIMBER CITY | WOOD TOWERS Mid-Rise and High-Rise Construction in Wood
    timber frame connection with structural timber in-fill panel TIMBER CITY | WOOD TOWERS mid-rise and high-rise construction in wood EMERGING PROFESSIONALS TRAVEL SCHOLARSHIP | JOE MAYO 2 OPPOSITE PAGE: “On the Spring Boards and in the Undercut. Washington bolt cutter and daughters, 1905.” by Darrius Kinsey INTRODUCTION In 1905 a small shop in the St. Laminated Timber and Brettstapel A/E firms in Europe have overcome John’s district of Portland, Oregon construction have been used to the structural and life-safety issues prepared for the World’s Fair in exploit the full potential of wood that limit height and areas of wood honor of the 100th anniversary as a construction material. buildings. Codes are being re- of Lewis and Clark’s expedition. written and new products are being Gustav Carlson, the shop’s owner, The United States, however, developed. I believe now is the decided to laminate Northwest has lagged behind as Europe time to learn from the experience of softwoods into a panel, which continues to innovate and push these firms and become innovators he called “3-ply veneer work.” the potential of wood construction ourselves. Researching modern The product, a precursor of our in larger buildings. mid-rise and high-rise wood modern plywood panel, sparked buildings and their technologies is a considerable interest at the fair, In the Northwest wood is our natural choice for Seattle, and this is and soon after an industry was vernacular. Wood is an extension what I propose to do. born 1. of our forests and our forests are an extension of us.
    [Show full text]
  • Eco-Minimalism Getting the Priorities Right
    Cover story Eco-minimalism getting the priorities right This article came about as the result of two separate thinkpieces echnology is often applied unthink- being developed simul- ingly or inappropriately, and suddenly T our patch is awash with it. Albert The Granada House - Built in 1975 as the taneously by each Einstein said: “Things should be as simple focus of a television series “House for the Future” - With 13 programmes @ one as possible - but no simpler." of the authors. Both technology a week, the house ended up It is so much easier to sell a product looking like a Christmas tree. The solar of them have a long than a process. Never mind the science roof contributed 2% to the annual energy - let’s cut straight to the technology. So input - with heat recovery from the cooker track record of living outstripping everything else - because as well as having the usual carpetbag- the building was superinsulated. (Howard and working with green gers out with their one-size-fits-all, old Liddell was a consultant to the programme products and technologies - re-sprayed and worked on the house with the TV team. design and technology Architect Don Wilson). green, we also have a new bag of goodies and are confronted in that urgently we should start to question. Technical fixes their daily business with Not least because those now interested The most prevalent current eco-clichéd what they have come in behaving more sustainably, who we technology is the photovoltaic. As far as would wish to influence, are daunted and we have been able to establish (after some to see as a number confused in equal measure by the perceived considerable delving and seeking of inde- of ‘eco-clichés’ which complication of something which, although pendent advice) the best available and non complex, should remain inherently clear and partisan estimate of financial payback is 50 can get in the way of simple - Ecological Design and Sustainable years, (does this take into account the pv good, efficient and Construction.
    [Show full text]
  • Softwoods in Construction
    Welsh Softwoods in Construction Wales Forest Business Partnership Unit 6, Dyfi Eco Park, Machynlleth, Powys SY20 8AX Telephone: 0845 456 0342 Fax: 01654 700050 Email:[email protected] woodknowledge www.wfbp.co.uk WALES Welsh Softwoods in Construction woodknowledge WALES Woodknowledge Wales would like to acknowledge the cooperation of Conwy Rural Partnership (and in particular Stuart Whitfield) in the creation of this document. Some of the content was originally written for the 'Development of a Conwy Sustainable Building System' report commissioned by the Conwy Cynhaliol project, funded through the Rural Development Plan which is financed by the EU and Welsh Government. Contents 1. Executive Summary 1 2. Introduction and background 2 2.1 Strength grading of softwoods grown in Wales 3 2.2 Welsh timber for cladding 5 2.3 Types of timber construction system/elements 6 2.4 Thermal performance of timber frame constructions 6 2.5 Construction standards in Wales 7 3. A taxonomy of timber wall systems 7 3.1 Post and beam 7 3.2 Engineered box beam system - Ty Unnos 10 3.3 Open panel or platform construction 11 3.3.1 Mainstream adoption of larger scale open panel timber frame 12 3.3.2 Open panel using I beams 13 3.4 Wall cassettes using engineered web beams 14 3.5 Open panel twin-wall construction 14 3.6 Closed panel construction 16 3.6.1 Glulam and straw bale closed panel; the Modcell system 18 3.6.2 Structural insulated panels (SIPS) 19 3.7 Solid wood panels 20 3.7.1 Brettstapel/Dowellam 20 3.8 Non-framed wood construction 22 3.8.1 Durisol woodfibre blocks 22 4.
    [Show full text]
  • Brettstapel Panels: In-Plane Strength and Stiffness
    Brettstapel panels: in-plane strength and stiffness Student: Ben Sochacki Supervisor: Professor Richard Harris Department of Architecture and Civil Engineering University of Bath 2014 AR30315 MEng Dissertation Acknowledgements I would like to thank Richard Harris for his guidance and supervision throughout this dissertation project. Thanks also to Dainis Dauksta, of Woodknowledge Wales, for his support and advice during this research. I would like to thank all of the laboratory staff at the University of Bath for their assistance with specimen preparation and testing. A special thanks extends to my family and friends for their continuous support during my time at University. Ben Sochacki, 2014 Abstract Brettstapel panels are an increasingly popular form of mass timber panel that has been pioneered by European countries particularly Germany, Austria and Switzerland. The panels are completely free of adhesives and metallic fasteners which boosts recyclability over alternatives such as cross- laminated timber. This has made them popular in the design of sustainable and environmentally- friendly construction projects. A general lack of knowledge in the UK of the behaviour of these panels, in particular how they resist in-plane forces, has led to conservative and potentially over- precautious design detailing to reinforce the panel. The aim of this study was to gauge whether the addition of this reinforcement, often in the form of sheet timber such as orientated strand board fixed to the external face, is necessary and assess potential methods for improving the in-plane capacity of a panel. The behaviour of the dowels in a Brettstapel panel is assumed to be integral to its performance.
    [Show full text]
  • Briefing Paper 06 Timber Supply Chain Reva
    March 2013 NRP Enterprise Centre - The use of local timber materials Malachy McNamara, Structural Engineer Associate, BDP; Jennifer Hardi, Business Innovation Manager, Centre for the Built Environment Briefing Paper 06 The Project This briefing paper describes the use of timber materials in the development of the new Norwich Research Park Enterprise Centre at the University of East Anglia (UEA). It aims to share the knowledge and challenges at the early stage of this project in the use of timber materials and for appointing local supply chain for this project. The University’s aim is for the building to have an ultra low embodied carbon, specified using local sustainable materials incorporating renewables energy incorporated and designed to meet 100 years design life. The project also aims to achieve BREEAM Outstanding and Passivhaus certification. For detailed overview of the NRP Enterprise Centre project, please refer to our Briefing Paper 01: Norwich Research Park Enterprise Centre – an Exemplar Low Carbon Building at the University of East Anglia. The building is designed to be constructed from a hybrid glulam, Brettstapel and Larsen truss structure, using local timber acquired from the East Anglian region (such as Thetford forest); a rammed chalk lecture theatre; and East Anglian grown hemp insulation throughout. The use of these local materials is to promote activity in the regional timber supply chain and decrease life cycle carbon emissions. BDP’s role in NRP Enterprise Centre BDP provided the structural engineering services for the NRP Enterprise Centre project. Having worked on a range of education and low carbon projects they provided a good starting point for this project.
    [Show full text]
  • Brettstapel Brettstapel Production in Other Parts of the World; Adapting Techniques for Utilisation of Homegrown Timbers in Britain
    woodknowledge WALES Brettstapel Brettstapel production in other parts of the world; adapting techniques for utilisation of homegrown timbers in Britain Our thanks to Dainis Dauksta who researched and wrote this report on behalf of Woodknowledge Wales Front cover image: The e3 Brettstapel apartment building in Berlin (image courtesy of Kaden + Klingbeil) Contents 1. Executive summary 1 2. Introduction 2 3. Brettstapel precursors and similar techniques 3 3.1 Fire resisting floors 3 3.2 American grain elevators 4 3.3 American heavy decking 5 3.4 Stresslam 5 3.5 The Rouen and Le Havre railway bridge 6 4. British examples of Brettstapel structures 6 5. Brettstapel characteristics 7 5.1 Utilising larch 7 5.2 Describing suitable timbers for production 8 5.3 Design of lamellae 9 5.4 Production of lamellae 9 5.5 Assembling panels 10 6. Timber properties 11 6.1 Utilising British timbers 12 6.2 Drying British timbers 12 6.3 Specifying moisture content 14 6.4 Species for lamellae 15 6.5 Panel production and length availability 16 7. Dowels 16 7.1 Racking strength of panels 18 8. Bench production and drilling rigs 18 9. Gun drills and augers 20 10. Thomas Sohm’s patent application 21 11. Conclusion 22 Bibliography 24 1. Executive summary Although the term Brettstapel was created in the 1970s there are many historical precedents to this method of creating solid timber structural panels by joining parallel lamellae together using wooden or metal dowels. Brettstapel panels are one of the most structurally efficient methods for creating solid shear walls and floor diaphragms in timber.
    [Show full text]
  • The Merits of Varying Forms of Mass Timber Products for Offsite and Modular Construction
    2018 Modular and Offsite Construction (MOC) Summit @ World of Modular, March 22-25 The Diplomat Beach Resort, Hollywood, FL, USA The merits of varying forms of mass timber products for offsite and modular construction Robert HAIRSTANS1*, Ryan SMITH2 and Peter WILSON3 1 Associate Professor, Institute for Sustainable Construction, Edinburgh Napier University 2 Associate Professor, School of Architecture, the University of Utah 3 Director, Timber Design Iniatives *Corresponding author’s e-mail: [email protected] ABSTRACT Mass timber is a family of Solid Laminate Timber Systems (SLTS) formed from smaller sections of timber connected by glue, mechanical fixings, moisture movement or a combination of methods. These products, which include Structural Composite Lumber, GluLam, Cross Lam, Nail Lam and Dowel Lam (or Brettstapel), have over the past two decades seen an extraordinary upsurge in use internationally. This global phenomenon has been driven by a greater emphasis on the sustainable use of renewable resources and by significant technological developments in the manufacture of SLTS. This research paper considers the merits of each of these products, their manufacturing processes and the corresponding quality assurance requirements necessary for successful project delivery. The paper describes the advantages and barriers to the use of the mass timber and provides an overview of the various aspects to be considered during design for offsite and modular construction. The work presented also provides case studies of how these products have been researched and utilised into live projects in the UK utilising local resource resulting in the formation of new supply chain arrangements. The work further explains the advantages of the respective systems for the given application including information on species selection, connection systems employed and the necessary onsite and offsite management approaches deployed.
    [Show full text]
  • GAIA International Table of Contents 1
    Prequalification entry: GAIA International Table of Contents 1 APPLICATION CONTENTS Page GAIA INTERNATIONAL AND ASSOCIATES 2 About GAIA International We submit herewith our entry for prequalification for 3 Four keywords competition projects of Norwegian Wood, Stavanger, nos. 4 Gaia International - Norway 5.2, 5.3, 5.4, 5.5, 5.6 and 5.8, see page 8. 5 Gaia International - Germany 6 Gaia International - Finland We are a pluridisciplinary team comprising architecture and 7 Gaia International - Scotland engineering practices in Norway and several other 8 List of projects we are applying for European countries. For this reason, we submit our 9 Interdisciplinary competence prequalification document in English. 12 Documentation, projects and competence 13 Massive timber, multistorey housing We wish to specify here that the primary coordination and 19 Timber housing formal responsibility is to be with GAIA Oslo AS and 21 Student and utrban apartments ProPlan AS – see attached accreditation (tiltaksklasse), tax, 22 Energy and HMS clearances etc. 23 Low dense housing 26 Schools and kindergartens For questions please contact GAIA Oslo AS at the address 30 Design for all - Universal Design given on page 47, or contact direct to architect MNAL Chris 31 Design for all - Healthy Materials Butters, [email protected], tel. 99 36 09 76. 32 Design for all - Indoor climate 34 Site ecology, water, landscape With our best regards, 36 Research and development GAIA International and Associates 38 Annexes: formal papers 43 CVs Oslo, 10th March 2006. 49 English translations GAIA International Norwegian Wood Stavanger - prequalification 2006 About GAIA International 2 The team of GAIA International and Associates The team of GAIA International comprises experts in the field of sustainable architecture, planning, engineering and construction from several countries, including GAIA Norway and associates in Oslo –Germany –Finland –Scotland.
    [Show full text]
  • Consumes Lots of Timber
    CLT Cross Laminated Timber or Consumes Lots of Timber …a challenging perspective on whether we should be using our only renewable construction material with more care – focusing on value engineering, design efficiency and lessons to be learnt from the steel and concrete industries. [email protected] Content • Is solid a problem? • CLT structural efficiency • Steel & Concrete • Options for CLT • Conclusions “The best friend of man is the tree. When we use the tree respectfully and economically, we have one of the greatest resources on the earth” Frank Lloyd Wright Is solid a problem? No – our forests are growing faster than we harvest In the EU we only harvest about two thirds of annual growth. Nearly 200 million m3 of wood is added to our forests each year. Is solid a problem? No – our forests are growing faster than we harvest Yes – we can build more with less timber using stud A CLT building uses about 0.30m3 of timber for every m2 of floor area provided. A timber stud and cassette building uses about 0.15m3 of timber for every m2 of floor area provided. Is solid a problem? No – our forests are growing faster than we harvest Yes – we can build more with less timber using stud No – enhanced robustness, fire and acoustic performance …but how do we put a value to this? Is solid a problem? No – our forests are growing faster than we harvest Yes – we can build more with less timber using stud No – enhanced robustness, fire and acoustic performance Yes – it is an imported product Subject to fluctuations in the exchange rate.
    [Show full text]
  • Scaling Low-Carbon Construction Materials
    OpinionClimate emergencyPlanning application Low-carbon procedures construction materials 2.Low carbon Scaling low-carbon construction materials Philip Isaac and Jonny Hawkshaw review the potential for materials with lower embodied carbon to be used more widely in both small-scale domestic projects and larger-scale residential and commercial projects. Introduction Low-carbon construction is a vast topic encompassing procurement, transport, recyclability, operating carbon, end of life, refurbishment and, of course, the ultimate question of whether we should be building at all. While we can’t hope to solve the construction industry’s carbon footprint in one fell swoop, the aim of this article is to look at the diverse array of low-carbon materials available, with the hope of providing a reference point for scheming at early stages of a project where they may be appropriate. If it’s true that the engineer’s toolkit has only (relatively) recently expanded beyond steel and concrete to include timber, REPRINTED FROM RESOUR., CONSERV. RECY., 140, ORR J., DREWNIOK M.P., WALKER I. ET AL., MINIMISING ENERGY IN WALKER 140, ORR J., DREWNIOK M.P., RECY., REPRINTED FROM RESOUR., CONSERV. ìFIGURE 1: Share of embodied and operational energy in UK buildings, with size of pie representing total energy2 should it now also expand to include some of the 125–136, COPYRIGHT 2019, WITH PERMISSION FROM ELSEVIER EFFICIENCY, CONSTRUCTION: PRACTITIONERS’ VIEWS ON MATERIAL materials discussed here? Energy Transformation Initiative (LETI) Embodied traditional materials with alternatives is given in Background Carbon Primer5: Figure 2, with descriptions for each of the Engineers stand today on the cusp of potentially Ò| small domestic alternatives provided in Table 1 and discussed the greatest challenge of their careers: embracing Ò| medium/large residential and commercial.
    [Show full text]
  • Softwoods in Construction
    Welsh Softwoods in Construction Wales Forest Business Partnership Unit 6, Dyfi Eco Park, Machynlleth, Powys SY20 8AX Telephone: 0845 456 0342 Fax: 01654 700050 Email:[email protected] woodknowledge www.wfbp.co.uk WALES Welsh Softwoods in Construction woodknowledge WALES Woodknowledge Wales would like to acknowledge the cooperation of Conwy Rural Partnership (and in particular Stuart Whitfield) in the creation of this document. Some of the content was originally written for the 'Development of a Conwy Sustainable Building System' report commissioned by the Conwy Cynhaliol project, funded through the Rural Development Plan which is financed by the EU and Welsh Government. Contents 1. Executive Summary 1 2. Introduction and background 2 2.1 Strength grading of softwoods grown in Wales 3 2.2 Welsh timber for cladding 5 2.3 Types of timber construction system/elements 6 2.4 Thermal performance of timber frame constructions 6 2.5 Construction standards in Wales 7 3. A taxonomy of timber wall systems 7 3.1 Post and beam 7 3.2 Engineered box beam system - Ty Unnos 10 3.3 Open panel or platform construction 11 3.3.1 Mainstream adoption of larger scale open panel timber frame 12 3.3.2 Open panel using I beams 13 3.4 Wall cassettes using engineered web beams 14 3.5 Open panel twin-wall construction 14 3.6 Closed panel construction 16 3.6.1 Glulam and straw bale closed panel; the Modcell system 18 3.6.2 Structural insulated panels (SIPS) 19 3.7 Solid wood panels 20 3.7.1 Brettstapel/Dowellam 20 3.8 Non-framed wood construction 22 3.8.1 Durisol woodfibre blocks 22 4.
    [Show full text]
  • School Design
    A Client's Guide to Sustainable Offices Gaia Research The documents have been developed with the support of the Scottish Executive through the 'Sust.: The Lighthouse on Sustainability' Campaign. Gaia Research would like to express its gratitude to all those who kindly provided case study material and to Gaia Architects for their generous in-kind contributions of time and expertise. Every effort has been made to credit source material. Illustrationss: Cover: Dyfi Eco-Park, Wales, Architects: Peter Holden Architects, photo courtesy Peter Holden Architects Section 1: PRISMA, Nuremburg, Architects: Joachim Eble Architects, photo courtesy Joachim Eble Architects Section 2: Glencoe Visitor Centre, Glencoe, Architects: Gaia Architects, photo courtesy of Gaia Architects Section 3: BRE Environmental Building, Architects: Fielden Clegg Bradley, photo courtesy of Fielden Clegg Bradley Section 4: NMB Bank Section 5: Gateway 2 Glossary available at www.gaiagroup.org/Research/glossary © Copyright - Gaia Research 2004 ISBN 1-904680-09-07 Published by Gaia Research Gaia Research The Monastery Hart Street Lane Edinburgh EH1 3RG 0131 558 7227 [email protected] Also available at www.GaiaGroup.org Discussion forum at http://www.gaiagroup.org/Research/forums/ A Client's Guide to Sustainable Offices - a draft for development " healthy workplaces have done more to boost productivity than all the bandwidth in the world'" Pape 2003 Gaia Research 2004 CONTENTS SECTION 1 INTRODUCTION 1 SECTION 2 PRINCIPLES OF SUSTAINABLE OFFICE 5 DESIGN What is sustainable
    [Show full text]