Ontogeny and Littoral Structure of Lakes Created on Phosphate Mined Lands of Central Florida Chrysoula Mitraki University of South Florida, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

Ontogeny and Littoral Structure of Lakes Created on Phosphate Mined Lands of Central Florida Chrysoula Mitraki University of South Florida, Cmitraki@Mail.Usf.Edu University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 Ontogeny and Littoral Structure of Lakes Created on Phosphate Mined Lands of Central Florida Chrysoula Mitraki University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, and the Terrestrial and Aquatic Ecology Commons Scholar Commons Citation Mitraki, Chrysoula, "Ontogeny and Littoral Structure of Lakes Created on Phosphate Mined Lands of Central Florida" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4167 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Ontogeny and Littoral Structure of Lakes Created on Phosphate Mined Lands of Central Florida by Chrysoula Mitraki A dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Integrative Biology College of Arts and Sciences University of South Florida Major Professor: Thomas L. Crisman, Ph.D. Susan Bell, Ph.D. Valerie J. Harwood, Ph.D. Mark Brenner, Ph.D. Date of Approval: May 17, 2012 Keywords: water quality, benthic invertebrates, macrophytes, lake age, lake morphometry Copyright © 2012, Chrysoula Mitraki ACKNOWLEDGMENTS Acknowledgments belong to the lake managers, who allowed and facilitated lake sampling and graciously shared their expertise. Mr. Timothy King and Mr. Danon Moxley from the Tenoroc Fish Management Area Mr. Charles Cook from the Florida Department of Environmental Protection Mrs. Rosemarie Garcia and Mrs. Jessica Solis from The Mosaic Company Mr. David Royal from the Clear Springs Land Management Company LLC TABLE OF CONTENTS List of Tables ....................................................................................................... iv List of Figures ....................................................................................................... v Abstract ............................................................................................................... vi Introduction: Ontogeny and Littoral Structure of Lakes Created on Phosphate Mined Lands of Central Florida .......................................................... 1 Florida Lakes Natural Florida Lakes ..................................................................... 1 Lakes Created on Phosphate Mined Lands .................................... 4 Questions ................................................................................................. 8 Hypotheses............................................................................................... 9 Ontogeny of Phosphate Lakes ....................................................... 9 Hypothesis 1 ...................................................................... 12 Littoral Structure-Vegetation Communities ................................... 12 Hypothesis 2.1 ................................................................... 14 Hypothesis 2.2 ................................................................... 14 Littoral Structure-Benthic Invertebrate Communities .................... 14 Hypothesis 3.1 ................................................................... 16 Hypothesis 3.2 ................................................................... 16 References Cited .................................................................................... 17 Chapter 1: Ontogeny of Lakes Created on Phosphate Mined Lands of Central Florida ................................................................................................... 22 Introduction ............................................................................................. 22 Methods .................................................................................................. 26 Site Description ............................................................................ 26 Field and Lab Methods ................................................................. 27 Statistical Analyses ...................................................................... 29 Results and Discussion .......................................................................... 31 Water Quality ............................................................................... 31 Physical and Chemical Variables ....................................... 31 Trophic State Variables ..................................................... 35 Basin Morphometry ...................................................................... 39 Benthic Invertebrates ................................................................... 41 Total Abundance ............................................................... 41 Taxa Richness ................................................................... 44 i Major Invertebrate Groups ................................................. 44 Chironomidae .................................................................... 46 Taxa Relationships to Lake Age ........................................ 48 Benthic Invertebrates Versus Abiotic Variables ................. 51 Conclusions ............................................................................................ 56 References Cited .................................................................................... 57 Chapter 2: Vegetation Communities of Lakes Created on Phosphate Lands of Central Florida .................................................................................... 62 Introduction ............................................................................................. 62 Methods .................................................................................................. 64 Site Description ............................................................................ 64 Vegetation Survey and Physical/Chemical Variables ................... 65 Basin Morphometry ...................................................................... 66 Sediment Properties ..................................................................... 66 Data Analyses .............................................................................. 67 Results and Discussion .......................................................................... 67 Abiotic Characteristics .................................................................. 67 Stratification Patterns ........................................................ 67 Water Quality ..................................................................... 68 Basin Characteristics ......................................................... 70 Vegetation .................................................................................... 70 Plant Composition ............................................................. 70 Plant Assemblages ............................................................ 72 Lake Classification by Littoral Plant Communities .............. 76 Plant Assemblages Relative to Lake Age and Morphometry ..................................................................... 81 Plant Community Composition as a Potential Indicator of Lake Succession ........................................................... 84 Conclusions ............................................................................................ 85 References Cited .................................................................................... 86 Chapter 3: Littoral Benthic Communities of Lakes Created on Phosphate Mined Lands of Central Florida.......................................................................... 88 Introduction ............................................................................................. 88 Methods .................................................................................................. 91 Site Description ............................................................................ 91 Slope ............................................................................................ 92 Sediment Properties ..................................................................... 92 Benthic Invertebrates ................................................................... 93 Statistical Procedures .................................................................. 94 Results and Discussion .......................................................................... 95 Abiotic Variables .......................................................................... 95 Stratification Patterns-Water Quality .................................. 95 Basin Morphometry ........................................................... 96 Sediment Characteristics ................................................... 96 ii Benthic Invertebrates ................................................................... 97 Total Abundance ............................................................... 97 Taxa Richness ................................................................... 99 Major Groups ..................................................................... 99 Benthic Invertebrate Community Composition ................. 103 Chironomidae Groups ..................................................... 104 Benthic Invertebrates Versus Abiotic Characteristics ....... 107 Relationships Between Macrophytes and Benthic
Recommended publications
  • (Diptera: Chironomidae), with The
    Zootaxa 2497: 1–36 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) The problems with Polypedilum Kieffer (Diptera: Chironomidae), with the description of Probolum subgen. n. OLE A. SÆTHER1, TROND ANDERSEN2,5, LUIZ C. PINHO3 & HUMBERTO F. MENDES4 1, 2 & 4Department of Natural History, Bergen Museum, University of Bergen, Pb. 7800, N-5020 Bergen, Norway. 3Departamento de Biologia, FFCLRP-USP, Avenida Bandeirantes, n. 3900, CEP 14040-901, Ribeirão Preto - SP, Brazil. E-mails: [email protected], [email protected], [email protected], [email protected] 5Corresponding author. E-mail: [email protected] Table of contents Abstract ............................................................................................................................................................................... 2 Introduction ......................................................................................................................................................................... 2 Material and methods .......................................................................................................................................................... 3 Systematics .......................................................................................................................................................................... 3 Polypedilum subgenus Tripedilum Kieffer .......................................................................................................................
    [Show full text]
  • Abstract Spatial Distribution of Benthic Invertebrates In
    ABSTRACT SPATIAL DISTRIBUTION OF BENTHIC INVERTEBRATES IN LAKE WINNEBAGO, WISCONSIN By Courtney L. Heling Numerous studies have examined the distribution of benthic invertebrates in lakes through space and time. However, most studies typically focus on single habitats or individual taxa rather than sampling comprehensively in multiple habitats in a single system. The focus of this study was to quantify the spatial distribution of the macroinvertebrate taxa present in three major lake zones (profundal, offshore reef, and littoral) in Lake Winnebago, Wisconsin, with a particular emphasis on chironomid distribution, and to determine what factors drove patterns in variation. The profundal zone was sampled for two consecutive years in August to determine if changes in spatial variation occurred from one year to the next. Using a variety of sampling methods, invertebrates were collected from all three zones in 2013 and the profundal zone in 2014. Additionally, numerous physical and biological variables were measured at each sampling site. Benthic invertebrate densities ranged from 228 to 66,761 individuals per m2 and varied among lake zones and substrates. Zebra mussels (Dreissena polymorpha) were numerically dominant in both the offshore reef and littoral zones, while chironomids and oligochaetes comprised approximately 75% of profundal invertebrates sampled. Principal components analysis (PCA) showed that chironomid community structure differed highly among the three major lake zones. The littoral and offshore reef zones had the highest chironomid taxa richness, while the profundal zone, where Procladius spp. and Chironomus spp. were dominant, had lower richness. Chironomid density and community structure exhibited spatial variation within the profundal zone. The abundance of chironomids was correlated with several habitat variables, including organic matter content of the sediments.
    [Show full text]
  • Chironominae 8.1
    CHIRONOMINAE 8.1 SUBFAMILY CHIRONOMINAE 8 DIAGNOSIS: Antennae 4-8 segmented, rarely reduced. Labrum with S I simple, palmate or plumose; S II simple, apically fringed or plumose; S III simple; S IV normal or sometimes on pedicel. Labral lamellae usually well developed, but reduced or absent in some taxa. Mentum usually with 8-16 well sclerotized teeth; sometimes central teeth or entire mentum pale or poorly sclerotized; rarely teeth fewer than 8 or modified as seta-like projections. Ventromental plates well developed and usually striate, but striae reduced or vestigial in some taxa; beard absent. Prementum without dense brushes of setae. Body usually with anterior and posterior parapods and procerci well developed; setal fringe not present, but sometimes with bifurcate pectinate setae. Penultimate segment sometimes with 1-2 pairs of ventral tubules; antepenultimate segment sometimes with lateral tubules. Anal tubules usually present, reduced in brackish water and marine taxa. NOTESTES: Usually the most abundant subfamily (in terms of individuals and taxa) found on the Coastal Plain of the Southeast. Found in fresh, brackish and salt water (at least one truly marine genus). Most larvae build silken tubes in or on substrate; some mine in plants, dead wood or sediments; some are free- living; some build transportable cases. Many larvae feed by spinning silk catch-nets, allowing them to fill with detritus, etc., and then ingesting the net; some taxa are grazers; some are predacious. Larvae of several taxa (especially Chironomus) have haemoglobin that gives them a red color and the ability to live in low oxygen conditions. With only one exception (Skutzia), at the generic level the larvae of all described (as adults) southeastern Chironominae are known.
    [Show full text]
  • A Checklist of North American Odonata
    A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution Dennis R. Paulson and Sidney W. Dunkle 2009 Edition (updated 14 April 2009) A Checklist of North American Odonata Including English Name, Etymology, Type Locality, and Distribution 2009 Edition (updated 14 April 2009) Dennis R. Paulson1 and Sidney W. Dunkle2 Originally published as Occasional Paper No. 56, Slater Museum of Natural History, University of Puget Sound, June 1999; completely revised March 2009. Copyright © 2009 Dennis R. Paulson and Sidney W. Dunkle 2009 edition published by Jim Johnson Cover photo: Tramea carolina (Carolina Saddlebags), Cabin Lake, Aiken Co., South Carolina, 13 May 2008, Dennis Paulson. 1 1724 NE 98 Street, Seattle, WA 98115 2 8030 Lakeside Parkway, Apt. 8208, Tucson, AZ 85730 ABSTRACT The checklist includes all 457 species of North American Odonata considered valid at this time. For each species the original citation, English name, type locality, etymology of both scientific and English names, and approxi- mate distribution are given. Literature citations for original descriptions of all species are given in the appended list of references. INTRODUCTION Before the first edition of this checklist there was no re- Table 1. The families of North American Odonata, cent checklist of North American Odonata. Muttkows- with number of species. ki (1910) and Needham and Heywood (1929) are long out of date. The Zygoptera and Anisoptera were cov- Family Genera Species ered by Westfall and May (2006) and Needham, West- fall, and May (2000), respectively, but some changes Calopterygidae 2 8 in nomenclature have been made subsequently. Davies Lestidae 2 19 and Tobin (1984, 1985) listed the world odonate fauna Coenagrionidae 15 103 but did not include type localities or details of distri- Platystictidae 1 1 bution.
    [Show full text]
  • New Records of Polypedilum Kieffer, 1912 from Ecuador, with Description of a New Species
    SPIXIANA 43 1 127-136 München, Oktober 2020 ISSN 0341-8391 New records of Polypedilum Kieffer, 1912 from Ecuador, with description of a new species (Diptera, Chironomidae) Viktor Baranov, Luiz Carlos Pinho, Milena Roszkowska & Łukasz Kaczmarek Baranov, V., Pinho, L. C., Roszkowska, M. & Kaczmarek, Ł. 2020. New records of Polypedilum Kieffer, 1912 from Ecuador, with description of a new species (Di­ ptera, Chironomidae). Spixiana 43 (1): 127-136. Polypedilum darwini sp. nov. is described from Ecuadorian Amazonia based on the adult male. The new species is similar to P. feridae Bidawid­Kafka, 1996 in gen­ eral morphology. Additionally Polypedilum salwiti Bidawid­Kafka, 1996 is recorded for the first time outside of Brazil. Viktor Baranov (corresponding author), LMU Munich Biocenter, Department of Biology II, 82152 Planegg­Martinsried, Germany; e­mail: [email protected]­ muenchen.de. Former address: Senckenberg Research Institute and Natural His­ tory Museum Frankfurt, Clamecystr. 12, 63571 Gelnhausen, Germany. Luiz Carlos Pinho, Center of Biological Sciences, Department of Zoology and Ecology, Federal University of Santa Catarina, 88040­901, Florianópolis, Santa Catarina, Brazil; e­mail: [email protected] Milena Roszkowska, Department of Animal Taxonomy and Ecology/Department of Bioenergetics, Adam Mickiewicz University Poznañ, 61­614 Poznañ, Poland; e­mail: [email protected] Łukasz Kaczmarek, Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznañ, 61­614 Poznañ, Poland; e­mail: [email protected] Introduction insects throughout the world (Ferrington 2007). Despite unprecedented rates of new chironomid The Neotropical realm is a well­known hotspot of taxa descriptions from the Neotropics in the last two insect biodiversity, with Brazil alone assumed to decades, very large numbers of species are expected be home for at least 500 000 species of Hexapoda to have remained unknown due to the family’s high (Rafael et al.
    [Show full text]
  • The Proventriculus of Immature Anisoptera (Odonata) with Reference to Its Use in Taxonomy
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1955 The rP oventriculus of Immature Anisoptera (Odonata) With Reference to Itsuse in Taxonomy. Alice Howard Ferguson Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Ferguson, Alice Howard, "The rP oventriculus of Immature Anisoptera (Odonata) With Reference to Itsuse in Taxonomy." (1955). LSU Historical Dissertations and Theses. 103. https://digitalcommons.lsu.edu/gradschool_disstheses/103 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. THE PROTENTRICULUS OF IMMATURE ANISOPTERA (ODONATA) WITH REFERENCE TO ITS USE IN TAXONOMY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology, Physiology, and Entomology Alice Howard Ferguson B. S., Southern Methodist University, 193& M. S., Southern Methodist University, I9U0 June, 1955 EXAMINATION AND THESIS REPORT Candidate: Miss Alice Ferguson Major Field: Entomology Title of Thesis: The Proventriculus of Immature Anisoptera (Odonata) with Reference to its Use in Taxonomy Approved: Major Professor and Chairman Deanpf-tfio Graduate School EXAMINING COMMITTEE: m 1.1 ^ ----------------------------- jJ------- --- 7 ------ Date of Examination: May6 , 195$ PiKC t U R D C N ACKNOWLEDGEMENT I want to express ny appreciation to the members of ny committee, especially to J.
    [Show full text]
  • Abstracts Submitted for Presentation During The
    Abstracts submitted for presentation during the Compiled By Leonard C. Ferrington Jr. 17 July 2003 ABSTRACT FOR THE THIENEMANN HONORARY LECTURE THE ROLE OF CHROMOSOMES IN CHIRONOMID SYSTEMATICS, ECOLOGY AND PHYLOGENY WOLFGANG F. WUELKER* Chironomids have giant chromosomes with useful characters: different chromosome number, different combination of chromosome arms, number and position of nucleolar organizers, amount of heterochromatin, presence of puffs and Balbiani rings, banding pattern. For comparison of species, it is important that the bands or groups of bands can be homologized. Chromosomes are nearly independent of environmental factors, however they show variability in form of structural modifications and inversion polymorphism. Systematic aspects: New species of chironomids have sometimes been found on the basis of chromosomes, e.g. morphologically well defined "species" turned out to contain two or more karyotypes. Chromosome preparations were also sometimes declared as species holotypes. Moreover, chromosomes were helpful to find errors in previous investigations or to rearrange groups.- Nevertheless, where morphology and chromosomal data are not sufficient for species identification, additional results of electrophoresis of enzymes or hemoglobins as well as molecular-biological data were often helpful and necessary . Ecological, parasitological and zoogeographical aspects: An example of niche formation are the endemic Sergentia-species of the 1500 m deep Laike Baikal in Siberia. Some species are stenobathic and restricted to certain depth regions. The genetic sex of nematode-infested Chironomus was unresolved for a long time. External morphological characters were misleading, because parasitized midges have predominantly female characters. However, transfer of the parasites to species with sex-linked chromosomal characters (strains of Camptochironomus) could show that half of the parasitized midges are genetic males.
    [Show full text]
  • Cumulative Index of ARGIA and Bulletin of American Odonatology
    Cumulative Index of ARGIA and Bulletin of American Odonatology Compiled by Jim Johnson PDF available at http://odonata.bogfoot.net/docs/Argia-BAO_Cumulative_Index.pdf Last updated: 14 February 2021 Below are titles from all issues of ARGIA and Bulletin of American Odonatology (BAO) published to date by the Dragonfly Society of the Americas. The purpose of this listing is to facilitate the searching of authors and title keywords across all issues in both journals, and to make browsing of the titles more convenient. PDFs of ARGIA and BAO can be downloaded from https://www.dragonflysocietyamericas.org/en/publications. The most recent three years of issues for both publications are only available to current members of the Dragonfly Society of the Americas. Contact Jim Johnson at [email protected] if you find any errors. ARGIA 1 (1–4), 1989 Welcome to the Dragonfly Society of America Cook, C. 1 Society's Name Revised Cook, C. 2 DSA Receives Grant from SIO Cook, C. 2 North and Central American Catalogue of Odonata—A Proposal Donnelly, T.W. 3 US Endangered Species—A Request for Information Donnelly, T.W. 4 Odonate Collecting in the Peruvian Amazon Dunkle, S.W. 5 Collecting in Costa Rica Dunkle, S.W. 6 Research in Progress Garrison, R.W. 8 Season Summary Project Cook, C. 9 Membership List 10 Survey of Ohio Odonata Planned Glotzhober, R.C. 11 Book Review: The Dragonflies of Europe Cook, C. 12 Book Review: Dragonflies of the Florida Peninsula, Bermuda and the Bahamas Cook, C. 12 Constitution of the Dragonfly Society of America 13 Exchanges and Notices 15 General Information About the Dragonfly Society of America (DSA) Cook, C.
    [Show full text]
  • Happy 75Th Birthday, Nick
    ISSN 1061-8503 TheA News Journalrgia of the Dragonfly Society of the Americas Volume 19 12 December 2007 Number 4 Happy 75th Birthday, Nick Published by the Dragonfly Society of the Americas The Dragonfly Society Of The Americas Business address: c/o John Abbott, Section of Integrative Biology, C0930, University of Texas, Austin TX, USA 78712 Executive Council 2007 – 2009 President/Editor in Chief J. Abbott Austin, Texas President Elect B. Mauffray Gainesville, Florida Immediate Past President S. Krotzer Centreville, Alabama Vice President, United States M. May New Brunswick, New Jersey Vice President, Canada C. Jones Lakefield, Ontario Vice President, Latin America R. Novelo G. Jalapa, Veracruz Secretary S. Valley Albany, Oregon Treasurer J. Daigle Tallahassee, Florida Regular Member/Associate Editor J. Johnson Vancouver, Washington Regular Member N. von Ellenrieder Salta, Argentina Regular Member S. Hummel Lake View, Iowa Associate Editor (BAO Editor) K. Tennessen Wautoma, Wisconsin Journals Published By The Society ARGIA, the quarterly news journal of the DSA, is devoted to non-technical papers and news items relating to nearly every aspect of the study of Odonata and the people who are interested in them. The editor especially welcomes reports of studies in progress, news of forthcoming meetings, commentaries on species, habitat conservation, noteworthy occurrences, personal news items, accounts of meetings and collecting trips, and reviews of technical and non-technical publications. Membership in DSA includes a subscription to Argia. Bulletin Of American Odonatology is devoted to studies of Odonata of the New World. This journal considers a wide range of topics for publication, including faunal synopses, behavioral studies, ecological studies, etc.
    [Show full text]
  • In Memory of James E. Sublette (1928-2012)
    IN MEMORY OF JAMES E. SUBLETTE (1928-2012) nomy as well as other groups. One of their defi- nitive works (coauthored by Michael D. Hatch) was “The Fishes of New Mexico”. Jim’s children fondly remember dinner table conversations about Tanytarsus and family vacations which would cen- ter around water sources from which they collec- ted larval specimens. After his retirement from ENMU, Jim went on to be a faculty member at the University of Colorado in Pueblo for several additional years, after which he and Mary moved to Tucson, Arizona, where they spent a happy retirement, although Jim never actually stopped working on his taxonomic stu- dies. Even after the death of Mary in 2007, Jim continued to work every evening on his big Zeiss microscope, practically to the very end of his life. In retirement he also took up artistic pursuits, crea- ting biologically-inspired prints with his close fri- end, artist Gloria Isaak Morton. Dr. James Edward Sublette was a renowned sci- entist who, together with Mary Frances, his wife A young James E. Sublette, 1953. Photo: courtesy of the Sublette family. of 57 years, made lasting contributions to the field of entomology. Moreover, he was a devoted hus- James Edward Sublette was born in Oklahoma on band, father, grandfather, and great-grandfather. January 19, 1928 to Samuel Hubbard Sublette and He inspired numerous graduate students and was Pearl Mae Graves Sublette and raised in Arkansas, beloved by colleagues around the world. This brief the 3rd of 4 children. He was a descendent of Abra- ham Soblet, a Huguenot who came to this coun- try in 1700 to escape religious persecution.
    [Show full text]
  • Chironomidae of the Southeastern United States: a Checklist of Species and Notes on Biology, Distribution, and Habitat
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln US Fish & Wildlife Publications US Fish & Wildlife Service 1990 Chironomidae of the Southeastern United States: A Checklist of Species and Notes on Biology, Distribution, and Habitat Patrick L. Hudson U.S. Fish and Wildlife Service David R. Lenat North Carolina Department of Natural Resources Broughton A. Caldwell David Smith U.S. Evironmental Protection Agency Follow this and additional works at: https://digitalcommons.unl.edu/usfwspubs Part of the Aquaculture and Fisheries Commons Hudson, Patrick L.; Lenat, David R.; Caldwell, Broughton A.; and Smith, David, "Chironomidae of the Southeastern United States: A Checklist of Species and Notes on Biology, Distribution, and Habitat" (1990). US Fish & Wildlife Publications. 173. https://digitalcommons.unl.edu/usfwspubs/173 This Article is brought to you for free and open access by the US Fish & Wildlife Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in US Fish & Wildlife Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Fish and Wildlife Research 7 Chironomidae of the Southeastern United States: A Checklist of Species and Notes on Biology, Distribution, and Habitat NWRC Library I7 49.99:- -------------UNITED STATES DEPARTMENT OF THE INTERIOR FISH AND WILDLIFE SERVICE Fish and Wildlife Research This series comprises scientific and technical reports based on original scholarly research, interpretive reviews, or theoretical presentations. Publications in this series generally relate to fish or wildlife and their ecology. The Service distributes these publications to natural resource agencies, libraries and bibliographic collection facilities, scientists, and resource managers. Copies of this publication may be obtained from the Publications Unit, U.S.
    [Show full text]
  • Refinement of the Basin-Wide Index of Biotic Integrity for Non-Tidal Streams and Wadeable Rivers in the Chesapeake Bay Watershed
    Refinement of the Basin-Wide Index of Biotic Integrity for Non-Tidal Streams and Wadeable Rivers in the Chesapeake Bay Watershed APPENDICES Appendix A: Taxonomic Classification Appendix B: Taxonomic Attributes Appendix C: Taxonomic Standardization Appendix D: Rarefaction Appendix E: Biological Metric Descriptions Appendix F: Abiotic Parameters for Evaluating Stream Environment Appendix G: Stream Classification Appendix H: HUC12 Watershed Characteristics in Bioregions Appendix I: Index Methodologies Appendix J: Scoring Methodologies Appendix K: Index Performance, Accuracy, and Precision Appendix L: Narrative Ratings and Maps of Index Scores Appendix M: Potential Biases in the Regional Index Ratings Appendix Citations Appendix A: Taxonomic Classification All taxa reported in Chessie BIBI database were assigned the appropriate Phylum, Subphylum, Class, Subclass, Order, Suborder, Family, Subfamily, Tribe, and Genus when applicable. A portion of the taxa reported were reported under an invalid name according to the ITIS database. These taxa were subsequently changed to the taxonomic name deemed valid by ITIS. Table A-1. The taxonomic hierarchy of stream macroinvertebrate taxa included in the Chesapeake Bay non-tidal database.
    [Show full text]