String Theory

Total Page:16

File Type:pdf, Size:1020Kb

String Theory Lecture Notes on String Theory Kevin Zhou [email protected] I don't actually know any string theory; these incomplete notes are just a collection of the prereq- uisites one needs to know before starting to learn string theory, beyond the usual ones of quantum field theory and general relativity. Topics covered include the quantization of constrained systems, 2D conformal field theory, and the quantization of the bosonic string. The primary sources were: • David Tong's String Theory lecture notes. These clear lecture notes follow the first volume of Polchinski, but with a much more approachable style, and hence are accessible after a good course on quantum field theory. • Timo Weigand's String Theory lecture notes. As with the quantum field theory notes, these notes are slightly more comprehensive and precise, at the cost of being slightly drier; also contains a short introduction to the superstring. • Zwiebach, A First Course in String Theory. A very basic introduction, covering bosonic string theory in the first part, and a wide variety of developments, such as D-branes and AdS/CFT in the second. The book is clearly written and accessible even without any field theory background, and in fact might be useful as indirect preparation for field theory. It has the benefit of explicitly showing many steps of logic skipped in most books. The downside is that the entire 300 pages of the first part barely covers the first 30 pages of Polchinski. • Henneaux and Teitelboim, Quantization of Gauge Systems. The most thorough book by far on the subject; if you're wondering how constrained quantization, Grassmann variables, or BRST symmetry really work, this is the place to go. Naturally, more formal than any of the other books on this list. The most relevant chapters for these notes are 1, 4, 6, and 13. The most recent version is here; please report any errors found to [email protected]. 2 Contents Contents 1 Preliminaries 3 1.1 Miscellanea.........................................3 1.2 Classical Strings......................................6 1.3 String Motion........................................ 11 1.4 Light Cone Gauge..................................... 15 1.5 Light Cone Fields...................................... 20 1.6 The Veneziano Amplitude................................. 23 2 Constrained Systems 26 2.1 Constrained Hamiltonian Systems............................ 26 2.2 Dirac Brackets and Gauge Fixing............................. 29 2.3 General Covariance..................................... 32 2.4 Constrained Quantization................................. 34 2.5 Classical Point Particle................................... 37 3 The Bosonic String 42 3.1 The Polyakov Action.................................... 42 3.2 Old Covariant Quantization................................ 47 3.3 Computing Spectra..................................... 52 4 Conformal Field Theory 57 4.1 Conformal Transformations................................ 57 4.2 Elementary Aspects.................................... 60 4.3 Free Scalar Field...................................... 65 4.4 Central Charges...................................... 68 4.5 The Virasoro Algebra................................... 72 4.6 The State-Operator Correspondence........................... 75 5 String Interactions 80 5.1 Motivation......................................... 80 5.2 Vertex Operators...................................... 84 5.3 Bosonic Open Strings................................... 86 6 String Compactification 90 6.1 Kaluza{Klein Theory.................................... 90 6.2 Worldsheet Theory..................................... 91 3 1. Preliminaries 1 Preliminaries 1.1 Miscellanea As a first pass, we'll follow Zwiebach's text. In this first section, we establish some conventions. • There are three fundamental dimensions: mass, length, and time. Charge is not a independent 2 dimension; this is clearest in the cgs system, where the Coulomb force law is F = q1q2=r . That is, one can define charges purely in terms of the forces they produce. In the SI system, all occurrences of the unit of charge in measurable quantities are canceled out by 0 or µ0. • String theory is said to have no adjustable parameters. This means that it has no dimensionless parameters; there is a single dimensionful parameter, the string length `s. When string theory was considered as a theory of hadrons, `s was thought to be on the nuclear scale, but now it is viewed as much smaller. • We use the (− + ++) metric convention, but define the interval ds2 to measure proper time, 2 µ ν −ds = ηµνdx dx : • We will perform the quantization of the relativistic string in light cone coordinates, where 1 x± = p (x0 ± x1): 2 The other coordinates stay the same, so in xµ, the µ index runs over (+; −; 2; 3). The light cone coordinate axes are tilted so that they lie on the light cone, e.g. a photon moving to the right has x− = 0. • The metric in light cone coordinates is 0 −1 1 2 + − 2 2 3 2 B−1 C −ds = −2dx dx + (dx ) + (dx ) ; ηµν = B C : @ 1 A 1 For example, we have − + µ − + + − 2 2 3 3 a+ = −a ; a− = −a ; a bµ = −a b − a b + a b + a b : • None of the coordinates are true time coordinates, but we will conventionally think of x+ as the light cone time coordinate. This isn't completely unnatural, since dx±/dτ > 0 for almost all particles. • We think of dx−=dx+ as a \light cone velocity". For a particle with speed v, the light cone velocity is (1 − v)=(1 + v). In particular, it is zero for a massless particle moving to the right, infinite for a massless particle moving to the left, and one when v = 0. • Next we must define the light cone energy. Energy is the conjugate variable to time, and µ + − 2 3 pµx = p+x + p−x + p2x + p3x − which motivates us to define the light cone energy as −p+ = p . Defining energy as a conjugate variable is useful as, e.g. the Schrodinger equation i @ =@x0 = p0 becomes i @ =@x+ = p− in lightcone coordinates. 4 1. Preliminaries Next, we consider the possibility of extra spatial dimensions. We maintain only one time dimension, since it is difficult to construct a consistent theory with more than one. • The extra dimensions can be topologically nontrivial; for example, for a single dimension we may identify x ∼ x + 2πR. The interval 0 ≤ x < 2πR is a fundamental domain for this identification, as every point is identified with exactly one point in the fundamental domain. We then construct the space by identifying points on the boundary, getting a circle. • Sometimes identifications have fixed points. The resulting space is not a manifold, since it is singular at the fixed point, but an orbifold. For example, identifying x ∼ −x gives the half-line 1 x ≥ 0, called the R =Z2 orbifold. • As another example, consider the identification z ∼ e2πi=N z in the complex plane, giving the C=ZN orbifold. It is a cone which is singular at its vertex; one fundamental domain is 0 ≤ θ < 2π=N. • Physics on spaces with generic singularities is typically complicated and possibly even inconsis- tent. Orbifolds are interesting because they have \tractable" singularities, so we may quantize strings on them. • For point particles, a small compactified dimension creates new energy levels, but they are very high if the dimension is small. By contrast, for a string, new low-lying states can appear if the dimension is much smaller than the string length, corresponding to the string wrapping around it. This is a consequence of T duality, as we'll see. • Compactified dimensions lead to subtleties with gauge theory. It can be the case that two configurations with the same fields are not related by a gauge transformation; then we must consider the states physically distinct. It also also be the case that some configuration of fields cannot be realized by a potential, even if we allow the potential be defined on patches and related between patches with gauge transformations; such states are forbidden. Note. A quick review of the nonrelativistic string. The Lagrangian is 1 @y 2 1 @y 2 L = µ − T : 2 @t 2 @x When we attempt to extremize the action, we run into a boundary term Z x=a @y δS ⊃ −T dt δy : @x x=0 To remove this unwanted boundary term, we need to apply boundary conditions. One acceptable boundary condition is Neumann boundary conditions (free ends), where @y = 0: @x x=0;a Alternatively, we could use Dirichlet boundary conditions (fixed ends), @y = 0 @t x=0;a 5 1. Preliminaries which ensures that y is constant on the boundaries, and hence δy = 0 there. A third alternative is that the string is closed, so that there are no boundaries at all. In the initial days of string theory, open strings were given Neumann boundary conditions, but it was later realized that they could have Dirichlet boundary conditions if they attached to an extended object called a Dp-brane, where D stands for Dirichlet and p is the number of spatial dimensions. (One can think of Neumann boundary conditions as the special case where the D-brane fills all space.) Remarkably, it turns out that D-branes are physical objects in their own right, and arise naturally from string theory without being introduced by hand. Finally, it will be useful later to consider the conjugate momenta, @L @y @L @y Pt = = µ ; Px = = −T : @y_ @t @y0 @x Here Pt is simply the usual momentum density in the y-direction. The equation of motion is @Pt @Px + = 0: @t @x In this notation, Neumann and Dirichlet boundary conditions set Px = 0 and Pt = 0 respectively. Note. Gravity and electromagnetism in higher dimensions. We will use 2πd=2 πd=2 vol(Sd−1) = ; vol(Bd) = : Γ(d=2) Γ(1 + d=2) In d spatial dimensions, Gauss's law continues to hold, so the field of a point charge is 1 q E(r) = vol(Sd−1) rd−1 in cgs units. As for gravitation, we have Gm g(r) = r2 in D = 4 spacetime dimensions. More generally, the gravitational field is determined by r2V (D) = 4πG(D)ρ, g = −∇V where G(D) is the gravitational constant in D dimensions.
Recommended publications
  • String Theory. Volume 1, Introduction to the Bosonic String
    This page intentionally left blank String Theory, An Introduction to the Bosonic String The two volumes that comprise String Theory provide an up-to-date, comprehensive, and pedagogic introduction to string theory. Volume I, An Introduction to the Bosonic String, provides a thorough introduction to the bosonic string, based on the Polyakov path integral and conformal field theory. The first four chapters introduce the central ideas of string theory, the tools of conformal field theory and of the Polyakov path integral, and the covariant quantization of the string. The next three chapters treat string interactions: the general formalism, and detailed treatments of the tree-level and one loop amplitudes. Chapter eight covers toroidal compactification and many important aspects of string physics, such as T-duality and D-branes. Chapter nine treats higher-order amplitudes, including an analysis of the finiteness and unitarity, and various nonperturbative ideas. An appendix giving a short course on path integral methods is also included. Volume II, Superstring Theory and Beyond, begins with an introduction to supersym- metric string theories and goes on to a broad presentation of the important advances of recent years. The first three chapters introduce the type I, type II, and heterotic superstring theories and their interactions. The next two chapters present important recent discoveries about strongly coupled strings, beginning with a detailed treatment of D-branes and their dynamics, and covering string duality, M-theory, and black hole entropy. A following chapter collects many classic results in conformal field theory. The final four chapters are concerned with four-dimensional string theories, and have two goals: to show how some of the simplest string models connect with previous ideas for unifying the Standard Model; and to collect many important and beautiful general results on world-sheet and spacetime symmetries.
    [Show full text]
  • Lectures on D-Branes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CPHT/CL-615-0698 hep-th/9806199 Lectures on D-branes Constantin P. Bachas1 Centre de Physique Th´eorique, Ecole Polytechnique 91128 Palaiseau, FRANCE [email protected] ABSTRACT This is an introduction to the physics of D-branes. Topics cov- ered include Polchinski’s original calculation, a critical assessment of some duality checks, D-brane scattering, and effective worldvol- ume actions. Based on lectures given in 1997 at the Isaac Newton Institute, Cambridge, at the Trieste Spring School on String The- ory, and at the 31rst International Symposium Ahrenshoop in Buckow. June 1998 1Address after Sept. 1: Laboratoire de Physique Th´eorique, Ecole Normale Sup´erieure, 24 rue Lhomond, 75231 Paris, FRANCE, email : [email protected] Lectures on D-branes Constantin Bachas 1 Foreword Referring in his ‘Republic’ to stereography – the study of solid forms – Plato was saying : ... for even now, neglected and curtailed as it is, not only by the many but even by professed students, who can suggest no use for it, never- theless in the face of all these obstacles it makes progress on account of its elegance, and it would not be astonishing if it were unravelled. 2 Two and a half millenia later, much of this could have been said for string theory. The subject has progressed over the years by leaps and bounds, despite periods of neglect and (understandable) criticism for lack of direct experimental in- put. To be sure, the construction and key ingredients of the theory – gravity, gauge invariance, chirality – have a firm empirical basis, yet what has often catalyzed progress is the power and elegance of the underlying ideas, which look (at least a posteriori) inevitable.
    [Show full text]
  • 8. Compactification and T-Duality
    8. Compactification and T-Duality In this section, we will consider the simplest compactification of the bosonic string: a background spacetime of the form R1,24 S1 (8.1) ⇥ The circle is taken to have radius R, so that the coordinate on S1 has periodicity X25 X25 +2⇡R ⌘ We will initially be interested in the physics at length scales R where motion on the S1 can be ignored. Our goal is to understand what physics looks like to an observer living in the non-compact R1,24 Minkowski space. This general idea goes by the name of Kaluza-Klein compactification. We will view this compactification in two ways: firstly from the perspective of the spacetime low-energy e↵ective action and secondly from the perspective of the string worldsheet. 8.1 The View from Spacetime Let’s start with the low-energy e↵ective action. Looking at length scales R means that we will take all fields to be independent of X25: they are instead functions only on the non-compact R1,24. Consider the metric in Einstein frame. This decomposes into three di↵erent fields 1,24 on R :ametricG˜µ⌫,avectorAµ and a scalar σ which we package into the D =26 dimensional metric as 2 µ ⌫ 2σ 25 µ 2 ds = G˜µ⌫ dX dX + e dX + Aµ dX (8.2) Here all the indices run over the non-compact directions µ, ⌫ =0 ,...24 only. The vector field Aµ is an honest gauge field, with the gauge symmetry descend- ing from di↵eomorphisms in D =26dimensions.Toseethisrecallthatunderthe transformation δXµ = V µ(X), the metric transforms as δG = ⇤ + ⇤ µ⌫ rµ ⌫ r⌫ µ This means that di↵eomorphisms of the compact direction, δX25 =⇤(Xµ), turn into gauge transformations of Aµ, δAµ = @µ⇤ –197– We’d like to know how the fields Gµ⌫, Aµ and σ interact.
    [Show full text]
  • String Theory University of Cambridge Part III Mathematical Tripos
    Preprint typeset in JHEP style - HYPER VERSION January 2009 String Theory University of Cambridge Part III Mathematical Tripos Dr David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OWA, UK http://www.damtp.cam.ac.uk/user/tong/string.html [email protected] –1– Recommended Books and Resources J. Polchinski, String Theory • This two volume work is the standard introduction to the subject. Our lectures will more or less follow the path laid down in volume one covering the bosonic string. The book contains explanations and descriptions of many details that have been deliberately (and, I suspect, at times inadvertently) swept under a very large rug in these lectures. Volume two covers the superstring. M. Green, J. Schwarz and E. Witten, Superstring Theory • Another two volume set. It is now over 20 years old and takes a slightly old-fashioned route through the subject, with no explicit mention of conformal field theory. How- ever, it does contain much good material and the explanations are uniformly excellent. Volume one is most relevant for these lectures. B. Zwiebach, A First Course in String Theory • This book grew out of a course given to undergraduates who had no previous exposure to general relativity or quantum field theory. It has wonderful pedagogical discussions of the basics of lightcone quantization. More surprisingly, it also has some very clear descriptions of several advanced topics, even though it misses out all the bits in between. P. Di Francesco, P. Mathieu and D. S´en´echal, Conformal Field Theory • This big yellow book is a↵ectionately known as the yellow pages.
    [Show full text]
  • M-Theory Solutions and Intersecting D-Brane Systems
    M-Theory Solutions and Intersecting D-Brane Systems A Thesis Submitted to the College of Graduate Studies and Research in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy in the Department of Physics and Engineering Physics University of Saskatchewan Saskatoon By Rahim Oraji ©Rahim Oraji, December/2011. All rights reserved. Permission to Use In presenting this thesis in partial fulfilment of the requirements for a Postgrad- uate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Physics and Engineering Physics 116 Science Place University of Saskatchewan Saskatoon, Saskatchewan Canada S7N 5E2 i Abstract It is believed that fundamental M-theory in the low-energy limit can be described effectively by D=11 supergravity.
    [Show full text]
  • New Worldsheet Formulae for Conformal Supergravity Amplitudes
    New Worldsheet Formulae for Conformal Supergravity Amplitudes Joseph A. Farrow and Arthur E. Lipstein Department of Mathematical Sciences Durham University, Durham, DH1 3LE, United Kingdom Abstract We use 4d ambitwistor string theory to derive new worldsheet formulae for tree- level conformal supergravity amplitudes supported on refined scattering equations. Unlike the worldsheet formulae for super-Yang-Mills or supergravity, the scattering equations for conformal supergravity are not in general refined by MHV degree. Nevertheless, we obtain a concise worldsheet formula for any number of scalars and gravitons which we lift to a manifestly supersymmetric formula using four types of vertex operators. The theory also contains states with non-plane wave boundary conditions and we show that the corresponding amplitudes can be obtained from plane-wave amplitudes by applying momentum derivatives. Such derivatives are subtle to define since the formulae are intrinsically four-dimensional and on-shell, so we develop a method for computing momentum derivatives of spinor variables. arXiv:1805.04504v3 [hep-th] 11 Jul 2018 1 Contents 1 Introduction 2 2 Review 4 3 Plane Wave Graviton Multiplet Scattering 6 3.1 Supersymmetric Formula . .8 4 Non-Plane Wave Graviton Multiplet Scattering 9 5 Conclusion 11 A BRST Quantization 13 B Derivation of Berkovits-Witten Formula 16 C Momentum Derivatives 17 D Non-plane Wave Examples 19 D.1 Non-plane Wave Scalar . 19 D.2 Non-plane Wave Graviton . 21 1 Introduction Starting with the discovery of the Parke-Taylor formula for tree-level gluon amplitudes [1], the study of scattering amplitudes has suggested intruiging new ways of formulating quantum field theory.
    [Show full text]
  • Chapter 9: the 'Emergence' of Spacetime in String Theory
    Chapter 9: The `emergence' of spacetime in string theory Nick Huggett and Christian W¨uthrich∗ May 21, 2020 Contents 1 Deriving general relativity 2 2 Whence spacetime? 9 3 Whence where? 12 3.1 The worldsheet interpretation . 13 3.2 T-duality and scattering . 14 3.3 Scattering and local topology . 18 4 Whence the metric? 20 4.1 `Background independence' . 21 4.2 Is there a Minkowski background? . 24 4.3 Why split the full metric? . 27 4.4 T-duality . 29 5 Quantum field theoretic considerations 29 5.1 The graviton concept . 30 5.2 Graviton coherent states . 32 5.3 GR from QFT . 34 ∗This is a chapter of the planned monograph Out of Nowhere: The Emergence of Spacetime in Quantum Theories of Gravity, co-authored by Nick Huggett and Christian W¨uthrich and under contract with Oxford University Press. More information at www.beyondspacetime.net. The primary author of this chapter is Nick Huggett ([email protected]). This work was sup- ported financially by the ACLS and the John Templeton Foundation (the views expressed are those of the authors not necessarily those of the sponsors). We want to thank Tushar Menon and James Read for exceptionally careful comments on a draft this chapter. We are also grateful to Niels Linnemann for some helpful feedback. 1 6 Conclusions 35 This chapter builds on the results of the previous two to investigate the extent to which spacetime might be said to `emerge' in perturbative string the- ory. Our starting point is the string theoretic derivation of general relativity explained in depth in the previous chapter, and reviewed in x1 below (so that the philosophical conclusions of this chapter can be understood by those who are less concerned with formal detail, and so skip the previous one).
    [Show full text]
  • Black Holes and the Multiverse
    Home Search Collections Journals About Contact us My IOPscience Black holes and the multiverse This content has been downloaded from IOPscience. Please scroll down to see the full text. JCAP02(2016)064 (http://iopscience.iop.org/1475-7516/2016/02/064) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 165.123.34.86 This content was downloaded on 01/03/2016 at 21:11 Please note that terms and conditions apply. ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Black holes and the multiverse Jaume Garriga,a;b Alexander Vilenkinb and Jun Zhangb JCAP02(2016)064 aDepartament de Fisica Fonamental i Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, Barcelona, 08028 Spain bInstitute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 U.S.A. E-mail: [email protected], [email protected], [email protected] Received December 28, 2015 Accepted February 3, 2016 Published February 25, 2016 Abstract. Vacuum bubbles may nucleate and expand during the inflationary epoch in the early universe. After inflation ends, the bubbles quickly dissipate their kinetic energy; they come to rest with respect to the Hubble flow and eventually form black holes. The fate of the bubble itself depends on the resulting black hole mass. If the mass is smaller than a certain critical value, the bubble collapses to a singularity. Otherwise, the bubble interior inflates, forming a baby universe, which is connected to the exterior FRW region by a wormhole.
    [Show full text]
  • T ¯ T Deformed CFT As a Non-Critical String Arxiv:1910.13578V1 [Hep-Th]
    Prepared for submission to JHEP T T¯ deformed CFT as a non-critical string Nele Callebaut,a;c;d Jorrit Kruthoffb and Herman Verlindea aJoseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA bStanford Institute for Theoretical Physics, Stanford University, Stanford, CA 94305, USA cDepartment of Physics and Astronomy, Ghent University, Krijgslaan 281-S9, 9000 Gent, Belgium dDepartment of Mathematics and Haifa Research Center for Theoretical Physics and Astrophysics, University of Haifa, Haifa 31905, Israel Abstract: We present a new exact treatment of T T¯ deformed 2D CFT in terms of the world- sheet theory of a non-critical string. The transverse dimensions of the non-critical string are represented by the undeformed CFT, while the two longitudinal light-cone directions are de- scribed by two scalar fields X+ and X− with free field OPE's but with a modified stress tensor, arranged so that the total central charge adds up to 26. The relation between our X± field vari- ables and 2D dilaton gravity is indicated. We compute the physical spectrum and the partition function and find a match with known results. We describe how to compute general correlation functions and present an integral expression for the three point function, which can be viewed as an exact formula for the OPE coefficients of the T T¯ deformed theory. We comment on the relationship with other proposed definitions of local operators. arXiv:1910.13578v1 [hep-th] 29 Oct 2019 Contents 1 Introduction2 2 A non-perturbative definition of T T¯ 3 2.1 T T¯ at c = 24 as a
    [Show full text]
  • String Field Theory, Nucl
    1 String field theory W. TAYLOR MIT, Stanford University SU-ITP-06/14 MIT-CTP-3747 hep-th/0605202 Abstract This elementary introduction to string field theory highlights the fea- tures and the limitations of this approach to quantum gravity as it is currently understood. String field theory is a formulation of string the- ory as a field theory in space-time with an infinite number of massive fields. Although existing constructions of string field theory require ex- panding around a fixed choice of space-time background, the theory is in principle background-independent, in the sense that different back- grounds can be realized as different field configurations in the theory. String field theory is the only string formalism developed so far which, in principle, has the potential to systematically address questions involv- ing multiple asymptotically distinct string backgrounds. Thus, although it is not yet well defined as a quantum theory, string field theory may eventually be helpful for understanding questions related to cosmology arXiv:hep-th/0605202v2 28 Jun 2006 in string theory. 1.1 Introduction In the early days of the subject, string theory was understood only as a perturbative theory. The theory arose from the study of S-matrices and was conceived of as a new class of theory describing perturbative interactions of massless particles including the gravitational quanta, as well as an infinite family of massive particles associated with excited string states. In string theory, instead of the one-dimensional world line 1 2 W. Taylor of a pointlike particle tracing out a path through space-time, a two- dimensional surface describes the trajectory of an oscillating loop of string, which appears pointlike only to an observer much larger than the string.
    [Show full text]
  • Free Lunch from T-Duality
    Free Lunch from T-Duality Ulrich Theis Institute for Theoretical Physics, Friedrich-Schiller-University Jena, Max-Wien-Platz 1, D{07743 Jena, Germany [email protected] We consider a simple method of generating solutions to Einstein gravity coupled to a dilaton and a 2-form gauge potential in n dimensions, starting from an arbitrary (n m)- − dimensional Ricci-flat metric with m commuting Killing vectors. It essentially consists of a particular combination of coordinate transformations and T-duality and is related to the so-called null Melvin twists and TsT transformations. Examples obtained in this way include two charged black strings in five dimensions and a finite action configuration in three dimensions derived from empty flat space. The latter leads us to amend the effective action by a specific boundary term required for it to admit solutions with positive action. An extension of our method involving an S-duality transformation that is applicable to four-dimensional seed metrics produces further nontrivial solutions in five dimensions. 1 Introduction One of the most attractive features of string theory is that it gives rise to gravity: the low-energy effective action for the background fields on a string world-sheet is diffeomor- phism invariant and includes the Einstein-Hilbert term of general relativity. This effective action is obtained by integrating renormalization group beta functions whose vanishing is required for Weyl invariance of the world-sheet sigma model and can be interpreted as a set of equations of motion for the background fields. Solutions to these equations determine spacetimes in which the string propagates.
    [Show full text]
  • Classical String Theory
    PROSEMINAR IN THEORETICAL PHYSICS Classical String Theory ETH ZÜRICH APRIL 28, 2013 written by: DAVID REUTTER Tutor: DR.KEWANG JIN Abstract The following report is based on my talk about classical string theory given at April 15, 2013 in the course of the proseminar ’conformal field theory and string theory’. In this report a short historical and theoretical introduction to string theory is given. This is fol- lowed by a discussion of the point particle action, leading to the postulation of the Nambu-Goto and Polyakov action for the classical bosonic string. The equations of motion from these actions are derived, simplified and generally solved. Subsequently the Virasoro modes appearing in the solution are discussed and their algebra under the Poisson bracket is examined. 1 Contents 1 Introduction 3 2 The Relativistic String4 2.1 The Action of a Classical Point Particle..........................4 2.2 The General p-Brane Action................................6 2.3 The Nambu Goto Action..................................7 2.4 The Polyakov Action....................................9 2.5 Symmetries of the Action.................................. 11 3 Wave Equation and Solutions 13 3.1 Conformal Gauge...................................... 13 3.2 Equations of Motion and Boundary Terms......................... 14 3.3 Light Cone Coordinates................................... 15 3.4 General Solution and Oscillator Expansion......................... 16 3.5 The Virasoro Constraints.................................. 19 3.6 The Witt Algebra in Classical String Theory........................ 22 2 1 Introduction In 1969 the physicists Yoichiro Nambu, Holger Bech Nielsen and Leonard Susskind proposed a model for the strong interaction between quarks, in which the quarks were connected by one-dimensional strings holding them together. However, this model - known as string theory - did not really succeded in de- scribing the interaction.
    [Show full text]