Variational Learning for Quantum Artificial Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Variational Learning for Quantum Artificial Neural Networks Variational learning for quantum artificial neural networks Francesco Tacchino∗x{, Stefano Manginiyk{, Panagiotis Kl. Barkoutsos∗, Chiara Macchiavelloyk∗∗, Dario Geracey, Ivano Tavernelli∗ and Daniele Bajoniz ∗IBM Quantum, IBM Research – Zurich, 8803 Ruschlikon,¨ Switzerland yUniversity of Pavia, Department of Physics, via Bassi 6, 27100 Pavia, Italy zUniversity of Pavia, Department of Industrial and Information Engineering, via Ferrata 1, 27100 Pavia, Italy kINFN Sezione di Pavia, Via Bassi 6, I-27100, Pavia, Italy ∗∗CNR-INO - Largo E. Fermi 6, I-50125, Firenze, Italy xEmail: [email protected] {These authors contributed equally to this work. Abstract—In the last few years, quantum computing and networks [12]–[21], the realization of quantum Support Vector machine learning fostered rapid developments in their respec- Machines (qSVMs) [22] working in quantum-enhanced feature tive areas of application, introducing new perspectives on how spaces [23], [24] and the introduction of quantum versions of information processing systems can be realized and programmed. The rapidly growing field of Quantum Machine Learning aims artificial neuron models [25]–[32]. However, it is true that at bringing together these two ongoing revolutions. Here we first very few clear statements have been made concerning the review a series of recent works describing the implementation of concrete and quantitative achievement of quantum advantage artificial neurons and feed-forward neural networks on quantum in machine learning applications, and many challenges still processors. We then present an original realization of efficient need to be addressed [8], [33], [34]. individual quantum nodes based on variational unsampling protocols. We investigate different learning strategies involving In this work, we review a recently proposed quantum global and local layer-wise cost functions, and we assess their algorithm implementing the activity of binary-valued artificial performances also in the presence of statistical measurement neurons for classification purposes. Although formally exact, noise. While keeping full compatibility with the overall memory- this algorithm in general requires quite large circuit depth efficient feed-forward architecture, our constructions effectively for the analysis of the input classical data. To mitigate for reduce the quantum circuit depth required to determine the activation probability of single neurons upon input of the relevant this effect we introduce a variational learning procedure, data-encoding quantum states. This suggests a viable approach based on quantum unsampling techniques, aimed at critically towards the use of quantum neural networks for pattern classi- reducing the quantum resources required for its realization. By fication on near-term quantum hardware. combining memory-efficient encoding schemes and low-depth quantum circuits for the manipulation and analysis of quantum I. INTRODUCTION states, the proposed methods, currently at an early stage In classical machine learning, artificial neurons and neural of investigation, suggest a practical route towards problem- networks were originally proposed, more than a half century specific instances of quantum computational advantage in ago, as trainable algorithms for classification and pattern machine learning applications. recognition [1], [2]. A few milestone results obtained in subsequent years, such as the backpropagation algorithm [3] II. A MODEL OF QUANTUM ARTIFICIAL NEURONS and the Universal Approximation Theorem [4], [5], certified The simplest formalization of an artificial neuron can be the potential of deep feed-forward neural networks as a com- given following the classical model proposed by McCulloch arXiv:2103.02498v1 [quant-ph] 3 Mar 2021 putational model which nowadays constitutes the cornerstone and Pitts [1]. In this scheme, a single node receives a set of of many artificial intelligence protocols [6], [7]. m binary inputs fi0; : : : ; im−1g 2 {−1; 1g , which can either be In recent years, several attempts were made to link these signals from other neurons in the network or external data. The powerful but computationally intensive applications to the computational operation carried out by the artificial neuron rapidly growing field of quantum computing, see also Ref. [8] consists in first weighting each input by a synapse coefficient for a useful review. The latter holds the promise to achieve wj 2 {−1; 1g and then providing a binary output O 2 {−1; 1g relevant advantages with respect to classical machines al- denoting either an active or rest state of the node determined ready in the near term, at least on selected tasks including by an integrate-and-fire response e.g. chemistry calculations [9], [10], classification and op- ( timization problems [11]. Among the most relevant results 1 if P w i ≥ θ O = j j j (1) obtained in Quantum Machine Learning it is worth mentioning −1 otherwise the use of trainable parametrized digital and continuous- variable quantum circuits as a model for quantum neural where θ represents some predefined threshold. A quantum procedure closely mimicking the functionality It is important to mention that this preparation step would most of a binary valued McCulloch-Pitts artificial neuron can be effectively be replaced by, e.g., a direct call to a quantum designed by exploiting, on one hand, the superposition of com- memory [38], or with the supply of data encoding states putational basis states in quantum registers, and on the other readily generated in quantum form by quantum sensing devices hand the natural non-linear activation behavior provided by to be analyzed or classified. It is indeed well known that quantum measurements. In this section, we will briefly outline the interface between classical data and their representation a device-independent algorithmic procedure [28] designed to on quantum registers currently constitutes one of the major implement such a computational model on a gate-based quan- bottlenecks for Quantum Machine Learning applications [8]. tum processor. More explicitly, we show how classical input Let now Uw be a unitary operator such that and weight vectors of size m can be encoded on a quantum ⊗N Uwj wi = j1i = jm − 1i (6) hardware by using only N = log2 m qubits [28], [35], [36]. For loading and manipulation of data, we describe a protocol In principle, any m×m unitary matrix having the elements of based on the generation of quantum hypergraph states [37]. ~w appearing in the last row satisfies this condition. If we apply This exact approach to artificial neuron operations will be used Uw after Ui, the overall N-qubits quantum state becomes in the main body of this work as a benchmark to assess the m−1 performances of approximate variational techniques designed X U j i = j i ≡ j i to achieve more favorable scaling properties in the number of w i cj j φi;w (7) logical operations with respect to classical counterparts. j=0 Let ~i and ~w be binary input and weight vectors of the form Using Eq. (6), we then have 0 1 0 1 y i0 w0 h wj ii = h wjU Uwj ii = w (8) B i1 C B w1 C = hm − 1jφ i = c ~ = B C = B C (2) i;w m−1 i B . C ~w B . C @ . A @ . A We thus see that, as a consequence of the constraints imposed im−1 wm−1 to Ui and Uw, the desired result ~i · ~w / h wj ii is contained N up to a normalization factor in the coefficient cm−1 of the final with ij; wj 2 {−1; 1g and m = 2 . A simple and qubit- effective way of encoding such collections of classical data state jφi;wi. can be given by making use of the relative quantum phases The final step of the algorithm must access the computed (i.e. factors ±1 in our binary case) in equally weighted input-weight scalar product and determine the activation state superpositions of computational basis states. We then define of the artificial neuron. In view of constructing a general the states architecture for feed-forward neural networks [30], it is useful m−1 to introduce an ancilla qubit , initially set in the state j0i, on 1 X a j ii = p ijjji which the c / h j i coefficient can be written through m m−1 w i j=0 a multi-controlled NOT gate, where the role of controls is (3) m−1 1 X assigned to the N encoding qubits [28]: j wi = p wjjji m m−2 j=0 X jφi;wij0ia ! cjjjij0ia + cm−1jm − 1ij1ia (9) where, as usual, we label computational basis states with j=0 integers j 2 f0; : : : ; m − 1g corresponding to the decimal At this stage, a measurement of qubit a in the computational representation of the respective binary string. The set of all basis provides a probabilistic non-linear threshold activation possible states which can be expressed in the form above is behavior, producing the output j1i state, interpreted as an known as the class of hypergraph states [37]. a active state of the neuron, with probability jc j2. Although According to Eq. (1), the quantum algorithm must first m−1 this form of the activation function is already sufficient to perform the inner product ~i · ~w. It is not difficult to see carry out elementary classification tasks and to realize a logical that, under the encoding scheme of Eq. (3), the inner product XOR operation [28], more complex threshold behaviors can in between inputs and weights is contained in the overlap [28] principle be engineered once the information about the inner ~w ·~i product is stored on the ancilla [27], [29]. Equivalently, the h wj ii = (4) m ancilla can be used, via quantum controlled operations, to We can explicitly compute such overlap on a quantum register pass on the information to other quantum registers encoding successive layers in a feed-forward network architecture [30]. through a sequence of ~i- and ~w-controlled unitary operations. First, assuming that we operate on a N-qubit quantum register It is worth noticing that directing all the relevant information starting in the blank state j0i⊗N , we can load the input- into the state of a single qubit, besides enabling effective quan- tum synapses, can be advantageous when implementing the encoding quantum state j ii by performing a unitary trans- procedure on real hardware on which readout errors constitute formation Ui such that a major source of inaccuracy.
Recommended publications
  • Quantum Machine Learning: Benefits and Practical Examples
    Quantum Machine Learning: Benefits and Practical Examples Frank Phillipson1[0000-0003-4580-7521] 1 TNO, Anna van Buerenplein 1, 2595 DA Den Haag, The Netherlands [email protected] Abstract. A quantum computer that is useful in practice, is expected to be devel- oped in the next few years. An important application is expected to be machine learning, where benefits are expected on run time, capacity and learning effi- ciency. In this paper, these benefits are presented and for each benefit an example application is presented. A quantum hybrid Helmholtz machine use quantum sampling to improve run time, a quantum Hopfield neural network shows an im- proved capacity and a variational quantum circuit based neural network is ex- pected to deliver a higher learning efficiency. Keywords: Quantum Machine Learning, Quantum Computing, Near Future Quantum Applications. 1 Introduction Quantum computers make use of quantum-mechanical phenomena, such as superposi- tion and entanglement, to perform operations on data [1]. Where classical computers require the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits, which can be in superpositions of states. These computers would theoretically be able to solve certain problems much more quickly than any classical computer that use even the best cur- rently known algorithms. Examples are integer factorization using Shor's algorithm or the simulation of quantum many-body systems. This benefit is also called ‘quantum supremacy’ [2], which only recently has been claimed for the first time [3]. There are two different quantum computing paradigms.
    [Show full text]
  • Explorations in Quantum Neural Networks with Intermediate Measurements
    ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. Available from http://www.i6doc.com/en/. Explorations in Quantum Neural Networks with Intermediate Measurements Lukas Franken and Bogdan Georgiev ∗Fraunhofer IAIS - Research Center for ML and ML2R Schloss Birlinghoven - 53757 Sankt Augustin Abstract. In this short note we explore a few quantum circuits with the particular goal of basic image recognition. The models we study are inspired by recent progress in Quantum Convolution Neural Networks (QCNN) [12]. We present a few experimental results, where we attempt to learn basic image patterns motivated by scaling down the MNIST dataset. 1 Introduction The recent demonstration of Quantum Supremacy [1] heralds the advent of the Noisy Intermediate-Scale Quantum (NISQ) [2] technology, where signs of supe- riority of quantum over classical machines in particular tasks may be expected. However, one should keep in mind the limitations of NISQ-devices when study- ing and developing quantum-algorithmic solutions - among other things, these include limits on the number of gates and qubits. At the same time the interaction of quantum computing and machine learn- ing is growing, with a vast amount of literature and new results. To name a few applications, the well-known HHL algorithm [3], quantum phase estimation [5] and inner products speed-up techniques lead to further advances in Support Vector Machines [4] and Principal Component Analysis [6, 7]. Intensive progress and ongoing research has also been made towards quantum analogues of Neural Networks (QNN) [8, 9, 10].
    [Show full text]
  • Arxiv:2011.01938V2 [Quant-Ph] 10 Feb 2021 Ample and Complexity-Theoretic Argument Showing How Or Small Polynomial Speedups [8,9]
    Power of data in quantum machine learning Hsin-Yuan Huang,1, 2, 3 Michael Broughton,1 Masoud Mohseni,1 Ryan 1 1 1 1, Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean ∗ 1Google Research, 340 Main Street, Venice, CA 90291, USA 2Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA 3Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA (Dated: February 12, 2021) The use of quantum computing for machine learning is among the most exciting prospective ap- plications of quantum technologies. However, machine learning tasks where data is provided can be considerably different than commonly studied computational tasks. In this work, we show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data. Using rigorous prediction error bounds as a foundation, we develop a methodology for assessing potential quantum advantage in learning tasks. The bounds are tight asymptotically and empirically predictive for a wide range of learning models. These constructions explain numerical results showing that with the help of data, classical machine learning models can be competitive with quantum models even if they are tailored to quantum problems. We then propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime. For near-term implementations, we demonstrate a significant prediction advantage over some classical models on engineered data sets designed to demonstrate a maximal quantum advantage in one of the largest numerical tests for gate-based quantum machine learning to date, up to 30 qubits.
    [Show full text]
  • Concentric Transmon Qubit Featuring Fast Tunability and an Anisotropic Magnetic Dipole Moment
    Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment Cite as: Appl. Phys. Lett. 108, 032601 (2016); https://doi.org/10.1063/1.4940230 Submitted: 13 October 2015 . Accepted: 07 January 2016 . Published Online: 21 January 2016 Jochen Braumüller, Martin Sandberg, Michael R. Vissers, Andre Schneider, Steffen Schlör, Lukas Grünhaupt, Hannes Rotzinger, Michael Marthaler, Alexander Lukashenko, Amadeus Dieter, Alexey V. Ustinov, Martin Weides, and David P. Pappas ARTICLES YOU MAY BE INTERESTED IN A quantum engineer's guide to superconducting qubits Applied Physics Reviews 6, 021318 (2019); https://doi.org/10.1063/1.5089550 Planar superconducting resonators with internal quality factors above one million Applied Physics Letters 100, 113510 (2012); https://doi.org/10.1063/1.3693409 An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts Applied Physics Letters 111, 072601 (2017); https://doi.org/10.1063/1.4990491 Appl. Phys. Lett. 108, 032601 (2016); https://doi.org/10.1063/1.4940230 108, 032601 © 2016 AIP Publishing LLC. APPLIED PHYSICS LETTERS 108, 032601 (2016) Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment Jochen Braumuller,€ 1,a) Martin Sandberg,2 Michael R. Vissers,2 Andre Schneider,1 Steffen Schlor,€ 1 Lukas Grunhaupt,€ 1 Hannes Rotzinger,1 Michael Marthaler,3 Alexander Lukashenko,1 Amadeus Dieter,1 Alexey V. Ustinov,1,4 Martin Weides,1,5 and David P. Pappas2 1Physikalisches Institut, Karlsruhe Institute of Technology,
    [Show full text]
  • Federated Quantum Machine Learning
    entropy Article Federated Quantum Machine Learning Samuel Yen-Chi Chen * and Shinjae Yoo Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA; [email protected] * Correspondence: [email protected] Abstract: Distributed training across several quantum computers could significantly improve the training time and if we could share the learned model, not the data, it could potentially improve the data privacy as the training would happen where the data is located. One of the potential schemes to achieve this property is the federated learning (FL), which consists of several clients or local nodes learning on their own data and a central node to aggregate the models collected from those local nodes. However, to the best of our knowledge, no work has been done in quantum machine learning (QML) in federation setting yet. In this work, we present the federated training on hybrid quantum-classical machine learning models although our framework could be generalized to pure quantum machine learning model. Specifically, we consider the quantum neural network (QNN) coupled with classical pre-trained convolutional model. Our distributed federated learning scheme demonstrated almost the same level of trained model accuracies and yet significantly faster distributed training. It demonstrates a promising future research direction for scaling and privacy aspects. Keywords: quantum machine learning; federated learning; quantum neural networks; variational quantum circuits; privacy-preserving AI Citation: Chen, S.Y.-C.; Yoo, S. 1. Introduction Federated Quantum Machine Recently, advances in machine learning (ML), in particular deep learning (DL), have Learning. Entropy 2021, 23, 460. found significant success in a wide variety of challenging tasks such as computer vi- https://doi.org/10.3390/e23040460 sion [1–3], natural language processing [4], and even playing the game of Go with a superhuman performance [5].
    [Show full text]
  • Quantum Techniques in Machine Learning Dipartimento Di
    Quantum Techniques in Machine Learning Dipartimento di Informatica Universit`adi Verona, Italy November 6{8, 2017 Contents Abstracts 9 Marco Loog | Surrogate Losses in Classical Machine Learning (Invited Talk) . 11 Minh Ha Quang | Covariance matrices and covariance operators in machine learning and pattern recognition: A geometrical framework (Invited Talk) . 12 Jonathan Romero, Jonathan Olson, Alan Aspuru-Guzik | Quantum au- toencoders for efficient compression of quantum data . 13 Iris Agresti, Niko Viggianiello, Fulvio Flamini, Nicol`oSpagnolo, Andrea Crespi, Roberto Osellame, Nathan Wiebe, and Fabio Sciarrino | Pattern recognition techniques for Boson Sampling Validation . 15 J. Wang, S. Paesani, R. Santagati, S. Knauer, A. A. Gentile, N. Wiebe, M. Petruzzella, A. Laing, J. G. Rarity, J. L. O'Brien, and M. G. Thompson | Quantum Hamiltonian learning using Bayesian inference on a quantum photonic simulator . 18 Luca Innocenti, Leonardo Banchi, Alessandro Ferraro, Sougato Bose and Mauro Paternostro | Supervised learning of time independent Hamiltonians for gate design . 20 Davide Venturelli | Challenges to Practical End-to-end Implementation of Quan- tum Optimization Approaches for Combinatorial problems (Invited Talk) . 22 K. Imafuku, M. Hioki, T. Katashita, S. Kawabata, H. Koike, M. Maezawa, T. Nakagawa, Y. Oiwa, and T. Sekigawa | Annealing Computation with Adaptor Mechanism and its Application to Property-Verification of Neural Network Systems . 23 Simon E. Nigg, Niels Niels L¨orch, Rakesh P. Tiwari | Robust quantum optimizer with full connectivity . 25 William Cruz-Santos, Salvador E. Venegas-Andraca and Marco Lanzagorta | Adiabatic quantum optimization applied to the stereo matching problem . 26 Alejandro Perdomo Ortiz | Opportunities and Challenges for Quantum-Assisted Machine Learning in Near-Term Quantum Computers .
    [Show full text]
  • A Simple Quantum Neural Net with a Periodic Activation Function
    A Simple Quantum Neural Net with a Periodic Activation Function Ammar Daskin Department of Computer Engineering, Istanbul Medeniyet University, Kadikoy, Istanbul, Turkey Email: adaskin25-at-gmail-dot-com Abstract—In this paper, we propose a simple neural net that phase estimation to imitate the output of a classical perceptron requires only O(nlog2k) number of qubits and O(nk) quantum where the binary input is mapped to the second register of the gates: Here, n is the number of input parameters, and k is algorithm and the weights are implemented by phase gates. the number of weights applied to these parameters in the proposed neural net. We describe the network in terms of a The main problem in current quantum learning algorithms is quantum circuit, and then draw its equivalent classical neural to tap the full power of artificial neural networks into the n net which involves O(k ) nodes in the hidden layer. Then, quantum realm by providing robust data mapping algorithms we show that the network uses a periodic activation function from the classical realm to the quantum and processing this of cosine values of the linear combinations of the inputs and data in a nonlinear way similar to the classical neural networks. weights. The backpropagation is described through the gradient descent, and then iris and breast cancer datasets are used for It is shown that a repeat until success circuit can be used to the simulations. The numerical results indicate the network create a quantum perceptron with nonlinear behavior as a main can be used in machine learning problems and it may provide building block of quantum neural nets [22].
    [Show full text]
  • An Introduction to Quantum Neural Computing
    Volume 2, No. 8, August 2011 Journal of Global Research in Computer Science TECHNICAL NOTE Available Online at www.jgrcs.info AN INTRODUCTION TO QUANTUM NEURAL COMPUTING Shaktikanta Nayak*1, Sitakanta Nayak2 and Prof. J.P.Singh3 1, 2 PhD student, Department of Management Studies, Indian Institute of Technology, Roorkee 3 Professors, Department of Management Studies, Indian Institute of Technology, Roorkee, Uttarakhand (India)-247667 [email protected] [email protected] 3 [email protected] Abstract: The goal of the artificial neural network is to create powerful artificial problem solving systems. The field of quantum computation applies ideas from quantum mechanics to the study of computation and has made interesting progress. Quantum Neural Network (QNN) is one of the new paradigms built upon the combination of classical neural computation and quantum computation. It is argued that the study of QNN may explain the brain functionality in a better way and create new systems for information processing including solving some classically intractable problems. In this paper we have given an introductory representation of quantum artificial neural network to show how it can be modelled on the basis of double-slit experiment. Also an attempt is made to show the quantum mechanical representation of a classical neuron to implement Hadamard transformation. linear theory but ANN depends upon non linear approach. INTRODUCTION The field of ANN contains several important ideas, which The strong demand in neural and quantum computation is include the concept of a processing element (neuron), the driven by the limitations in the hardware implementation of transformation performed by this element (in general, input classical computation.
    [Show full text]
  • An Artificial Neuron Implemented on an Actual Quantum Processor
    www.nature.com/npjqi ARTICLE OPEN An artificial neuron implemented on an actual quantum processor Francesco Tacchino 1, Chiara Macchiavello1,2,3, Dario Gerace1 and Daniele Bajoni4 Artificial neural networks are the heart of machine learning algorithms and artificial intelligence. Historically, the simplest implementation of an artificial neuron traces back to the classical Rosenblatt’s “perceptron”, but its long term practical applications may be hindered by the fast scaling up of computational complexity, especially relevant for the training of multilayered perceptron networks. Here we introduce a quantum information-based algorithm implementing the quantum computer version of a binary- valued perceptron, which shows exponential advantage in storage resources over alternative realizations. We experimentally test a few qubits version of this model on an actual small-scale quantum processor, which gives answers consistent with the expected results. We show that this quantum model of a perceptron can be trained in a hybrid quantum-classical scheme employing a modified version of the perceptron update rule and used as an elementary nonlinear classifier of simple patterns, as a first step towards practical quantum neural networks efficiently implemented on near-term quantum processing hardware. npj Quantum Information (2019) 5:26 ; https://doi.org/10.1038/s41534-019-0140-4 INTRODUCTION networks made of multilayered perceptron architectures. How- Artificial neural networks are a class of computational models that ever, the computational complexity increases with increasing have proven to be highly successful at specific tasks like pattern number of nodes and interlayer connectivity and it is not clear recognition, image classification, and decision making.1 They are whether this could eventually call for a change in paradigm, essentially made of a set of nodes, or neurons, and the although different strategies can be put forward to optimize the 21 corresponding set of mutual connections, whose architecture is efficiency of classical algorithms.
    [Show full text]
  • The Quest for a Quantum Neural Network
    Quantum Information Processing manuscript No. (will be inserted by the editor) The quest for a Quantum Neural Network Maria Schuld · Ilya Sinayskiy · Francesco Petruccione Received: date / Accepted: date Abstract With the overwhelming success in the field of quantum information in the last decades, the ‘quest’ for a Quantum Neural Network (QNN) model began in or- der to combine quantum computing with the striking properties of neural computing. This article presents a systematic approach to QNN research, which so far consists of a conglomeration of ideas and proposals. It outlines the challenge of combining the nonlinear, dissipative dynamics of neural computing and the linear, unitary dy- namics of quantum computing. It establishes requirements for a meaningful QNN and reviews existing literature against these requirements. It is found that none of the proposals for a potential QNN model fully exploits both the advantages of quantum physics and computing in neural networks. An outlook on possible ways forward is given, emphasizing the idea of Open Quantum Neural Networks based on dissipative quantum computing. Keywords Quantum Computing · Artificial Neural Networks · Open Quantum Systems · Quantum Neural Networks 1 Introduction Quantum Neural Networks (QNNs) are models, systems or devices that combine features of quantum theory with the properties of neural networks. Neural networks M. Schuld Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4001, South Africa E-mail: [email protected] I. Sinayskiy Quantum Research Group, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, KwaZulu-Natal, 4001, South Africa and National Institute for Theoretical Physics (NITheP), KwaZulu-Natal, 4001, South Africa F.
    [Show full text]
  • Expressivity of Quantum Neural Networks
    PHYSICAL REVIEW RESEARCH 3, L032049 (2021) Letter Expressivity of quantum neural networks Yadong Wu,1 Juan Yao,2 Pengfei Zhang,3,4,* and Hui Zhai 1,† 1Institute for Advanced Study, Tsinghua University, Beijing, 100084, China 2Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China 3Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 4Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, California 91125, USA (Received 24 April 2021; accepted 9 August 2021; published 23 August 2021) In this work, we address the question whether a sufficiently deep quantum neural network can approximate a target function as accurate as possible. We start with typical physical situations that the target functions are physical observables, and then we extend our discussion to situations that the learning targets are not directly physical observables, but can be expressed as physical observables in an enlarged Hilbert space with multiple replicas, such as the Loschmidt echo and the Rényi entropy. The main finding is that an accurate approximation is possible only when all the input wave functions in the dataset do not span the entire Hilbert space that the quantum circuit acts on, and more precisely, the Hilbert space dimension of the former has to be less than half of the Hilbert space dimension of the latter. In some cases, this requirement can be satisfied automatically because of the intrinsic properties of the dataset, for instance, when the input wave function has to be symmetric between different replicas.
    [Show full text]
  • PHY682 Special Topics in Solid-State Physics: Quantum Information Science Lecture Time: 2:40-4:00PM Monday & Wednesday
    PHY682 Special Topics in Solid-State Physics: Quantum Information Science Lecture time: 2:40-4:00PM Monday & Wednesday Today 9/23: More on Week 5’s topics: VQE, QAOA, Hybrid Q-Classical Neural Network, Application to Molecules Summary of VQE [Peruzzo et al. Nat. Comm. 5, 4213 (2014)] MaxCut 1. Map MaxCut problem to Ising Hamiltonian x: binary 0/1 x = (1-z)/2, with z=1 and -1 [Generalize to allow local terms] 2. Approximate universal quantum computing for optimization (use variational wavefunction to minimize Hamiltonian) Do Notebook The Graph (used in the notebook demo) # Generating a graph of 4 nodes n=4 # Number of nodes in graph G=nx.Graph() G.add_nodes_from(np.arange(0,n,1)) elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)] # tuple is (i,j,weight) where (i,j) is the edge G.add_weighted_edges_from(elist) colors = ['r' for node in G.nodes()] pos = nx.spring_layout(G) default_axes = plt.axes(frameon=True) nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos) Traveling Salesman Problem Do Notebook Traveling Salesman Problem Qiskit implementation https://quantum-computing.ibm.com/jupyter/tutorial/ (1) MaxCut and (2) Traveling Salesman Problem (TSP) https://quantum- computing.ibm.com/jupyter/tutorial/advanced/aq ua/optimization/max_cut_and_tsp.ipynb Note the newest notebook works on qiskit 0.20.x but NOT on qiskit 0.19.x I had to modify codes for them to work on the latter Do Notebook Quantum approximate optimization algorithm (QAOA) [Farhi et al.
    [Show full text]