SUBFAMILIA TEICHOSTROPHIINAE HARPER & BOUCOT, 1978C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strophomenide and Orthotetide Silurian Brachiopods from the Baltic Region, with Particular Reference to Lithuanian Boreholes
Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes PETRAS MUSTEIKIS and L. ROBIN M. COCKS Musteikis, P. and Cocks, L.R.M. 2004. Strophomenide and orthotetide Silurian brachiopods from the Baltic region, with particular reference to Lithuanian boreholes. Acta Palaeontologica Polonica 49 (3): 455–482. Epeiric seas covered the east and west parts of the old craton of Baltica in the Silurian and brachiopods formed a major part of the benthic macrofauna throughout Silurian times (Llandovery to Pridoli). The orders Strophomenida and Orthotetida are conspicuous components of the brachiopod fauna, and thus the genera and species of the superfamilies Plec− tambonitoidea, Strophomenoidea, and Chilidiopsoidea, which occur in the Silurian of Baltica are reviewed and reidentified in turn, and their individual distributions are assessed within the numerous boreholes of the East Baltic, particularly Lithua− nia, and attributed to benthic assemblages. The commonest plectambonitoids are Eoplectodonta(Eoplectodonta)(6spe− cies), Leangella (2 species), and Jonesea (2 species); rarer forms include Aegiria and Eoplectodonta (Ygerodiscus), for which the new species E. (Y.) bella is erected from the Lithuanian Wenlock. Eight strophomenoid families occur; the rare Leptaenoideidae only in Gotland (Leptaenoidea, Liljevallia). Strophomenidae are represented by Katastrophomena (4 spe− cies), and Pentlandina (2 species); Bellimurina (Cyphomenoidea) is only from Oslo and Gotland. Rafinesquinidae include widespread Leptaena (at least 11 species) and Lepidoleptaena (2 species) with Scamnomena and Crassitestella known only from Gotland and Oslo. In the Amphistrophiidae Amphistrophia is widespread, and Eoamphistrophia, Eocymostrophia, and Mesodouvillina are rare. In the Leptostrophiidae Mesoleptostrophia, Brachyprion,andProtomegastrophia are com− mon, but Eomegastrophia, Eostropheodonta, Erinostrophia,andPalaeoleptostrophia are only recorded from the west in the Baltica Silurian. -
Treatise on Invertebrate Paleontology
PART H, Revised BRACHIOPODA VOLUMES 2 & 3: Linguliformea, Craniiformea, and Rhynchonelliformea (part) ALWYN WILLIAMS, S. J. CARLSON, C. H. C. BRUNTON, L. E. HOLMER, L. E. POPOV, MICHAL MERGL, J. R. LAURIE, M. G. BASSETT, L. R. M. COCKS, RONG JIA-YU, S. S. LAZAREV, R. E. GRANT, P. R. RACHEBOEUF, JIN YU-GAN, B. R. WARDLAW, D. A. T. HARPER, A. D. WRIGHT, and MADIS RUBEL CONTENTS INFORMATION ON TREATISE VOLUMES ...................................................................................... x EDITORIAL PREFACE .............................................................................................................. xi STRATIGRAPHIC DIVISIONS .................................................................................................. xxiv COORDINATING AUTHOR'S PREFACE (Alwyn Williams) ........................................................ xxv BRACHIOPOD CLASSIFICATION (Alwyn Williams, Sandra J. Carlson, and C. Howard C. Brunton) .................................. 1 Historical Review .............................................................................................................. 1 Basis for Classification ....................................................................................................... 5 Methods.......................................................................................................................... 5 Genealogies ....................................................................................................................... 6 Recent Brachiopods ....................................................................................................... -
1443 Jansen.Vp
Strophomenid brachiopods from the Rhenish Lower Devonian (Germany) ULRICH JANSEN Early Devonian Strophomenida (Brachiopoda) from the Rhenish Slate Mountains (Germany) are described. Three gen- era are introduced as new: Gigastropheodonta [type species: Leptaena (Strophomena) gigas McCoy, 1852], Rheno- stropheodonta (type species: R. rhenana gen. nov. et sp. nov.) and Gibbodouvillina (type species: Strophomena taeniolata G. & F. Sandberger, 1856). The diagnosis of the poorly known genus Boucotstrophia Jahnke, 1981 (type spe- cies: Stropheodonta herculea Drevermann, 1904) is revised. These and several further taxa are briefly discussed with re- gard to phylogenetic relationships, palaeobiogeographical implications, palaeobiological aspects and stratigraphical sig- nificance. • Key words: Brachiopoda, Strophomenida, Devonian, Rhenish Slate Mountains, taxonomy, biostratigraphy, palaeobiology, palaeobiogeography. JANSEN, U. 2014. Strophomenid brachiopods from the Rhenish Lower Devonian (Germany). Bulletin of Geosciences 89(1), 113–136 (7 figures, 1 table). Czech Geological Survey, Prague, ISSN XXX. Manuscript received April 22, 2013, accepted in revised form July 19, 2013, published online December 17, 2013; issued January 21, 2014. Ulrich Jansen, Senckenberg Forschungsinstitut und Naturmuseum, Paläozoologie III, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany; [email protected] The Early Devonian Strophomenida from the Rhenish tion which ventral and dorsal valves belong to the same Slate Mountains (Rheinisches Schiefergebirge, Ger- species was not easy to answer in some cases. With regard many) have been paid little attention to since the classical to the genus Boucotstrophia Jahnke, 1981, common in the works of d’Archiac & de Verneuil (1842), G. & F. Sand- Seifen fauna, the author has come to the conclusion that its berger (1856) or Drevermann (1902, 1904). A few taxa type species B. -
TREATISE on INVERTEBRATE Paleontology BRACHIOPODA
TREA T ISE ON INVER T EBRA T E PALEON T OLOGY Part H BRACHIO P ODA Revised Volume 6: Supplement ALWYN WILLIA ms , C. H. C. BRUNTON , and S. J. CARL S ON with FERNANDO ALVAREZ , A. D. AN S ELL , P. G. BA K ER , M. G. BA ss ETT , R. B. BLOD G ETT , A. J. BOUCOT , J. L. CARTER , L. R. M. COC ks , B. L. CO H EN , PAUL CO pp ER , G. B. CURRY , MA gg IE CU S AC K , A. S. DA G Y S , C. C. EM I G , A. B. GAWT H RO P , RÉ M Y GOURVENNEC , R. E. GRANT , D. A. T. HAR P ER , L. E. HOL M ER , HOU HON G -FEI , M. A. JA M E S , JIN YU-G AN , J. G. JO H N S ON , J. R. LAURIE , STANI S LAV LAZAREV , D. E. LEE , CAR S TEN LÜTER , SARA H MAC K AY , D. I. MAC KINNON , M. O. MANCEÑIDO , MIC H AL MER G L , E. F. OWEN , L. S. PEC K , L. E. PO P OV , P. R. RAC H E B OEUF , M. C. RH ODE S , J. R. RIC H ARD S ON , RON G JIA -YU , MADI S RU B EL , N. M. SAVA G E , T. N. SM IRNOVA , SUN DON G -LI , DERE K WALTON , BRUCE WARDLAW , and A. D. WRI gh T Prepared under Sponsorship of The Geological Society of America, Inc. The Paleontological Society SEPM (Society for Sedimentary Geology) The Palaeontographical Society The Palaeontological Association RAY M OND C. -
Did the Amalgamation of Continents Drive the End Ordovician Mass Extinctions?
Palaeogeography, Palaeoclimatology, Palaeoecology 311 (2011) 48–62 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Did the amalgamation of continents drive the end Ordovician mass extinctions? Christian M.Ø. Rasmussen a,b,⁎, David A.T. Harper b,c,1 a Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark b Nordic Center for Earth Evolution (NordCEE), Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark c Geological Museum, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 Copenhagen K, Denmark article info abstract Article history: Global biodiversity has been punctuated throughout the Phanerozoic by extinction events that vary in their Received 27 January 2011 degree of intensity and devastation. The mass extinction event that occurred at the end of the Ordovician Received in revised form 11 July 2011 Period rapidly removed a wide range of species. Because taxonomic loss occurred during an ice age, this is Accepted 28 July 2011 believed to have initiated the extinctions and thus, these extinctions have often been viewed as a deep time Available online 5 August 2011 analogue to the loss in species diversity during the present day glacial interval. The current study, however, indicates that temperature – though arguably being a trigger – was not the sole reason for the crisis. Based on Keywords: fi Ordovician a large, bibliographic database of rhynchonelliform brachiopods that speci cally operates within very narrow Silurian time-slices where every locality has been precisely georeferenced for the Upper Ordovician–Lower Silurian Brachiopods interval, we show that the extinctions were not uniformly distributed, nor was the succeeding recovery. -
Ordovician Rafinesquinine Brachiopods from Peri-Gondwana
Ordovician rafinesquinine brachiopods from peri-Gondwana JORGE COLMENAR Colmenar, J. 2016. Ordovician rafinesquinine brachiopods from peri-Gondwana. Acta Palaeontologica Polonica 61 (2): 293–326. The study of the strophomenide brachiopods of the subfamily Rafinesquininae present in the main Upper Ordovician sections, representing the Mediterranean margin of Gondwana, has revealed an increase in diversity of the group at the re- gion during that time. The studied collections are from the Moroccan Anti-Atlas, the Iberian and the Armorican massifs, the Iberian Chains, Pyrenees, Montagne Noire, Sardinia, and Bohemia. Two genera of the subfamily Rafinesquininae have been recorded. Of them, the cosmopolitan Rafinesquina is the only one previously reported from the region and Kjaerina is found for the first time outside Avalonia, Baltica, and Laurentia. Additionally, two new subgenera have been described, Kjaerina (Villasina) and Rafinesquina (Mesogeina). Furthermore, the new species Rafinesquina (Mesogeina) gabianensis, Rafinesquina (Mesogeina) loredensis, Kjaerina (Kjaerina) gondwanensis, Kjaerina (Villasina) pedro- naensis, Kjaerina (Villasina) pyrenaica, and Kjaerina (Villasina) meloui have been described. In addition, other spe- cies of these genera previously known from isolated localities in the region, such as Rafinesquina pseudoloricata, Rafinesquina pomoides, and Hedstroemina almadenensis are revised and their geographic range expanded. The adaptive radiation experienced by the rafinesquinines at the Mediterranean region during middle to late Katian, was probably related to changes in the regime of sedimentation and water temperature caused by the global warming Boda event. Key words: Strophomenoidea, palaeobiogeography, adaptive radiation, Ordovician, Katian, Boda event, Gondwana, Mediterranean region. Jorge Colmenar [[email protected]], Área de Paleontología, Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, E-50009, Zaragoza, Spain. -
Permophiles International Commission on Stratigraphy
Permophiles International Commission on Stratigraphy Newsletter of the Subcommission on Permian Stratigraphy Number 66 Supplement 1 ISSN 1684 – 5927 August 2018 Permophiles Issue #66 Supplement 1 8th INTERNATIONAL BRACHIOPOD CONGRESS Brachiopods in a changing planet: from the past to the future Milano 11-14 September 2018 GENERAL CHAIRS Lucia Angiolini, Università di Milano, Italy Renato Posenato, Università di Ferrara, Italy ORGANIZING COMMITTEE Chair: Gaia Crippa, Università di Milano, Italy Valentina Brandolese, Università di Ferrara, Italy Claudio Garbelli, Nanjing Institute of Geology and Palaeontology, China Daniela Henkel, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany Marco Romanin, Polish Academy of Science, Warsaw, Poland Facheng Ye, Università di Milano, Italy SCIENTIFIC COMMITTEE Fernando Álvarez Martínez, Universidad de Oviedo, Spain Lucia Angiolini, Università di Milano, Italy Uwe Brand, Brock University, Canada Sandra J. Carlson, University of California, Davis, United States Maggie Cusack, University of Stirling, United Kingdom Anton Eisenhauer, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany David A.T. Harper, Durham University, United Kingdom Lars Holmer, Uppsala University, Sweden Fernando Garcia Joral, Complutense University of Madrid, Spain Carsten Lüter, Museum für Naturkunde, Berlin, Germany Alberto Pérez-Huerta, University of Alabama, United States Renato Posenato, Università di Ferrara, Italy Shuzhong Shen, Nanjing Institute of Geology and Palaeontology, China 1 Permophiles Issue #66 Supplement -
(Brachiopoda, Strophomenida) from the Silurian of Gotland, Sweden
Pala¨ontol Z (2011) 85:201–229 DOI 10.1007/s12542-010-0088-3 RESEARCH PAPER Strophomenidae, Leptostrophiidae, Strophodontidae and Shaleriidae (Brachiopoda, Strophomenida) from the Silurian of Gotland, Sweden Ole A. Hoel Received: 23 September 2010 / Accepted: 1 October 2010 / Published online: 13 November 2010 Ó The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Twelve species of Brachiopods are described short ranged and occurs in low-energy environments in the from the Silurian of Gotland, six furcitellinines and six latest Llandovery. The species belonging to the Stroph- ‘‘strophodontids.’’ One is new—Strophodonta hoburgensis odontidae (Strophodonta hoburgensis n. sp.) and Shalerii- n. sp. The furcitellinines are moderately common and dae [Shaleria (Janiomya) ornatella and S. (Shaleriella) diverse in the lower part of the succession, but the last ezerensis] occur only in high-energy environments and have species disappears in the middle Hemse beds (*middle a short range within the late Ludlow. Ludlow). Three genera are represented: Bellimurina, Pentlandina and Katastrophomena, with the species and Keywords Silurian Á Llandovery Á Wenlock Á Ludlow Á subspecies B. wisgoriensis, P. tartana, P. loveni, P. lewisii Strophomenide Á Furcitellininae Á Leptostrophiidae Á lewisii, K. penkillensis and K. antiquata scabrosa. Most of Strophodontidae Á Shaleriidae the taxa are confined to low energy environments, but P. loveni was evidently specialized for the high energy reef Kurzfassung Zwo¨lf arten Brachiopoden von der Silurium environments of the Ho¨gklint Formation. B. wisgoriensis Gotlands sind beschrieben. Sechs Furcitellininen und sechs displays environmentally induced morphological variability ,,Strophodonten‘‘. Eine Gattung ist neu; Strophodonta in developing strong, frilly growth lamellae in high-energy hoburgensis sp. -
Lochkovian) in the Bubovice Area (Barrandian, Bohemia
Acta Musei Nationalis Pragae, Series B, Natural History, 59 (3–4): 99–150 issued December 2003 Sborník Národního muzea, Serie B, Přírodní vědy, 59 (3–4): 99–150 SILICIFIED BRACHIOPODS OF THE KOTÝS LIMESTONE (LOCHKOVIAN) IN THE BUBOVICE AREA (BARRANDIAN, BOHEMIA) MICHAL MERGL Department of Biology, University of West Bohemia, Klatovská 51, 306 19, Plzeň, Czech Republic, [email protected] Mergl, M. (2003): Silicified brachiopods of the Kotýs Limestone (Lochkovian) in the Bubovice area (Barrandian, Bohemia). – Acta Mus. Nat. Pragae, Ser. B, Hist. Nat., 59 (3–4): 99–150. Praha. ISSN 0036-5343 Abstract: An exceptionally preserved silicified brachiopod material is described from the Kotýs Limestone (Lochkov Forma- tion, Lochkovian) from two localities between Bubovice and Loděnice in the Central Bohemia. The shells have preserved the finest details of internal and external morphology, such as brachidia, crural plates, trails and spines, and represent the unique brachiopod material in the Barrandian. In total thirty-eight species have been determined, with new species Dicoelosia prae- dimera, Muriferella pishulinae, Spinatrypina variabilis, Glassina gutta, Retzia piriformis, Ambocoelia bubovica, and Quad- rithyris subrobusta. Genera Muriferella, Anastrophia, Spinatrypina, Glassina, Retzia, and Quadrithyris have been recognized from the Lochkovian strata for the first time in the Barrandian. The composition of the brachiopod fauna in the studied sequ- ence indicates a transition from a shallower, high-diversity assemblage with spiriferids, pentamerids, strophomenids, orthote- tids, large orthids and spinose atrypids to a deeper, low-diversity assemblage with dominance of small orthids, and costellate and smooth atrypids. I Brachiopoda, taxonomy, shell morphology, Devonian, Lochkovian, Barrandian, Bohemia Received December 6, 2003 Introduction were described on extremely fragmentary shells, even with obscure general outline and convexity. -
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park
Chapter 5. Paleozoic Invertebrate Paleontology of Grand Canyon National Park By Linda Sue Lassiter1, Justin S. Tweet2, Frederick A. Sundberg3, John R. Foster4, and P. J. Bergman5 1Northern Arizona University Department of Biological Sciences Flagstaff, Arizona 2National Park Service 9149 79th Street S. Cottage Grove, Minnesota 55016 3Museum of Northern Arizona Research Associate Flagstaff, Arizona 4Utah Field House of Natural History State Park Museum Vernal, Utah 5Northern Arizona University Flagstaff, Arizona Introduction As impressive as the Grand Canyon is to any observer from the rim, the river, or even from space, these cliffs and slopes are much more than an array of colors above the serpentine majesty of the Colorado River. The erosive forces of the Colorado River and feeder streams took millions of years to carve more than 290 million years of Paleozoic Era rocks. These exposures of Paleozoic Era sediments constitute 85% of the almost 5,000 km2 (1,903 mi2) of the Grand Canyon National Park (GRCA) and reveal important chronologic information on marine paleoecologies of the past. This expanse of both spatial and temporal coverage is unrivaled anywhere else on our planet. While many visitors stand on the rim and peer down into the abyss of the carved canyon depths, few realize that they are also staring at the history of life from almost 520 million years ago (Ma) where the Paleozoic rocks cover the great unconformity (Karlstrom et al. 2018) to 270 Ma at the top (Sorauf and Billingsley 1991). The Paleozoic rocks visible from the South Rim Visitors Center, are mostly from marine and some fluvial sediment deposits (Figure 5-1). -
Review of the Ordovician Stratigraphy and Fauna of the Anarak Region in Central Iran
See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/286025445 Review of the Ordovician stratigraphy and fauna of the Anarak Region in Central Iran ARTICLE in ACTA GEOLOGICA POLONICA · JANUARY 2015 Impact Factor: 0.84 · DOI: 10.1515/apg-2015-0022 READS 26 6 AUTHORS, INCLUDING: Leonid E. Popov Vachik Hairapetian National Museum Wales Islamic Azad University Khorasgan (Isfahan) Branch 231 PUBLICATIONS 2,239 CITATIONS 33 PUBLICATIONS 130 CITATIONS SEE PROFILE SEE PROFILE Mansoureh Ghobadi Pour Lars E Holmer Golestan University Uppsala University 69 PUBLICATIONS 365 CITATIONS 211 PUBLICATIONS 2,319 CITATIONS SEE PROFILE SEE PROFILE Available from: Leonid E. Popov Retrieved on: 11 December 2015 Acta Geologica Polonica, Vol. 65 (2015), No. 4, pp. 403–435 DOI: 10.1515/agp-2015-0022 Review of the Ordovician stratigraphy and fauna of the Anarak Region in Central Iran LEONID E. POPOV1, VACHIK HAIRAPETIAN2, DAVID H. EVANS3, MANSOUREH GHOBADI POUR4, LARS E. HOLMER5 and CHRISTIAN BAARS1 1Department of Geology, National Museum of Wales, Cardiff CF10 3NP, Wales, United Kingdom. E-mail: [email protected], [email protected] 2Department of Geology, Isfahan (Khorasgan) Branch, Islamic Azad University, PO Box 81595−158, Isfahan, Iran. E-mail: [email protected] 3Natural England, Suite D, Unex House, Bourges Boulevard, Peterborough PE1 1NG, England, United Kingdom. E-mail: [email protected] 4Department of Geology, Faculty of Sciences, Golestan University, Gorgan, Iran. E-mail: [email protected] 5Institute of Earth Sciences, Palaeobiology, Uppsala University, SE-752 36 Uppsala, Sweden. E-mail: [email protected] ABSTRACT: Popov, L.E., Hairapetian, V., Evans, D.H., Ghobadi Pour, M., Holmer, L.E. -
The Brachiopod Succession Through the Silurian–Devonian Boundary Beds at Dnistrove, Podolia, Ukraine
The brachiopod succession through the Silurian–Devonian boundary beds at Dnistrove, Podolia, Ukraine ANDRZEJ BALIŃSKI Baliński, A. 2012. The brachiopod succession through the Silurian–Devonian boundary beds at Dnistrove, Podolia, Ukraine. Acta Palaeontologica Polonica 57 (4): 897–924. In the classic section across the Silurian–Devonian boundary at Dnistrove (Podolia, Ukraine) the brachiopod fauna has never been studied in detail. This paper presents results of research on brachiopods from this important locality and time interval. Bed−by−bed collecting has enabled the detailed distribution of brachiopod taxa through the boundary beds to be revealed. Generally, the reference section at Dnistrove yields rather scarce but often well preserved brachiopods. Dayia bohemica and Dnestrina gutta can be regarded as characteristic species for the uppermost Silurian. A relatively high−di− versity but low−abundance brachiopod fauna occurs in the lowest 1.8 m of the earliest Devonian. Only three forms have been found to cross the Silurian–Devonian boundary: the strophomenide Plectodonta (Plectodonta) mariae pantherae subsp. nov., the atrypide Gracianella (Sublepida) paulula sp. nov., and the spiriferide Howellella (Howellella) latisi− nuata. A relatively narrow brachiopod−rich interval at 5.5 m above the Silurian–Devonian boundary yields 16 brachiopod species which probably indicate a setting near the lower limit of the photic zone equivalent to the Benthic Assemblage 3–4 boundary. Two new species and one new subspecies are described: Skenidioides tatyanae, Plectodonta (Plectodonta) mariae pantherae, and Gracianella (Sublepida) paulula. Key words: Brachiopoda, palaeoenvironments, Silurian–Devonian boundary, Podolia, Ukraine. Andrzej Baliński [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, PL−00−818 Warszawa, Poland.