Quantum Mechanics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Causal Set Theory As a Discrete Model for Classical Spacetime
Imperial College London Department of Theoretical Physics Causal Set Theory as a Discrete Model for Classical Spacetime Author: Supervisor: Omar F. Sosa Rodr´ıguez Prof. Fay Dowker Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London, 2013-2014 Acknowledgements I thank God for the great family I have been given: Carolina, Sergio and Abraxas. Your constant love and support, even from across the ocean, is what made this year pos- sible for me. You are my main source of inspiration and motivation. To my supervisor Fay Dowker. Thank you for the course on black holes which were simply the best lectures of the masters. Thank you for all the interesting and inspiring discussions, for supervising this work, and for being so patient while doing so. I look forward to meet you again. Though I am grateful to all of my friends of the MSc, I am specially thankful to: Sonny. For rescuing me infinite times, for all the awesome days of adventures in • London and for sharing the endless days of revision. Oscar. I would have not survived this master if you were not there. Thank you for • all your advice and for making me part of your family. Mrs. Smith. Thank you for this last week specially. I know for a fact that you are • an amazing friend. If you were there I would always feel more comfortable. You really tied the room together. I love the three of you and I really hope we can meet again soon. Last but not least. -
05 M211rsj121020 24
Quantum mechanics Mark Herbert, PhD World Development Institute, 39 Main Street, Flushing, Queens, New York 11354, USA, [email protected] Abstract: Quantum mechanics is a fundamental theory in physics that describes the physical properties of nature at small scales, of the order of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, quantum field theory, quantum technology, and quantum information science. Most contents are from Wikipedia, the free encyclopedia (https://en.wikipedia.org/wiki/Quantum_mechanics). [Mark Herbert, PhD. Quantum mechanics. Researcher 2020;12(10):24-37]. ISSN 1553-9865 (print); ISSN 2163- 8950 (online). http://www.sciencepub.net/researcher. 5. doi:10.7537/marsrsj121020.05. Keywords: Quantum mechanics; theory; physics; nature; atom; field theory; quantum technology; science Introduction problem, and the correspondence between energy and Most contents are from Wikipedia, the free frequency in Albert Einstein's 1905 paper which encyclopedia explained the photoelectric effect. Early quantum (https://en.wikipedia.org/wiki/Quantum_mechanics). theory was profoundly re-conceived in the mid-1920s Quantum mechanics cannot predict the exact by Niels Bohr, Erwin Schrödinger, Werner Heisenberg, location of a particle in space, only the probability of Max Born and others. The original interpretation of finding it at different locations.[1] The brighter areas quantum mechanics is the Copenhagen interpretation, represent a higher probability of finding the electron. developed by Niels Bohr and Werner Heisenberg in Quantum mechanics is a fundamental theory in Copenhagen during the 1920s. The modern theory is physics that describes the physical properties of nature formulated in various specially developed at small scales, of the order of atoms and subatomic mathematical formalisms. -
2017/18 Annual Report Supplement
2017/18 Annual Report Supplement Covering the Objectives, Activities, and Finances for the period of August 1, 2017 to July 31, 2018 Submitted by: Neil Turok, Director To: The Hon. Navdeep Bains, Canadian Minister of Innovation, Science, and Economic Development Attn.: The Hon. Kirsty Duncan, Canadian Minister of Science and Sport Contents Objective 1: Achieve breakthroughs in our understanding of the universe............................................... 1 Objective 2: Create the world’s strongest community of theoretical physics researchers......................... 3 Objective 3: Attract and develop the next generation of brilliant researchers .......................................... 4 Objective 4: Attract outstanding visiting scientists ................................................................................... 5 Objective 5: Act as Canada’s hub for foundational physics research ........................................................ 7 Objective 6: Catalyze and support the creation of centres of excellence ................................................ 11 Objective 7: Share the transformative power of theoretical physics ...................................................... 12 Objective 8: Continue to strengthen Perimeter’s visionary public-private partnership ........................... 13 Governance ........................................................................................................................................... 14 Performance Evaluation Strategy ......................................................................................................... -
A Global Enhanced Vibrational Kinetic Model for Radio-Frequency Hydrogen Discharges and Application to the Simulation of a High
A Global Enhanced Vibrational Kinetic Model for Radio-Frequency Hydrogen Discharges and Application to the Simulation of a High Current Negative Hydrogen Ion Source by Sergey Nikolaevich Averkin A Dissertation Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Doctor of Philosophy in Aerospace Engineering by _____________________________ February 27, 2015 APPROVED: ______________________________________________________________________________ Dr. Nikolaos A. Gatsonis, Advisor Professor, Aerospace Engineering Program, Mechanical Engineering Department ______________________________________________________________________________ Dr. John J. Blandino, Committee Member Associate Professor, Aerospace Engineering Program, Mechanical Engineering Department ______________________________________________________________________________ Dr. Lynn Olson, Committee Member Senior Scientist, Busek Co. Inc., Natick, MA ______________________________________________________________________________ Dr. Seong-kyun Im, Graduate Committee Representative Assistant Professor, Aerospace Engineering Program, Mechanical Engineering Department 2 Abstract A Global Enhanced Vibrational Kinetic (GEVKM) model is presented for a new High Cur- rent Negative Hydrogen Ion Source (HCNHIS) developed by Busek Co. Inc. and Worcester Pol- ytechnic Institute. The HCNHIS consists of a high-pressure radio-frequency discharge (RFD) chamber in which the main production of high-lying vibrational states of -
Universal Chemical Markup (UCM) - a New Format for Common Chemical Data
Universal Chemical Markup (UCM) - A new format for common chemical data Background: We wish to introduce a new chemical format called UCM (Universal Chemical Markup). The format is based on XML (Extensible Markup Language) and its first version focuses on recording chemical structures and their properties. Results: UCM currently supports structures containing isotopes, ions and various types of bonding s t including delocalized bonds. Properties can be expressed by combining UCM with UnitsML n i r (Units Markup Language). Using UnitsML one defines quantities with scientific units, and P e then refers to them in UCM when recording property values. Users can also add literature r P references with BibTeXML (BibTeX Markup Language) and annotate the recorded data using plain text or XHTML (Extensible Hypertext Markup Language) descriptions. In contrast to presently available general-purpose chemical formats, UCM offers built-in validation, which combines both grammar and pattern-based XML schema languages. Thus, all recorded data can be precisely validated by UCM schemas in standard XML validators. Conclusions: We developed the structure for UCM from scratch on the basis of an analysis described in our previous article. Starting from scratch allowed us to integrate BibTeXML, UnitsML and XHTML as well as chemical line notations and identifiers into UCM. It also helped us to avoid unnecessary redundant parts and create the implementation that aims to minimize ambiguity and is designed to be easily extensible in the future. PeerJ PrePrints | -
Laser Induced Photoelectron Holography in Diatomic Molecules
Laser Induced Photoelectron Holography in Diatomic Molecules Ph.D. thesis GELLÉRT ZSOLT KISS SCIENTIFIC SUPERVISOR PROFESSOR DR. LADISLAU NAGY FACULTY OF PHYSICS, BABEȘ-BOLYAI UNIVERSITY CLUJ-NAPOCA, ROMANIA 2019 Gell´ert Zsolt Kiss Laser Induced Photoelectron Holography in Diatomic Molecules DOCTORAL THESIS presented to the Faculty of Physics, Babe¸s-Bolyai University, Cluj-Napoca, Romania 2019 Abstract Laser physics and technology has become a highly developing field of science in the recent years. With the remarkable achievements in the production of ultrashort and intense laser pulses new horizons have been opened for scientists to investigate ultrafast phenomena taking place at atomic level and to manipulate matter below the microscopic size. In parallel to the impressive developments in the laboratories the newly emerging and not completely understood processes needed to be explained by elaborate theoretical works. The present thesis aims to deliver novel and useful knowledge to the broad theoretical field of laser-matter interaction, by investigating - with the use of first principle calculations - laser induced ultrafast processes taking place in small atomic systems in the presence of ultrashort XUV radiation fields. In the first part of this work the theory behind the laser-atom/molecule interaction is detailed in the framework of the single active electron approximation, then different the- oretical methods will be presented by comparing the results obtained by their numerical implementation for the hydrogen atom. In the main part of the present thesis, first the development and the implementation of a numerical method based on the direct solution of time-dependent Schr¨odinger equation for diatomic molecules is presented, and then this is employed to investigate the laser induced + electron dynamics and the photoelectron holography in the H2 molecule. -
Non-Adiabatic Contributions to the Spectrum of Simple Molecular Models: the Case of the One-Dimensional Dihydrogen Cation
Non-adiabatic contributions to the spectrum of simple molecular models: the case of the one-dimensional dihydrogen cation Alison Crawford Uranga, L. Stella, S. Kurth, and A. Rubio NanoBio Spectroscopy Group, European Theoretical Spectroscopy Facility (ETSF), Departamento de Física de Materiales, Universidad del País Vasco, San Sebastián, Spain. [email protected] YRM 2011, Naples, 17 May 2011 1 Outline Motivations Model system: one-dimensional (1-D) dihydrogen cation, H + 2 Results: optical spectra for frozen and dynamical ions using different ionic masses Conclusions Future work YRM 2011, Naples, 17 May 2011 2 Motivations Assess the accuracy of the Born-Oppenheimer Approximation (BOA) = total electronic ionic Fictitiously vary the electron-ion m mass ratio e mI m If e << 1, the kinetic energy of mI the ions is negligible: ”frozen ions” H + adiabatic 2 Potential Energy Surfaces (PES) YRM 2011, Naples, 17 May 2011 3 Simple model: the one dimensional dihydrogen cation Hamiltonian (centre of mass frame) in atomic units (a.u.) J. R. Hiskes, Phys. Rev. 122 (1960), 1207-1217 =− 1 ∂2 − 1 ∂2 − 1 − 1 1 H internal R , ∂ 2 ∂ 2 2 2 2 2 p R 2 e R R R 1 1 − 1 Negligible if p >> e 2 2 Van der Waals minimum Soft Coulomb Potential: Coulomb potential ill-defined in 1-D R. Loudon, Am J. Phys. 27 (1959), 649-655 The numerical diagonalisation is feasible We use the real-space code OCTOPUS 1 A. Castro et al., phys. stat. Sol 243 (2006), 2465-2488 E gs R 3 http://www.tddft.org/programs/octopus/wiki/index.php/Main_page R 4 Frozen -
Advanced Certification in Science - Level I
Advanced Certification in Science - Level I www.casiglobal.us | www.casi-india.com | CASI New York; The Global Certification body. Page 1 of 391 CASI New York; Reference material for ‘Advanced Certification in Science – Level 1’ Recommended for college students (material designed for students in India) About CASI Global CASI New York CASI Global is the apex body dedicated to promoting the knowledge & cause of CSR & Sustainability. We work on this agenda through certifications, regional chapters, corporate chapters, student chapters, research and alliances. CASI is basically from New York and now has a presence across 52 countries. World Class Certifications CASI is usually referred to as one of the BIG FOUR in education, CASI is also referred to as the global certification body CASI offers world class certifications across multiple subjects and caters to a vast audience across primary school to management school to CXO level students. Many universities & colleges offer CASI programs as credit based programs. CASI also offers joint / cobranded certifications in alliances with various institutes and universities. www.casiglobal.us CASI India CASI India has alliances with hundreds of institutes in India where students of these institutes are eligible to enroll for world class certifications offered by CASI. The reach through such alliances is over 2 million citizens CASI India also offers cobranded programs with Government Polytechnic and many other institutes of higher learning. CASI India has multiple franchises across India to promote certifications especially for school students. www.casi-india.com Volunteering @ CASI NY CASI India / CSR Diary also provide volunteering opportunities and organizes mega format events where in citizens at large can also volunteer for various causes. -
The Time Traveller
We’re proud to help the Orchestra keep playing We are a full service firm of leading chartered accountants based in the city of London. Our professional team provides specialist accounting, audit and tax advice to a range of clients across the business and personal spectrum. To arrange a free, initial meeting, please contact Russell Rich at [email protected] or call him on 020 7490 7766. Paternoster House, 65 St Paul’s Churchyard London EC4M 8AB Telephone +44 (0)20 7490 7766. www.lubbockfine.co.uk Registered to carry on audit work and regulated for a range of investment business activities by the Institute of Chartered Accountants in England and Wales. Member of Russell Bedford International We’re proud to help the Orchestra keep playing We are a full service firm of leading chartered accountants based in the city of London. Our professional team provides specialist accounting, audit and tax advice to a range of clients across the business and personal spectrum. To arrange a free, initial meeting, please contact Russell Rich at [email protected] or call him on 020 7490 7766. Paternoster House, 65 St Paul’s Churchyard London EC4M 8AB Telephone +44 (0)20 7490 7766. www.lubbockfine.co.uk Registered to carry on audit work and regulated for a range of investment business activities by the Institute of Chartered Accountants in England and Wales. Member of Russell Bedford International What is Bach, the Universe & Everything? If this is your firstBach, the Universe & Everything (BUE), welcome! We like to think of the series as a community, similar to the one Bach enjoyed in Leipzig where he produced cantatas at an extraordinary rate, providing innovative music for the weekly services at the church where he worked from 1723 until his death in 1750. -
Light, Links and Causal Sets ⋆
Light, Links and Causal Sets ⋆ Rafael D. Sorkin Perimeter Institute, 31 Caroline Street North, Waterloo ON, N2L 2Y5 Canada and Department of Physics, Syracuse University, Syracuse, NY 13244-1130, U.S.A. address for email: [email protected] Abstract After sketching a context in which to seek observable signals of spatio- temporal discreteness, I briefly review the status of the causal set program for quantum gravity, concluding with a simple model for the field produced by a moving charge in a background causal set. 1. How might discreteness show up? Riemann had a nice phrase somewhere that talked about “the reality that underlies spacetime.” ⋆ What we know of quantum gravity suggests that that reality is more in the nature of a discrete structure than a continuous one. If so then it’s important to think about phenomena that could reveal this underlying discreteness. Several such possibilities come to mind, some of them present by definition, others suggested by analogy with the discreteness of ordinary material, and still others specific to one or another of the deep structures of spacetime that have been proposed by workers on quantum gravity. Almost by definition, discreteness implies a “cutoff” in energy and wavelength. How- ever (unless the idea of “large extra dimensions” turns out to be correct, cf. [1]) the expected Planckian scale of this effect places it beyond direct observation for the present. Moreover (and this is why I included the qualification “Almost” just above) the concept ⋆ Published in the proceedings of the DICE2008 meeting, held Sept. 21-27, 2008 in Castiglioncello, Italia: Journal of Physics Conf. -
Is a Molecular Orbital Measurable by Means of Tomographic Imaging?
Found Chem (2011) 13:87–91 DOI 10.1007/s10698-011-9113-1 Is a molecular orbital measurable by means of tomographic imaging? J. F. Ogilvie Published online: 13 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Interpretation of experiments involving use of vacuum ultraviolet radiation to effect ionization of N2 in terms of measurements of a molecular orbital is erroneous. Keywords Orbital Á Mathematical function Á Experimental observable Á Spectrometry Itatani et al. (2004) claimed to measure a ‘‘molecular orbital’’ and presented a highly regular and detailed diagram of that claimed molecular orbital obtained through ‘‘tomo- graphic imaging’’. As such a claim is incongruous with the established properties or nature of a molecular orbital (Pauling and Wilson 1935), the purpose of this essay is to challenge this assertion; we discuss also other aspects of their article that have a bearing on the credibility of their analysis as a basis of that claim. According to a standard definition (Pauling and Wilson 1935), an orbital is a mathematical formula that arises as an exact algebraic solution, generally denoted w, of Schroedinger’s temporally independent, partial-differential equation in three spatial dimensions, Hw = Ew, for a system of one electron; this system might be hydrogen atom H for an atomic orbital or ? dihydrogen molecular cation H2 for a molecular orbital, or an equivalent system such as He? for an atomic orbital (Pauling and Wilson 1935). That orbital is hence an amplitude function or wave function that is required as an operand on which differential operator H, and other operators, operate. -
Production of Negative Hydrogen Ions in a High-Powered Helicon Plasma Source
Production of Negative Hydrogen Ions in a High-Powered Helicon Plasma Source Jesse Soewito Santoso A thesis submitted for the degree of Doctor of Philosophy of The Australian National University Plasma Research Laboratory Research School of Physics and Engineering The Australian National University July, 2018 This thesis is an account of research undertaken between January 2014 and July 2018 at the Research School of Physics and Engineering, ANU College of Physical and Mathematical Sciences, The Australian National University, Canberra, Australia. Except where acknowledged in the customary manner, the material presented in this thesis is, to the best of my knowledge, original and has not been submitted in whole or part for a degree in any university. Signed: Jesse Soewito Santoso Date: December 3, 2018 This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968 Signed: Jesse Soewito Santoso Date: December 3, 2018 \I believe that the human spirit is indomitable. If you endeavor to achieve, it will happen given enough resolve. It may not be immediate, and often your greater dreams is something you will not achieve within your own lifetime. The effort you put forth to anything transcends yourself, for there is no futility even in death." | Monty Oum (1981-2015) Dedicated to the family I picked up along the way. ABSTRACT The production and extraction of negative hydrogen ions within plasma sys- tems has a number of applications, the most prominent of which being the use of negative hydrogen ions in the high energy neutral beam injection systems used in the heating of plasmas in magnetically confined fusion devices such as the ITER tokamak.