Humoral Immune Response to Melanoma: Discovery and Evaluation of Anti-Melanoma Antibodies

Total Page:16

File Type:pdf, Size:1020Kb

Humoral Immune Response to Melanoma: Discovery and Evaluation of Anti-Melanoma Antibodies This electronic thesis or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Humoral immune response to melanoma: discovery and evaluation of anti-melanoma antibodies Gilbert, Amy Awarding institution: King's College London The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENCE AGREEMENT Unless another licence is stated on the immediately following page this work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ You are free to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 This electronic theses or dissertation has been downloaded from the King’s Research Portal at https://kclpure.kcl.ac.uk/portal/ Title: Humoral immune response to melanoma: discovery and evaluation of anti-melanoma antibodies Author: Amy Gilbert The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without proper acknowledgement. END USER LICENSE AGREEMENT This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. http://creativecommons.org/licenses/by-nc-nd/3.0/ You are free to: Share: to copy, distribute and transmit the work Under the following conditions: Attribution: You must attribute the work in the manner specified by the author (but not in any way that suggests that they endorse you or your use of the work). Non Commercial: You may not use this work for commercial purposes. No Derivative Works - You may not alter, transform, or build upon this work. Any of these conditions can be waived if you receive permission from the author. Your fair dealings and other rights are in no way affected by the above. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Humoral immune response to melanoma: discovery and evaluation of anti-melanoma antibodies Amy Eileen Gilbert A thesis submitted for the degree Doctor of Philosophy King’s College, London Abstract Melanoma, a potentially lethal form of skin cancer, is widely thought to be immunogenic in nature. While numerous studies have examined T cell-mediated immune responses to melanoma and their therapeutic potential, there has been less focus on B cell-mediated immune responses and the tumor-reactive antibodies they produce. The aim of this work was three-fold: (1) to develop a methodology to detect antibodies secreted by human B cells that recognize melanoma cell surface proteins; (2) to evaluate the mature B cell repertoire of individuals with melanoma for antibody subclass composition and the presence and prevalence of anti-tumor antibodies; and (3) to study patient-derived antibodies and two engineered antibodies recognizing melanoma cells for their propensity to activate immune effector cells and their capacity to kill or restrict the growth of tumor cells. As part of this thesis, a novel tumor cell-based ELISA was developed for the detection of tumor-reactive antibodies. Utilizing this new assay, the presence and prevalence of melanoma-reactive IgG antibodies derived from ex vivo cultured peripheral blood B cells from a cohort of 21 patients with melanoma (Stage I, n=1; Stage II, n=8; Stage III, n=6; Stage IV, n=6) were compared to those from healthy volunteers (n=10). While B cells from melanoma patients secreted IgG antibody concentrations comparable to those from healthy volunteer B cell cultures, a significantly increased reactivity of antibodies derived from patients to primary and metastatic melanoma cells was measured compared to healthy volunteers (P<0.001). Interestingly, there was a significant reduction in antibody responses to melanoma with advancing disease stage that was not found to be solely due to a -i- reduction in the B cell memory compartment size. Comparing IgG antibody subclass distribution among cutaneous tumors, patient lymph nodes and peripheral blood B cells all isolated from individuals with metastatic disease, elevated proportions of IgG4 subclass antibodies were observed in cutaneous tumors which present a novel finding of this thesis. These findings point to differentially polarized humoral immune responses in cutaneous tumor microenvironments. Lastly, an antibody derived from a patient was then selected and preliminary evaluations of reactivity and specificity to a range of melanoma cell lines and primary human melanocytes were conducted. Using a live cell imaging cytotoxicity assay, this patient-derived melanoma-specific antibody was observed to kill melanoma cells via antibody-mediated cellular cytotoxicity. Additionally, two engineered monoclonal antibodies recognizing a melanoma associated antigen were found to partially restrict tumor cell migration and adhesion and to kill melanoma cells via antibody-dependent cellular cytotoxicity or phagocytosis. In summary, examining the humoral immune response to melanoma and the effector function of antibodies targeting melanoma cells provides insight into the discovery of new therapeutic strategies for the treatment of melanoma. -ii- Table of Contents Abstract ............................................................................................................................................................ i Table of Contents .......................................................................................................................................iii Table of Figures .......................................................................................................................................... xi List of Tables ............................................................................................................................................. xvi Acknowledgements ............................................................................................................................. xviii Abbreviations ............................................................................................................................................. xx Chapter 1: Introduction....................................................................................................................... 1 1.1 Antibodies ............................................................................................................................. 2 1.1.1 The Role of Antibodies in the Adaptive Immune Response................... 2 1.1.2 Antibody Structure and Fc Effector Function ............................................... 8 1.1.3 Therapeutic Mechanisms of Action of Monoclonal Antibodies ......... 12 1.1.4 Monoclonal Antibodies for the Treatment of Cancer ............................. 17 1.1.5 Monoclonal Antibody Production ................................................................... 21 1.1.5.1 Historical Perspectives on the Production of Antibody Therapeutics .......................................................................................................................... 21 1.1.5.2 Strategies to Discover Human Antibodies from Patient B cells . 27 1.2 Melanoma ........................................................................................................................... 32 1.2.1 Therapy for Metastatic Melanoma .................................................................. 34 1.2.2 Immunotherapeutic Approaches for the Treatment of Melanoma . 37 1.2.3 Melanoma Antigens Recognized by the Immune System .................... 42 1.2.3.1 HMW-MAA ........................................................................................................... 44 -iii- 1.3 Immune Responses to Cancer .................................................................................. 48 1.3.1 Humoral Responses to Melanoma................................................................... 49 1.3.2 Mechanisms of Immune Evasion in Tumors .............................................. 52 1.3.3 Th2 Responses in Cancer and Activation of Alternative Humoral Immunity ...................................................................................................................................... 55 1.3.3.1 Preclinical Evaluations of Tumor-specific Antibodies of the IgE Class ................................................................................................................................... 57 1.4 Hypotheses and Aims ................................................................................................... 62 Chapter 2: Materials and Methods .............................................................................................
Recommended publications
  • Characterization of Increasing Stages of Invasiveness Identifies Stromal/Cancer Cell Crosstalk in Rat Models of Mesothelioma
    www.oncotarget.com Oncotarget, 2018, Vol. 9, (No. 23), pp: 16311-16329 Research Paper Characterization of increasing stages of invasiveness identifies stromal/cancer cell crosstalk in rat models of mesothelioma Joëlle S. Nader1, Jérôme Abadie1,2, Sophie Deshayes1, Alice Boissard3,4, Stéphanie Blandin5, Christophe Blanquart1, Nicolas Boisgerault1, Olivier Coqueret3,4, Catherine Guette3,4, Marc Grégoire1 and Daniel L. Pouliquen1 1CRCINA, INSERM, Université d’Angers, Université de Nantes, Nantes, France 2ONIRIS, Nantes, France 3CRCINA, INSERM, Université de Nantes, Université d’Angers, Angers, France 4ICO, Angers, France 5Plate-Forme MicroPICell, SFR François Bonamy, Université de Nantes, France Correspondence to: Daniel L. Pouliquen, email: [email protected] Keywords: stroma; invasiveness; sarcomatoid mesothelioma; immune cells; rat model Received: November 08, 2017 Accepted: February 25, 2018 Published: March 27, 2018 Copyright: Nader et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Sarcomatoid mesothelioma (SM) is a devastating cancer associated with one of the poorest outcome. Therefore, representative preclinical models reproducing different tumor microenvironments (TME) observed in patients would open up new prospects for the identification of markers and evaluation of innovative therapies. Histological analyses
    [Show full text]
  • Mediated Enamel Mineralization
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archivio della ricerca- Università di Roma La Sapienza [Frontiers In Bioscience, Landmark, 22, 1289-1329, March 1, 2017] The crossroads between cancer immunity and autoimmunity: antibodies to self antigens Monica Benvenuto1, Rosanna Mattera1, Laura Masuelli2, Ilaria Tresoldi1, Maria Gabriella Giganti1, Giovanni Vanni Frajese3, Vittorio Manzari1, Andrea Modesti1,4, Roberto Bei1,4 1Department of Clinical Sciences and Translational Medicine, University of Rome, Tor Vergata, Rome, 00133 Italy, 2Department of Experimental Medicine, University of Rome, Sapienza, Rome, 00164 Italy, 3Department of Sports Science, Human and Health, University of Rome ‘Foro Italico’, Rome, 00135 Italy, 4Center for Regenerative Medicine, (CIMER), University of Rome “Tor Vergata”, Rome, 00133 Italy TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Immune response to self antigens in cancer patients partly covers that characteristic of patients with autoimmune diseases 4. Features of self antigens involved in the autoreactive immune response: immunological properties and abnormal expression 5. Biological activities of autoantibodies to self antigens 6. Association of autoantibodies to self antigens with paraneoplastic autoimmune syndromes 7. Role of autoantibodies to self antigens as biomarkers for cancer detection and cancer patients prognosis 8. Paraneoplastic neurological syndromes, effects of therapy targeting immune-checkpoint receptors and Tregs dysregulation in autoimmune disease patients: the crossroad between autoimmunity and immune response in cancer patients 9. Conclusions 10. Acknowledgment 11. References 1. ABSTRACT The production of autoantibodies to self meaning of autoantibodies to self antigens detected in antigens is dependent on the failure of immune cancer and autoimmune disease patients.
    [Show full text]
  • Vaccines and Other Immunological Approaches for Cancer Immunoprevention
    Current Drug Targets, 2011, 12, 1957-1973 1957 Vaccines and Other Immunological Approaches for Cancer Immunoprevention Pier-Luigi Lollini*,1, Giordano Nicoletti2, Lorena Landuzzi2, Federica Cavallo3, Guido Forni3, Carla De Giovanni4 and Patrizia Nanni4 1Department of Hematology and Oncological Sciences, University of Bologna; 2Rizzoli Orthopedic Institute, Bologna; 3Molecular Biotechnology Center, Department of Clinical and Biological Sciences, University of Turin; 4Department of Experimental Pathology, University of Bologna, Italy Abstract: The immune system effectively prevents cancer, whereas severe immunodepression increases its incidence. Cancer immunoprevention is a strategy based on the concept that enhancement of tumor immunity in healthy individuals reduces cancer risk. It can be viewed as a kind of chemoprevention. For cancer immunoprevention, the cancer universe can be neatly divided between tumors caused - directly or indirectly - by infectious agents and all other tumors. Immunoprevention of tumors caused by infectious agents is already implemented at the population level for hepatitis B virus (HBV)-related hepatocellular carcinoma and for tumors caused by human papillomaviruses (HPV), like cervical carcinoma. Now the challenge is to develop immunological strategies to prevent the bulk (>80%) of human tumor burden, unrelated to infections. Both vaccines against tumor antigens and immune modulators can prevent tumor onset in cancer- prone mice. These studies outlined the target antigens and the molecular and cellular mechanisms
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies Et Al
    US009 161992B2 (12) United States Patent (10) Patent No.: US 9,161,992 B2 Jefferies et al. (45) Date of Patent: Oct. 20, 2015 (54) P97 FRAGMENTS WITH TRANSFER 4,683.202 A 7, 1987 Mullis ACTIVITY 4,704,362 A 11/1987 Itakura et al. 4,766,075 A 8, 1988 Goeddeletal. (71) Applicant: biosis Technologies, Inc., Richmond 4,800,1594,784.950 A 11/19881/1989 MullisHagen et al. (CA) 4,801,542 A 1/1989 Murray et al. 4.866,042 A 9, 1989 Neuwelt (72) Inventors: Wilfred Jefferies, South Surrey (CA); 4,935,349 A 6/1990 McKnight et al. Mei Mei Tian, Coquitlam (CA): 4.946,778 A 8, 1990 Ladner et al. Timothy Vitalis, Vancouver (CA) 5,091,513 A 2f1992 Huston et al. 5,132,405 A 7, 1992 Huston et al. (73) Assignee: biOasis Technologies, Inc., British 5, 186,941 A 2f1993 Callahan et al. Columbia (CA) 5,672,683 A 9, 1997 Friden et al. 5,677,171 A 10, 1997 Hudziak et al. c - r 5,720,937 A 2f1998 Hudziak et al. (*) Notice: Subject to any disclaimer, the term of this 5,720,954. A 2f1998 Hudziak et al. patent is extended or adjusted under 35 5,725,856 A 3, 1998 Hudziak et al. U.S.C. 154(b) by 0 days. 5,770,195 A 6/1998 Hudziak et al. 5,772,997 A 6/1998 Hudziak et al. (21) Appl. No.: 14/226,506 5,844,093 A 12/1998 Kettleborough et al. 5,962,012 A 10, 1999 Lin et al.
    [Show full text]
  • Antibody-Radionuclide Conjugates for Cancer Therapy: Historical Considerations and New Trends
    CCR FOCUS Antibody-Radionuclide Conjugates for Cancer Therapy: Historical Considerations and New Trends Martina Steiner and Dario Neri Abstract When delivered at a sufficient dose and dose rate to a neoplastic mass, radiation can kill tumor cells. Because cancer frequently presents as a disseminated disease, it is imperative to deliver cytotoxic radiation not only to the primary tumor but also to distant metastases, while reducing exposure of healthy organs as much as possible. Monoclonal antibodies and their fragments, labeled with therapeutic radionuclides, have been used for many years in the development of anticancer strategies, with the aim of concentrating radioactivity at the tumor site and sparing normal tissues. This review surveys important milestones in the development and clinical implementation of radioimmunotherapy and critically examines new trends for the antibody-mediated targeted delivery of radionuclides to sites of cancer. Clin Cancer Res; 17(20); 6406–16. Ó2011 AACR. Introduction are immunogenic in humans and thus prevent repeated administration to patients [this limitation was subse- In 1975, the invention of hybridoma technology by quently overcome by the advent of chimeric, humanized, Kohler€ and Milstein (1) enabled for the first time the and fully human antibodies (7)]. Of more importance, production of rodent antibodies of single specificity most radioimmunotherapy approaches for the treatment (monoclonal antibodies). Antibodies recognize the cog- of solid tumors failed because the radiation dose deliv- nate
    [Show full text]
  • Perspectives on Cancer Therapy with Radiolabeled Monoclonal Antibodies
    Perspectives on Cancer Therapy with Radiolabeled Monoclonal Antibodies Robert M. Sharkey, PhD; and David M. Goldenberg, ScD, MD Garden State Cancer Center, Center for Molecular Medicine and Immunology, Belleville, New Jersey lular biology led the way with the development of mono- With the approval of 2 radiolabeled antibody products for the clonal antibodies and, more recently, with the engineering treatment of non-Hodgkin’s lymphoma (NHL), radioimmuno- of antibodies in various configurations with reduced immu- therapy (RIT) has finally come of age as a new therapeutic nogenicity. It is worth noting that antitumor antibodies modality, exemplifying the collaboration of multiple disciplines, remain one of the best means for selective binding to including immunology, radiochemistry, radiation medicine, suitable targets on cancer cells and have also stimulated the medical oncology, and nuclear medicine. Despite the many challenges that this new therapy discipline has encountered, study of other delivery forms, such as oligonucleotides or there is growing evidence that RIT can have a significant impact aptamers (6,7). However, the use of antibodies in radio- on the treatment of cancer. Although follicular NHL is currently immunotherapy (RIT) is still evolving, with the investiga- the only indication in which RIT has been proven to be effective, tion of new molecular constructs, new radionuclides and clinical trials are showing usefulness in other forms of NHL as radiochemistry, improved dosimetry, prediction of tumor well as in other hematologic neoplasms. However, the treatment response and host toxicities, and better targeting strategies of solid tumors remains a formidable challenge, because the to prevent or overcome host toxicities, particularly myelo- doses shown to be effective in hematologic tumors are insuffi- suppression.
    [Show full text]
  • Identification of Biomarkers in Colon Cancer Based on Bioinformatic Analysis
    4895 Original Article Identification of biomarkers in colon cancer based on bioinformatic analysis Ying Zhu1#^, Leitao Sun2#^, Jieru Yu3, Yuying Xiang1^, Minhe Shen2^, Harpreet S. Wasan4^, Shanming Ruan2^, Shengliang Qiu2^ 1The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China; 2Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China; 3College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China; 4Department of Cancer Medicine, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London, UK Contributions: (I) Conception and design: Y Zhu, L Sun; (II) Administrative support: M Shen, S Ruan, S Qiu; (III) Provision of study materials or patients: Z Ying, L Sun; (IV) Collection and assembly of data: J Yu, Y Xiang; (V) Data analysis and interpretation: Ying Zhu, Leitao Sun, Harpreet S. Wasan, S Qiu, S Ruan; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. #These authors contributed equally to this work. Correspondence to: Shengliang Qiu. Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Shangcheng, Hangzhou 310006, China. Email: [email protected]; Shanming Ruan. Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, 54 Youdian Road, Shangcheng, Hangzhou 310006, China. Email: shanmingruan@ zcmu.edu.cn. Background: Colon cancer is one of the most common cancers in the world. Targeting biomarkers is helpful for the diagnosis and treatment of colon cancer. This study aimed to identify biomarkers in colon cancer, in addition to those that have already been reported, using microarray datasets and bioinformatics analysis.
    [Show full text]
  • WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/176089 Al 3 November 2016 (03.11.2016) P O P C T (51) International Patent Classification: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A01N 43/00 (2006.01) A61K 31/33 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US2016/028383 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 20 April 2016 (20.04.2016) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/154,426 29 April 2015 (29.04.2015) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: KARDIATONOS, INC. [US/US]; 4909 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, Lapeer Road, Metamora, Michigan 48455 (US).
    [Show full text]
  • Treatment of Cancer.Pptx
    5/3/15 Treatment of Cancer – Chemotherapy, Surgery, Radiation Cancer There is a crabgrass illustration – where you and Immunotherapy… find a batch of crabgrass in a beautiful yard… what do you do? • Cut it – Surgery • Burn it – Radiation • Poison it – Chemotherapy The best approach is to know what caused the crabgrass (it is a kind of grass) and treat it specifically – “Personalized Medicine or Molecular/Targeted Therapy” If we only had enough time Effective Therapies – may Aim of Therapy Cure, Control and/or Relieve the symptoms require better diagnosis • Neoadjuvant chemotherapy: Before • Most diagnosis depends on microscopic/ histopathological analysis (remember the surgery or radiation – to shrink tumor making staging?) it more effectively treated or removed • This method does NOT account for the • Adjuvant chemotherapy: treated after heterologous population of cells nor the surgery or radiation – To deal with undetected various mutations of driver/passenger genes, cells, microtumors… specific oncogenes or tumor suppressors. • Some markers are being used but not widely • Palliative chemotherapy: To treat patient and the number of oncologists that and reduce symptoms – improve quality of understand these markers and use them is life, not treat underlying cause or curative questionable except in most advanced cases “Targeted” Cancer Treatment Cancer Targets How does it work? Attack targets which are specific for the cancer cell and are critical for its survival or for its malignant behavior Why is it better than chemotherapy? More specific for cancer cells – chemotherapy hits rapidly growing cells not all cancer cells grow that rapidly some normal cells grow rapidly Possibly more effective From National Cancer Institute, US National Institutes of Health.
    [Show full text]
  • Vaccines Against Human HER2 Prevent Mammary Carcinoma in Mice Transgenic for Human HER2
    De Giovanni et al. Breast Cancer Research 2014, 16:R10 http://breast-cancer-research.com/content/16/1/R10 RESEARCH ARTICLE Open Access Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2 Carla De Giovanni1,2, Giordano Nicoletti3, Elena Quaglino4, Lorena Landuzzi3, Arianna Palladini1, Marianna Lucia Ianzano1, Massimiliano Dall’Ora1, Valentina Grosso1, Dario Ranieri1, Roberta Laranga1, Stefania Croci1, Augusto Amici5, Manuel L Penichet6, Manuela Iezzi7, Federica Cavallo4, Patrizia Nanni1,2* and Pier-Luigi Lollini1,2 Abstract Introduction: The availability of mice transgenic for the human HER2 gene (huHER2) and prone to the development of HER2-driven mammary carcinogenesis (referred to as FVB-huHER2 mice) prompted us to study active immunopreventive strategies targeting the human HER2 molecule in a tolerant host. Methods: FVB-huHER2 mice were vaccinated with either IL-12-adjuvanted human HER2-positive cancer cells or DNA vaccine carrying chimeric human-rat HER2 sequences. Onset and number of mammary tumors were recorded to evaluate vaccine potency. Mice sera were collected and passively transferred to xenograft-bearing mice to assess their antitumor efficacy. Results: Both cell and DNA vaccines significantly delayed tumor onset, leading to about 65% tumor-free mice at 70 weeks, whereas mock-vaccinated FVB-huHER2 controls developed mammary tumors at a median age of 45 weeks. In the DNA vaccinated group, 65% of mice were still tumor-free at about 90 weeks of age. The number of mammary tumors per mouse was also significantly reduced in vaccinated mice. Vaccines broke the immunological tolerance to the huHER2 transgene, inducing both humoral and cytokine responses.
    [Show full text]
  • Archivio Istituzionale Open Access Dell'università Di Torino Original Citation
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Bovine herpesvirus 4-based vector delivering a hybrid rat/human HER-2 oncoantigen efficiently protects mice from autochthonous Her-2+mammary cancer This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/1542810 since 2017-05-16T11:42:46Z Published version: DOI:10.1080/2162402X.2015.1082705 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 04 October 2021 This is an author version of the contribution published on: Sarah Jacca, Valeria Rolih, Elena Quaglino, Valentina Franceschi, Giulia Tebaldi, Elisabetta Bolli, Alfonso Rosamilia, Simone Ottonello, Federica Cavallo & Gaetano Donofrio Bovine herpesvirus 4-based vector delivering a hybrid rat/human HER-2 oncoantigen efficiently protects mice from autochthonous Her-2+ mammary cancer. In Oncoimmunology, 2015 The definitive version is available at: DOI: 10.1080/2162402X.2015.1082705 1 Bovine herpesvirus 4-based vector delivering a hybrid rat/human HER-2 oncoantigen 2 efficiently protects mice from autochthonous Her-2+ mammary cancer. 3 4 Sarah JaccaaΔ, Valeria RolihbΔ, Elena QuaglinobΔ, Valentina Franceschia, Giulia Tebaldia, Elisabetta 5 Bollib, Alfonso Rosamiliaa, Simone Ottonelloc, Federica Cavallob* and Gaetano Donofrioa* 6 7 aDepartment of Medical-Veterinary Science, University of Parma, Parma, Italy.
    [Show full text]
  • Induce Immunogenic Cell Death Through On-Target Effects
    www.nature.com/cddis ARTICLE OPEN Pharmacological inhibitors of anaplastic lymphoma kinase (ALK) induce immunogenic cell death through on-target effects 1,2,3 1,2,3 1,2 1,2 1,2 4 Adriana Petrazzuolo , Maria Perez-Lanzon , Isabelle✉ Martins , Peng Liu , Oliver Kepp , Véronique Minard-Colin , Maria Chiara Maiuri 1,2 and Guido Kroemer 1,2,5,6,7 © The Author(s) 2021 Immunogenic cell death (ICD) is clinically relevant because cytotoxicants that kill malignant cells via ICD elicit anticancer immune responses that prolong the effects of chemotherapies beyond treatment discontinuation. ICD is characterized by a series of stereotyped changes that increase the immunogenicity of dying cells: exposure of calreticulin on the cell surface, release of ATP and high mobility group box 1 protein, as well as a type I interferon response. Here, we examined the possibility that inhibition of an oncogenic kinase, anaplastic lymphoma kinase (ALK), might trigger ICD in anaplastic large cell lymphoma (ALCL) in which ALK is activated due to a chromosomal translocation. Multiple lines of evidence plead in favor of specific ICD-inducing effects of crizotinib and ceritinib in ALK-dependent ALCL: (i) they induce ICD stigmata at pharmacologically relevant, low concentrations; (ii) can be mimicked in their ICD-inducing effects by ALK knockdown; (iii) lose their effects in the context of resistance-conferring ALK mutants; (iv) ICD-inducing effects are mimicked by inhibition of the signal transduction pathways operating downstream of ALK. When ceritinib-treated murine ALK-expressing ALCL cells were inoculated into the left flank of immunocompetent syngeneic mice, they induced an immune response that slowed down the growth of live ALCL cells implanted in the right flank.
    [Show full text]