Quantum Neural Networks

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Neural Networks QUANTUM NEURAL NETWORKS A Dissertation by Nam H. Nguyen Master of Science, Wichita State University, 2016 Bachelor of Arts, Eastern Oregon University, 2014 Submitted to the Department of Mathematics, Statistics, and Physics and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy May 2020 © Copyright 2020 by Nam H. Nguyen All Rights Reserved QUANTUM NEURAL NETWORKS The following faculty members have examined the final copy of this dissertation for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Doctor of Philosophy with a major in Applied Mathematics. Elizabeth Behrman, Committee Chair James Steck, Committee Member Buma Fridman, Committee Member Ziqi Sun, Committee Member Terrance Figy, Committee Member Accepted for the College of Liberal Arts and Sciences Andrew Hippisley, Dean Accepted for the Graduate School Coleen Pugh, Dean iii DEDICATION To my late grandmother Phan Thi Suu , and my loving mother Nguyen Thi Kim Hoa iv ACKNOWLEDGEMENTS First and foremost, I would like to express my profound gratitude to my advisor, Dr. Elizabeth Behrman, for her advice, support and guidance toward my Ph.D. degree. She taught me not only the way to do scientific research, but also the way to become a profes- sional scientist and mathematician. Her endless encouragements and patient throughout my graduate studied have positively impacted my life. She would always allowed me to work on different research areas and ideas even if it's outside the scope of my dissertation. This allows me to learn and investigate problems in many different areas of mathematics, which have benefited me greatly. Her scientific vigor and dedication makes her a lifetime role model for me. I will forever be indebted to her. I also would like to extend my gratitude to Dr. James Steck for his guidance through- out this journey. I have gained a tremendous amount of knowledge in neural networks in both theory and applications as whole from working with him for the past four years. I also would like to express my deepest gratitude to Dr. Buma Fridman for spending time to teach me many important concepts in mathematics. I am especially indebted to him for spending the summer of 2017 to worked with me, helped me to build a better under- standing of the Kolmogorov's superposition theorem and all its extension results including a result of his own. Our various discussions through the years have helped me become a better mathematician than I would have been. I also would like to pay my special regards to Dr. Ziqi Sun and Dr. Terrance Figy for their willingness to be on my dissertation committee. Furthermore, I want to acknowledge v Dr. Ziqi Sun for his countless encouragements throughout my Ph.D studied and how much he helped to understand functional analysis better; seeing his passion and curiosity for math- ematics and physics makes me to always strive to be a better scientist and mathematician. I am also deeply indebted to Professor Edward Behrman of The Ohio State University for his financial support during my graduate studied through the Behrman's Family Foun- dation. Because of his generosity, I was able to have a smaller teaching load and dedicated much more time in to my research and studied. Furthermore, I would like to acknowledge and thank all my colleagues and friends (Nathan, Bill, Henry, Saideep, Mo), with whom I collaborated on most of my research work. This work would not be possible without all their helps. They all have made great mean- ingful impact in my life. Especially, I want to give a special acknowledge to Dr. Tianshi Lu and Sirvan Rhamati (my best friend at WSU) for there willingness to discuss and work with me on various problems/ideas during my time at WSU; from number theory to graph theory to fractional derivatives to probability theory to math competition problems, even. They shared with me many great ideas throughout the years. Their constant questionings, ways of thinking, and supports have positively influenced me with great impact. It has been a joy to have a true friend like Sirvan who I can share my problems as well as happiness with. Most of all, I would like to thank my dear mother and my late grandmother. They have supported me throughout my academic journey and always motivated me to strive forward. Their unconditional love has never been affected by the physical distance between us. This dissertation is dedicated to them. vi ABSTRACT Quantum computing is becoming a reality, at least on a small scale. However, de- signing a good quantum algorithm is still a challenging task. This has been a huge major bottleneck in quantum computation for years. In this work, we will show that it is possible to take a detour from the conventional programming approach by incorporating machine learn- ing techniques, specifically neural networks, to train a quantum system such that the desired algorithm is \learned," thus obviating the program design obstacle. Our work here merges quantum computing and neural networks to form what we call \Quantum Neural Networks" (QNNs). Another serious issue one needs to overcome when doing anything quantum is the problem of \noise and decoherence". A well-known technique to overcome this issue is using error correcting code. However, error correction schemes require an enormous amount of additional ancilla qubits, which is not feasible for the current state-of-the-art quantum computing devices or any near-term devices for that matter. We show in this work that QNNs are robust to noise and decoherence, provide error suppression quantum algorithms. Furthermore, not only are our QNN models robust to noise and decoherehce, we show that they also possess an inherent speed-up, in term of being able to learned a task much faster, over various classical neural networks, at least on the set of problems we benchmarked them on. Afterward, we show that although our QNN model is designed to run on a fundamental level of a quantum system, we can also decompose it into a sequence of gates and implement it on current quantum hardware devices. We did this for a non-trivial problem known as the \entanglement witness" calculation. We then propose a couple of different hybrid quan- tum neural network architectures, networks with both quantum and classical information processing. We hope that this might increase the capability over previous QNN models in terms of the complexity of the problems it might be able to solve. vii TABLE OF CONTENTS Chapter Page 1 INTRODUCTION...................................1 1.1 Motivation.....................................1 1.2 Scope of this Dissertation............................2 1.3 Literature Review.................................4 1.4 Contributions...................................8 1.5 Structure of this Dissertation..........................8 2 OVERVIEW OF QUANTUM MECHANICS..................... 10 2.1 Quantum States and Density Operators.................... 11 2.2 Composite Systems and Entanglement..................... 13 2.3 Time-Evolution of a Closed System....................... 20 2.4 Quantum Measurements............................. 22 3 QUANTUM COMPUTING.............................. 26 3.1 Qubits....................................... 27 3.2 Quantum Gates and Circuits Model....................... 33 3.3 Universal Quantum Computation and The Solovay-Kitaev Theorem..... 40 3.4 Quantum Speed-up and Quantum Algorithms................. 43 3.5 Adiabatic Quantum Computation Model.................... 46 3.6 Quantum Decoherence, Noise, and Error Correction.............. 49 4 CLASSICAL ARTIFICIAL NEURAL NETWORKS................ 53 4.1 Introduction.................................... 54 4.2 Artificial Neurons................................. 55 4.2.1 Perceptron................................. 57 4.2.2 Sigmoid Neuron.............................. 59 4.3 Multi-Layer Neural Networks.......................... 60 4.3.1 Networks Architecture.......................... 61 4.3.2 Error Backpropagation and The Gradient Descent Learning Rule.. 62 4.4 Universal Approximation............................. 66 4.4.1 Approximation with Boxes........................ 67 4.4.2 Approximation with Modern Analysis.................. 74 5 QUANTUM NEURAL NETWORK.......................... 77 5.1 Fundamental Structure.............................. 78 5.2 Learning Algorithm................................ 81 5.3 Simulation of Classical and Quantum Logic Gates, and Quantum Circuit.. 84 5.4 Universal Property of Quantum Neural Network................ 89 5.5 An Alternative Learning Approach....................... 92 viii TABLE OF CONTENTS (continued) Chapter Page 6 ROBUSTNESS OF QUANTUM NEURAL NETWORK.............. 95 6.1 Quantum Computing in The Classical World.................. 96 6.2 Dealing with Noise and Decoherence...................... 97 6.3 Entanglement Calculation For Two-Qubit System............... 98 6.3.1 Learning with noise............................ 105 6.3.2 Learning with Decoherence........................ 114 6.3.3 Learning with Noise plus decoherence.................. 121 6.4 Entanglement Calculation on Higher-Order Qubit Systems.......... 128 6.4.1 Results for the Three-Qubit System: Training and Testing...... 128 6.4.2 Results for the four- and five-qubit systems: Training and Testing.. 138 6.4.3 Quantifying the improvement in robustness with increasing size of the system................................... 139 6.4.4 Learning with other types of noise...................
Recommended publications
  • Simulating Quantum Field Theory with a Quantum Computer
    Simulating quantum field theory with a quantum computer John Preskill Lattice 2018 28 July 2018 This talk has two parts (1) Near-term prospects for quantum computing. (2) Opportunities in quantum simulation of quantum field theory. Exascale digital computers will advance our knowledge of QCD, but some challenges will remain, especially concerning real-time evolution and properties of nuclear matter and quark-gluon plasma at nonzero temperature and chemical potential. Digital computers may never be able to address these (and other) problems; quantum computers will solve them eventually, though I’m not sure when. The physics payoff may still be far away, but today’s research can hasten the arrival of a new era in which quantum simulation fuels progress in fundamental physics. Frontiers of Physics short distance long distance complexity Higgs boson Large scale structure “More is different” Neutrino masses Cosmic microwave Many-body entanglement background Supersymmetry Phases of quantum Dark matter matter Quantum gravity Dark energy Quantum computing String theory Gravitational waves Quantum spacetime particle collision molecular chemistry entangled electrons A quantum computer can simulate efficiently any physical process that occurs in Nature. (Maybe. We don’t actually know for sure.) superconductor black hole early universe Two fundamental ideas (1) Quantum complexity Why we think quantum computing is powerful. (2) Quantum error correction Why we think quantum computing is scalable. A complete description of a typical quantum state of just 300 qubits requires more bits than the number of atoms in the visible universe. Why we think quantum computing is powerful We know examples of problems that can be solved efficiently by a quantum computer, where we believe the problems are hard for classical computers.
    [Show full text]
  • Quantum Machine Learning: Benefits and Practical Examples
    Quantum Machine Learning: Benefits and Practical Examples Frank Phillipson1[0000-0003-4580-7521] 1 TNO, Anna van Buerenplein 1, 2595 DA Den Haag, The Netherlands [email protected] Abstract. A quantum computer that is useful in practice, is expected to be devel- oped in the next few years. An important application is expected to be machine learning, where benefits are expected on run time, capacity and learning effi- ciency. In this paper, these benefits are presented and for each benefit an example application is presented. A quantum hybrid Helmholtz machine use quantum sampling to improve run time, a quantum Hopfield neural network shows an im- proved capacity and a variational quantum circuit based neural network is ex- pected to deliver a higher learning efficiency. Keywords: Quantum Machine Learning, Quantum Computing, Near Future Quantum Applications. 1 Introduction Quantum computers make use of quantum-mechanical phenomena, such as superposi- tion and entanglement, to perform operations on data [1]. Where classical computers require the data to be encoded into binary digits (bits), each of which is always in one of two definite states (0 or 1), quantum computation uses quantum bits, which can be in superpositions of states. These computers would theoretically be able to solve certain problems much more quickly than any classical computer that use even the best cur- rently known algorithms. Examples are integer factorization using Shor's algorithm or the simulation of quantum many-body systems. This benefit is also called ‘quantum supremacy’ [2], which only recently has been claimed for the first time [3]. There are two different quantum computing paradigms.
    [Show full text]
  • Development of Tool for Mapping Conventional Circuit to Reversible
    Development of Tool for Mapping Conventional Circuit to Reversible Logic A Dissertation Submitted in Partial fulfillment for the award of the Degree of MASTER OF TECHNOLOGY in Department of Computer Science Engineering (With specialization in COMPUTER SCIENCE & ENGINEERING) Supervisor Submitted By Dr. S.C. Jain Piyush Gautam (Professor) Enrolment No.: 10E2UCCSM4XT607 DEPARTMENT OF COMPUTER SCIENCEENGINEERING UNIVERSITY COLLEGE OF ENGINEERING RAJASTHAN TECHNICAL UNIVERSITY KOTA (RAJASTHAN) March 2014 CANDIDATE’S DECLARATION I hereby declare that the work, which is being presented in the Dissertation, entitled “Development of Tool for Mapping Conventional Circuit to Reversible Logic” in partial fulfillment for the award of Degree of “Master of Technology” in Dept. of Computer Science Engineering with Specialization in Computer Science, and submitted to the Department of Computer Science Engineering, University College of Engineering, Kota, Rajasthan Technical University is a record of my own investigations carried under the Guidance of Dr. S.C. Jain, Department of Computer Science Engineering, University College of Engineering, Kota. I have not submitted the matter presented in this Dissertation anywhere for the award of any other Degree. Piyush Gautam Computer Science & Engineering Enrolment No.: 10E2UCCSM4XT607 University College of Engineering, Kota (Rajasthan) Under Guidance of Dr. S. C. Jain Professor, Department of Computer Science & Engineering University College of Engineering, Kota (Rajasthan) ii CERTIFICATE This is to certify that this Dissertation entitled “Development of Tool for Mapping Conventional Circuit to Reversible Logic” has been successfully carried out by Piyush Gautam (Enrolment No.:10E2UCCSM4XT607), under my supervision and guidance, in partial fulfillment of the requirement for the award of Master of Technology Degree in Computer Science & Engineering from University College of Engineering, Rajasthan Technical University, Kota for the year 2010-2012.
    [Show full text]
  • COVID-19 Detection on IBM Quantum Computer with Classical-Quantum Transfer Learning
    medRxiv preprint doi: https://doi.org/10.1101/2020.11.07.20227306; this version posted November 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Turk J Elec Eng & Comp Sci () : { © TUB¨ ITAK_ doi:10.3906/elk- COVID-19 detection on IBM quantum computer with classical-quantum transfer learning Erdi ACAR1*, Ihsan_ YILMAZ2 1Department of Computer Engineering, Institute of Science, C¸anakkale Onsekiz Mart University, C¸anakkale, Turkey 2Department of Computer Engineering, Faculty of Engineering, C¸anakkale Onsekiz Mart University, C¸anakkale, Turkey Received: .201 Accepted/Published Online: .201 Final Version: ..201 Abstract: Diagnose the infected patient as soon as possible in the coronavirus 2019 (COVID-19) outbreak which is declared as a pandemic by the world health organization (WHO) is extremely important. Experts recommend CT imaging as a diagnostic tool because of the weak points of the nucleic acid amplification test (NAAT). In this study, the detection of COVID-19 from CT images, which give the most accurate response in a short time, was investigated in the classical computer and firstly in quantum computers. Using the quantum transfer learning method, we experimentally perform COVID-19 detection in different quantum real processors (IBMQx2, IBMQ-London and IBMQ-Rome) of IBM, as well as in different simulators (Pennylane, Qiskit-Aer and Cirq). By using a small number of data sets such as 126 COVID-19 and 100 Normal CT images, we obtained a positive or negative classification of COVID-19 with 90% success in classical computers, while we achieved a high success rate of 94-100% in quantum computers.
    [Show full text]
  • Quantum Computation and Complexity Theory
    Quantum computation and complexity theory Course given at the Institut fÈurInformationssysteme, Abteilung fÈurDatenbanken und Expertensysteme, University of Technology Vienna, Wintersemester 1994/95 K. Svozil Institut fÈur Theoretische Physik University of Technology Vienna Wiedner Hauptstraûe 8-10/136 A-1040 Vienna, Austria e-mail: [email protected] December 5, 1994 qct.tex Abstract The Hilbert space formalism of quantum mechanics is reviewed with emphasis on applicationsto quantum computing. Standardinterferomeric techniques are used to construct a physical device capable of universal quantum computation. Some consequences for recursion theory and complexity theory are discussed. hep-th/9412047 06 Dec 94 1 Contents 1 The Quantum of action 3 2 Quantum mechanics for the computer scientist 7 2.1 Hilbert space quantum mechanics ..................... 7 2.2 From single to multiple quanta Ð ªsecondº ®eld quantization ...... 15 2.3 Quantum interference ............................ 17 2.4 Hilbert lattices and quantum logic ..................... 22 2.5 Partial algebras ............................... 24 3 Quantum information theory 25 3.1 Information is physical ........................... 25 3.2 Copying and cloning of qbits ........................ 25 3.3 Context dependence of qbits ........................ 26 3.4 Classical versus quantum tautologies .................... 27 4 Elements of quantum computatability and complexity theory 28 4.1 Universal quantum computers ....................... 30 4.2 Universal quantum networks ........................ 31 4.3 Quantum recursion theory ......................... 35 4.4 Factoring .................................. 36 4.5 Travelling salesman ............................. 36 4.6 Will the strong Church-Turing thesis survive? ............... 37 Appendix 39 A Hilbert space 39 B Fundamental constants of physics and their relations 42 B.1 Fundamental constants of physics ..................... 42 B.2 Conversion tables .............................. 43 B.3 Electromagnetic radiation and other wave phenomena .........
    [Show full text]
  • Quantum Inductive Learning and Quantum Logic Synthesis
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 2009 Quantum Inductive Learning and Quantum Logic Synthesis Martin Lukac Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Recommended Citation Lukac, Martin, "Quantum Inductive Learning and Quantum Logic Synthesis" (2009). Dissertations and Theses. Paper 2319. https://doi.org/10.15760/etd.2316 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. QUANTUM INDUCTIVE LEARNING AND QUANTUM LOGIC SYNTHESIS by MARTIN LUKAC A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in ELECTRICAL AND COMPUTER ENGINEERING. Portland State University 2009 DISSERTATION APPROVAL The abstract and dissertation of Martin Lukac for the Doctor of Philosophy in Electrical and Computer Engineering were presented January 9, 2009, and accepted by the dissertation committee and the doctoral program. COMMITTEE APPROVALS: Irek Perkowski, Chair GarrisoH-Xireenwood -George ^Lendaris 5artM ?teven Bleiler Representative of the Office of Graduate Studies DOCTORAL PROGRAM APPROVAL: Malgorza /ska-Jeske7~Director Electrical Computer Engineering Ph.D. Program ABSTRACT An abstract of the dissertation of Martin Lukac for the Doctor of Philosophy in Electrical and Computer Engineering presented January 9, 2009. Title: Quantum Inductive Learning and Quantum Logic Synhesis Since Quantum Computer is almost realizable on large scale and Quantum Technology is one of the main solutions to the Moore Limit, Quantum Logic Synthesis (QLS) has become a required theory and tool for designing Quantum Logic Circuits.
    [Show full text]
  • Analysis of Nonlinear Dynamics in a Classical Transmon Circuit
    Analysis of Nonlinear Dynamics in a Classical Transmon Circuit Sasu Tuohino B. Sc. Thesis Department of Physical Sciences Theoretical Physics University of Oulu 2017 Contents 1 Introduction2 2 Classical network theory4 2.1 From electromagnetic fields to circuit elements.........4 2.2 Generalized flux and charge....................6 2.3 Node variables as degrees of freedom...............7 3 Hamiltonians for electric circuits8 3.1 LC Circuit and DC voltage source................8 3.2 Cooper-Pair Box.......................... 10 3.2.1 Josephson junction.................... 10 3.2.2 Dynamics of the Cooper-pair box............. 11 3.3 Transmon qubit.......................... 12 3.3.1 Cavity resonator...................... 12 3.3.2 Shunt capacitance CB .................. 12 3.3.3 Transmon Lagrangian................... 13 3.3.4 Matrix notation in the Legendre transformation..... 14 3.3.5 Hamiltonian of transmon................. 15 4 Classical dynamics of transmon qubit 16 4.1 Equations of motion for transmon................ 16 4.1.1 Relations with voltages.................. 17 4.1.2 Shunt resistances..................... 17 4.1.3 Linearized Josephson inductance............. 18 4.1.4 Relation with currents................... 18 4.2 Control and read-out signals................... 18 4.2.1 Transmission line model.................. 18 4.2.2 Equations of motion for coupled transmission line.... 20 4.3 Quantum notation......................... 22 5 Numerical solutions for equations of motion 23 5.1 Design parameters of the transmon................ 23 5.2 Resonance shift at nonlinear regime............... 24 6 Conclusions 27 1 Abstract The focus of this thesis is on classical dynamics of a transmon qubit. First we introduce the basic concepts of the classical circuit analysis and use this knowledge to derive the Lagrangians and Hamiltonians of an LC circuit, a Cooper-pair box, and ultimately we derive Hamiltonian for a transmon qubit.
    [Show full text]
  • Explorations in Quantum Neural Networks with Intermediate Measurements
    ESANN 2020 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Online event, 2-4 October 2020, i6doc.com publ., ISBN 978-2-87587-074-2. Available from http://www.i6doc.com/en/. Explorations in Quantum Neural Networks with Intermediate Measurements Lukas Franken and Bogdan Georgiev ∗Fraunhofer IAIS - Research Center for ML and ML2R Schloss Birlinghoven - 53757 Sankt Augustin Abstract. In this short note we explore a few quantum circuits with the particular goal of basic image recognition. The models we study are inspired by recent progress in Quantum Convolution Neural Networks (QCNN) [12]. We present a few experimental results, where we attempt to learn basic image patterns motivated by scaling down the MNIST dataset. 1 Introduction The recent demonstration of Quantum Supremacy [1] heralds the advent of the Noisy Intermediate-Scale Quantum (NISQ) [2] technology, where signs of supe- riority of quantum over classical machines in particular tasks may be expected. However, one should keep in mind the limitations of NISQ-devices when study- ing and developing quantum-algorithmic solutions - among other things, these include limits on the number of gates and qubits. At the same time the interaction of quantum computing and machine learn- ing is growing, with a vast amount of literature and new results. To name a few applications, the well-known HHL algorithm [3], quantum phase estimation [5] and inner products speed-up techniques lead to further advances in Support Vector Machines [4] and Principal Component Analysis [6, 7]. Intensive progress and ongoing research has also been made towards quantum analogues of Neural Networks (QNN) [8, 9, 10].
    [Show full text]
  • Al Transmon Qubits on Silicon-On-Insulator for Quantum Device Integration Andrew J
    Al transmon qubits on silicon-on-insulator for quantum device integration Andrew J. Keller, Paul B. Dieterle, Michael Fang, Brett Berger, Johannes M. Fink, and Oskar Painter Citation: Appl. Phys. Lett. 111, 042603 (2017); doi: 10.1063/1.4994661 View online: http://dx.doi.org/10.1063/1.4994661 View Table of Contents: http://aip.scitation.org/toc/apl/111/4 Published by the American Institute of Physics Articles you may be interested in Superconducting noise bolometer with microwave bias and readout for array applications Applied Physics Letters 111, 042601 (2017); 10.1063/1.4995981 A silicon nanowire heater and thermometer Applied Physics Letters 111, 043504 (2017); 10.1063/1.4985632 Graphitization of self-assembled monolayers using patterned nickel-copper layers Applied Physics Letters 111, 043102 (2017); 10.1063/1.4995412 Perfectly aligned shallow ensemble nitrogen-vacancy centers in (111) diamond Applied Physics Letters 111, 043103 (2017); 10.1063/1.4993160 Broadband conversion of microwaves into propagating spin waves in patterned magnetic structures Applied Physics Letters 111, 042404 (2017); 10.1063/1.4995991 Ferromagnetism in graphene due to charge transfer from atomic Co to graphene Applied Physics Letters 111, 042402 (2017); 10.1063/1.4994814 APPLIED PHYSICS LETTERS 111, 042603 (2017) Al transmon qubits on silicon-on-insulator for quantum device integration Andrew J. Keller,1,2 Paul B. Dieterle,1,2 Michael Fang,1,2 Brett Berger,1,2 Johannes M. Fink,1,2,3 and Oskar Painter1,2,a) 1Kavli Nanoscience Institute and Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA 2Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, California 91125, USA 3Institute for Science and Technology Austria, 3400 Klosterneuburg, Austria (Received 3 April 2017; accepted 5 July 2017; published online 25 July 2017) We present the fabrication and characterization of an aluminum transmon qubit on a silicon-on-insulator substrate.
    [Show full text]
  • The Quantum Bases for Human Expertise, Knowledge, and Problem-Solving (Extended Version with Applications)
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Bickley, Steve J.; Chan, Ho Fai; Schmidt, Sascha Leonard; Torgler, Benno Working Paper Quantum-sapiens: The quantum bases for human expertise, knowledge, and problem-solving (Extended version with applications) CREMA Working Paper, No. 2021-14 Provided in Cooperation with: CREMA - Center for Research in Economics, Management and the Arts, Zürich Suggested Citation: Bickley, Steve J.; Chan, Ho Fai; Schmidt, Sascha Leonard; Torgler, Benno (2021) : Quantum-sapiens: The quantum bases for human expertise, knowledge, and problem- solving (Extended version with applications), CREMA Working Paper, No. 2021-14, Center for Research in Economics, Management and the Arts (CREMA), Zürich This Version is available at: http://hdl.handle.net/10419/234629 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte.
    [Show full text]
  • Arxiv:2011.01938V2 [Quant-Ph] 10 Feb 2021 Ample and Complexity-Theoretic Argument Showing How Or Small Polynomial Speedups [8,9]
    Power of data in quantum machine learning Hsin-Yuan Huang,1, 2, 3 Michael Broughton,1 Masoud Mohseni,1 Ryan 1 1 1 1, Babbush, Sergio Boixo, Hartmut Neven, and Jarrod R. McClean ∗ 1Google Research, 340 Main Street, Venice, CA 90291, USA 2Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA 3Department of Computing and Mathematical Sciences, Caltech, Pasadena, CA, USA (Dated: February 12, 2021) The use of quantum computing for machine learning is among the most exciting prospective ap- plications of quantum technologies. However, machine learning tasks where data is provided can be considerably different than commonly studied computational tasks. In this work, we show that some problems that are classically hard to compute can be easily predicted by classical machines learning from data. Using rigorous prediction error bounds as a foundation, we develop a methodology for assessing potential quantum advantage in learning tasks. The bounds are tight asymptotically and empirically predictive for a wide range of learning models. These constructions explain numerical results showing that with the help of data, classical machine learning models can be competitive with quantum models even if they are tailored to quantum problems. We then propose a projected quantum model that provides a simple and rigorous quantum speed-up for a learning problem in the fault-tolerant regime. For near-term implementations, we demonstrate a significant prediction advantage over some classical models on engineered data sets designed to demonstrate a maximal quantum advantage in one of the largest numerical tests for gate-based quantum machine learning to date, up to 30 qubits.
    [Show full text]
  • Regularity and Symmetry As a Base for Efficient Realization of Reversible Logic Circuits
    Portland State University PDXScholar Electrical and Computer Engineering Faculty Publications and Presentations Electrical and Computer Engineering 2001 Regularity and Symmetry as a Base for Efficient Realization of Reversible Logic Circuits Marek Perkowski Portland State University, [email protected] Pawel Kerntopf Technical University of Warsaw Andrzej Buller ATR Kyoto, Japan Malgorzata Chrzanowska-Jeske Portland State University Alan Mishchenko Portland State University SeeFollow next this page and for additional additional works authors at: https:/ /pdxscholar.library.pdx.edu/ece_fac Part of the Electrical and Computer Engineering Commons Let us know how access to this document benefits ou.y Citation Details Perkowski, Marek; Kerntopf, Pawel; Buller, Andrzej; Chrzanowska-Jeske, Malgorzata; Mishchenko, Alan; Song, Xiaoyu; Al-Rabadi, Anas; Jozwiak, Lech; and Coppola, Alan, "Regularity and Symmetry as a Base for Efficient Realization of vRe ersible Logic Circuits" (2001). Electrical and Computer Engineering Faculty Publications and Presentations. 235. https://pdxscholar.library.pdx.edu/ece_fac/235 This Conference Proceeding is brought to you for free and open access. It has been accepted for inclusion in Electrical and Computer Engineering Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Marek Perkowski, Pawel Kerntopf, Andrzej Buller, Malgorzata Chrzanowska-Jeske, Alan Mishchenko, Xiaoyu Song, Anas Al-Rabadi, Lech Jozwiak, and Alan Coppola This conference proceeding is available at PDXScholar: https://pdxscholar.library.pdx.edu/ece_fac/235 Regularity and Symmetry as a Base for Efficient Realization of Reversible Logic Circuits Marek Perkowski, Pawel Kerntopf+, Andrzej Buller*, Malgorzata Chrzanowska-Jeske, Alan Mishchenko, Xiaoyu Song, Anas Al-Rabadi, Lech Jozwiak@, Alan Coppola$ and Bart Massey PORTLAND QUANTUM LOGIC GROUP, Portland State University, Portland, Oregon 97207-0751.
    [Show full text]