3. Particle Interactions

Total Page:16

File Type:pdf, Size:1020Kb

3. Particle Interactions particleExperimental physics particle interactions 3. in particle detectors lots of material borrowed from the excellent course of H.-C. Schultz-Coulon http://www.kip.uni-heidelberg.de/~coulon/Lectures/Detectors/ Marco Delmastro Experimental Particle Physics 1 How do we detect particles? • In order to detect a particle, it must: ! interact with the material of the detector ! transfer energy in some recognizable fashion (signal) • Detection of particles happens via their energy loss in the material they traverses multiple Charged particles Ionization, Bremsstrahlung, Cherenkov, … interactions single Photons Photo/Compton effect, pair production interactions… multiple Hadrons Nuclear interactions interactions Neutrinos Weak interactions Marco Delmastro Experimental Particle Physics 2 ExampleParticle Interactionsof particle interactions– Examples Ionization: Pair Compton production: scattering: Charged Particle Positron Electron Electron γ γ x γ γ Nucleus Electron Electron Photon Charged Electron Particle Photon Photon Positron Electron Electron Atom Nucleus Marco Delmastro Experimental Particle Physics 3 4 27. Passage of particles through matter + ] µ on Cu g / 2 100 − m µ c Bethe-Bloch Radiative V e Anderson- M - [ Ziegler d f f r r r e a a h w h d o Eµc c n p 10 i S g Radiative L Radiative n i Minimum effects losses p p ionization reach 1% o t Nuclear S losses Without δ 1 0.001 0.01 0.1 1 10 100 1000 104 105 106 βγ 0.1 1 10 100 1 10 100 1 10 100 EnergyEnergy loss Loss[ Mbye Vby/ c]ionization: Ionization –Bethe-Bloch dE/dx[GeV/c] formula[T eV/c] Muon momentum Fig. 27.1: Stopping power (= dE/dx )forpositivemuonsincopperasa ⟨− ⟩ function of βγ = p/Mc over nine2 orders2 of magnitudeCharged in momentum (12 orders For now assume: Mc ≫ mec of magnitude in kinetic energy). Solid curves indicateParticle the total stopping power. Datai.e. below energy the loss break for at heavyβγ charged0.1aretakenfromICRU49[4], particles anddata at higher energies are from Ref.≈ 5. Vertical bands indicate boundaries between [dE/dx for electrons more difficult ...] different approximations discussed in the text. The short dottedγ lines labeled “µ− ”illustratethe“Barkaseffect,” the dependence of stopping power on projectile chargeInteraction at very low dominated energies [6]. Electron by elastic collisions with electrons ... 27.2.2. Stopping power at intermediate energies : The mean rate of energy loss by moderately relativisticBethe-Bloch charged Formula heavy particles, M1/δx,iswell-describedbythe“Bethe-Bloch”equation, dE Z 1 1 2m c2β2γ2T δ(βγ) = Kz2 ln e max β2 . (27.3) − dx A β2 2 I2 − − 2 ! " # $ It describes the mean rate of energy loss in the region 0.1 < βγ < 1000 for 2 2 2 intermediate-Z materials with an accuracy of a∝ few 1/β %. ⋅ Atln (const the∼ ⋅ lowerβ γ∼) limit the projectile velocity becomes comparable to atomic electron “velocities” (Sec. 27.2.3), Marco Delmastro Experimental Particle Physics 4 February 2, 2010 15:55 4 27. Passage of particles through matter + ] µ on Cu g / 2 100 − m µ c Bethe-Bloch Radiative V e Anderson- M - [ Ziegler d f f r r r e a a h w h d o Eµc c n p 10 i S g Radiative L Radiative n i Minimum effects losses p p ionization reach 1% o t Nuclear S losses Without δ 1 0.001 0.01 0.1 1 10 100 1000 104 105 106 βγ 0.1 1 10 100 1 10 100 1 10 100 [MeV/c] [GeV/c] [TeV/c] Muon momentum Fig. 27.1: Stopping power (= dE/dx )forpositivemuonsincopperasa function of βγ = p/Mc over nine⟨− orders of⟩ magnitude in momentum (12 orders of magnitude in kinetic energy). Solid curves indicate the total stopping power. Data below the break at βγ 0.1aretakenfromICRU49[4], anddata at higher energies are from Ref.≈ 5. Vertical bands indicate boundaries between different approximations discussed in the text. The short dotted lines labeled “µ− ”illustratethe“Barkaseffect,” the dependence of stopping power on projectile charge at very low energies [6]. Bethe-Bloch Formula Bethe-Bloch27.2.2. Stopping formula power at intermediate for heavy energies particles: The mean rate of energy loss by moderately relativistic[see e.g. charged PDG 2010] heavy particles, M1/δx,iswell-describedbythe“Bethe-Bloch”equation, dE Z 1 1 2m c2β2γ2T δ(βγ) = Kz2 ln e max β2 . (27.3) − dx A β2 2 I2 − − 2 ! " # $ [⋅ρ] It describes the mean rate of energy loss in the region 0.1 < βγ < 1000 for ∼ ∼ density intermediate-Z2 materials2 with an-1 accuracy2 of a few %. At the23 lower limit the K = 4π NA re me c = 0.307 MeV g cm NA = 6.022⋅10 projectile velocity becomes comparable to atomic electron “velocities” (Sec. 27.2.3), 2 2 2 2 [Avogardo's number] Tmax = 2mec β γ /(1 + 2γ me/M + (me/M) ) 2 2 [Max. energy transfer in single collision] re = e /4πε0 mec = 2.8 fm February 2, 2010 15:55[Classical electron radius] me = 511 keV z : Charge of incident particle [Electron mass] M : Mass of incident particle β = v/c [Velocity] Z : Charge number of medium γ = (1-β2)-2 A : Atomic mass of medium [Lorentz factor] Validity: I : Mean excitation energy of medium .05 < βγ < 500 δ : Density correction [transv. extension of electric field] M > mμ Marco Delmastro Experimental Particle Physics 5 Energy Loss of Pions in Cu Energy loss of pions in Cu Minimum ionizing particles (MIP): βγ = 3-4 dE/dx falls ~ β-2; kinematic factor [precise dependence: ~ β-5/3] 2 dE/dx rises ~ ln (βγ) ; relativistic rise [rel. extension of transversal E-field] Saturation at large (βγ) due to density effect (correction δ) [polarization of medium] Units: MeV g-1 cm2 Abbildung 2.2: Energieverlust in Kupfer. Gezeigt wird der Einfluß der Schalenkor- βγ = 3 - 4 MIP looses ~ 13 MeV/cm rektur und der Dichteeffektkorrektur. Das Minimum des Energieverlustes[density of copper: liegt 8.94 bei g/cm3] 2 βγ 3...4.VordemMinimumverh¨alt sich dE/dx β− ,nachdemMinimum ≃ ∝ steigt dE/dx logarithmischMarco Delmastro an und kommt dann inExperimental den Particle S¨attigungsbereich Physics (Dichte- 6 effekt). Man beachte: Die auf der Ordinate angegebene Gr¨oße ist vielmehr 1 dE − ρ dx (nicht dE ). Quelle: Phys. Rev. D 54:S132, 1996. − dx Der fehlende Faktor 2 in der trivialen“ Ableitung kann wie folgt verstanden werden: • ” Ein kleinerer Grenzwert von Emin vergr¨oßert den Anteil des Energieverlustes von Fernst¨oßen, sodaß der Energieverlust gem¨aß Bethe-Bloch erhalten wird. Verschiedene Formulierungen (Bohr, Bethe, Bloch) unterscheiden sich in der Parame- • trisierung der Fernst¨oße, d.h. des Energieverlustes, bei der die Bindung der Elektronen in den Atomhullen¨ nicht vernachl¨assigbar ist. Mittlere Reichweite R(E) Die mittlere Reichweite eines Teilchens berechnet man wie folgt: 0 1 R(E)= − dE, (2.20) !E dE/dx wobei der Energieverlust eine Funktion der Energie selbst ist. Der Hauptteil des Ionisati- dE 2 onsverlustes erfolgt bei kleinen Teilchengeschwindigkeiten ( β− )amEndederSpur dx ∝ Bragg Peak (siehe Abb. 2.3). Genutzt¨ wird die Tatsache, daß der Hauptteil des Energie- verlustes→ am Ende der Spur liegt, bei der Krebstherapie mit energetischen Kernen. Durch geeignete Wahl der Kerngeschwindigkeit (Protonen, leichte Kerne) kann die Energie gezielt und lokal abgegeben werden. 13 UnderstandingUnderstanding Bethe-BlochBethe-Bloch 1/β2-dependence: Remember:Slower particles fell electric force of dx atomic∆ electronsp = Ffor dtlonger= timeF … ? ? ? v Z Z i.e. slower particles feel electric force of atomic electron for longer time ... Relativistic rise for βγ > 4: High energy particle: transversal electric field increases due to Lorentz transform; Ey ➙Abbildung γEy. Thus 2.2: interactionEnergieverlust cross in Kupfer.section Gezeigtincreases wird ... der Einfluß der Schalenkor- rektur und der Dichteeffektkorrektur. Das Minimum des Energieverlustes liegt bei 2 βγ 3...4.VordemMinimumverh¨alt sich dE/dx β− ,nachdemMinimum fast≃ moving ∝ particle steigtparticledE/dx logarithmisch an und kommt dann in den S¨attigungsbereich (Dichte- at rest effekt). Man beachte: Die auf der Ordinate angegebene Große ist vielmehr 1 dE Corrections: ¨ ρ dx dE − (nicht dx ). Quelle: Phys. Rev. D 54:S132, 1996. −γ grossgrows low energy : shell corrections high energy : density corrections γ = 1 Der fehlende Faktor 2 in der trivialen“ Ableitung kann wie folgt verstanden werden: • ” Marco Delmastro EinExperimental kleinerer Particle Grenzwert Physics von Emin vergr¨oßert den Anteil des Energieverlustes7 von Fernst¨oßen, sodaß der Energieverlust gem¨aß Bethe-Bloch erhalten wird. Verschiedene Formulierungen (Bohr, Bethe, Bloch) unterscheiden sich in der Parame- • trisierung der Fernst¨oße, d.h. des Energieverlustes, bei der die Bindung der Elektronen in den Atomhullen¨ nicht vernachl¨assigbar ist. Mittlere Reichweite R(E) Die mittlere Reichweite eines Teilchens berechnet man wie folgt: 0 1 R(E)= − dE, (2.20) !E dE/dx wobei der Energieverlust eine Funktion der Energie selbst ist. Der Hauptteil des Ionisati- dE 2 onsverlustes erfolgt bei kleinen Teilchengeschwindigkeiten ( β− )amEndederSpur dx ∝ Bragg Peak (siehe Abb. 2.3). Genutzt¨ wird die Tatsache, daß der Hauptteil des Energie- verlustes→ am Ende der Spur liegt, bei der Krebstherapie mit energetischen Kernen. Durch geeignete Wahl der Kerngeschwindigkeit (Protonen, leichte Kerne) kann die Energie gezielt und lokal abgegeben werden. 13 UnderstandingUnderstanding Bethe-BlochBethe-Bloch Density correction: Polarization effect ... [density dependent] ➙ Shielding of electrical field far from particle path; effectively cuts of the long range contribution ... More relevant at high γ ... [Increased range of electric field; larger bmax; ...] For high energies: ⇤/2 ln(~⌅/I)+ln⇥ 1/2 ! Abbildung− 2.2: Energieverlust in Kupfer. Gezeigt wird der Einfluß der Schalenkor- rektur und der Dichteeffektkorrektur.Density Daseffect Minimum leads to des Energieverlustes liegt bei 2 βγ 3...4.VordemMinimumverh¨alt sich dE/dx β− ,nachdemMinimum Shell correction: ≃ saturation at high energy∝ ... steigt dE/dx logarithmisch an und kommt dann in den S¨attigungsbereich (Dichte- Arises if particle velocity is closeeffekt).
Recommended publications
  • Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
    All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available.
    [Show full text]
  • B2.IV Nuclear and Particle Physics
    B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ......................
    [Show full text]
  • Ions, Protons, and Photons As Signatures of Monopoles
    universe Article Ions, Protons, and Photons as Signatures of Monopoles Vicente Vento Departamento de Física Teórica-IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia), Spain; [email protected] Received: 8 October 2018; Accepted: 1 November 2018; Published: 7 November 2018 Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays. 1. Introduction The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles, is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2] eg = N/2, N = 1, 2, ..., (1) where e is the electron charge, g the monopole magnetic charge, and we use natural units h¯ = c = 1 = 4p#0. Monopoles have been a subject of experimental interest since Dirac first proposed them in 1931. In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3].
    [Show full text]
  • The African School of Physics
    The African School of Physics Lecture : Particle Interactions with Matter Version 2012 ASP2012 - SH Connell 1 Learning Goals, Material 1. Understand the fundamental interactions of high energy particles with matter. 1. High Energy Physics : 1. Understand the HEP detector design and operation. 2. Research in HEP 2. Nuclear Physics 1. Understand detector / shielding design and operation. 3. Medical Physics 1. Understand biological implications 2. Understand radiation therapy 4. Other 1. Environmental radiation 2. Radiation damage for Space applications 3. Semiconductor processing 4. Radiation Damage in Materials 2. The core material is from “Techniques for Nuclear and Particle Physics Experiments” by WR Leo. Supplementary material from ASP2010 and ASP2012 lecture notes. ASP2012 - SH Connell 2 Contents 1. Overview : Energy Loss mechanisms 2. Overview : Reaction Cross section and the probability of an interaction per unit path-length 3. Energy Loss mechanisms. 1. Heavy charged particles 2. Light charged particles 3. Photons 4. (Neutrons) 4. Multiple Coulomb Scattering 5. Energy loss distributions 6. Range of particles. 7. Radiation length 8. Showers 9. Counting Statistics ASP2012 - SH Connell 3 An example from the ATLAS detector Reconstruction of a 2e2μ candidate for the Higgs boson - with m2e2μ= 123.9 GeV We need to understand the interaction of particles with matter in order to understand the design and operation of this detector, and the analysis of the data. ASP2012 - SH Connell Energy Loss Mechanisms Heavy Charged Particles Light Charged
    [Show full text]
  • STRANGE MESON SPECTROSCOPY in Km and K$ at 11 Gev/C and CHERENKOV RING IMAGING at SLD *
    SLAC-409 UC-414 (E/I) STRANGE MESON SPECTROSCOPY IN Km AND K$ AT 11 GeV/c AND CHERENKOV RING IMAGING AT SLD * Youngjoon Kwon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 January 1993 Prepared for the Department of Energy uncer contract number DE-AC03-76SF005 15 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. * Ph.D. thesis ii Abstract This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (GRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part I: The CIUD system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at ,/Z = mzo. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, r/K/p separation will be achieved up to N 30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a N 1% spatial resolution in the charge- division, low-noise CRID preamplifier prototypes were developed and tested re- sulting in < 1000 electrons noise for an average photoelectron signal with 2 x lo5 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. This system contin- uously monitors and/or controls various operating quantities such as temperatures, pressures, and flows, mixing and purity of the various fluids.
    [Show full text]
  • Interaction of Radiation with Matter
    INTERACTION OF RADIATION WITH MATTER OBJECTIVES Aims From this chapter you should develop your understanding of the various ways that photons, charged particles and neutrons can interact with matter and the concepts, such as mass attenuation coefficient, stopping power and range, that have been invented in order to aid that understanding. These ideas are the basis for the later study of the effects of x rays, gamma radiation and other ionising radiations on living things. Minimum learning goals When you have finished studying this chapter you should be able to do all of the following. 1. Explain, use and interpret the terms linear attenuation coefficient, mass attenuation coefficient, attenuation length, mean free path, half thickness, density-thickness, build-up, secondary particles, photoelectric effect, atomic photoelectric effect, photoelectrons, photoionisation, absorption edges, Compton effect [Compton scattering], Compton edge, pair production, rate of energy loss, linear stopping power, mass stopping power, minimum ionisation, range, straggling, bremsstrahlung [braking radiation], Cherenkov radiation, elastic scattering. 2. State, explain and apply the exponential attenuation law for a beam of particles suffering all-or- nothing interactions. 3. State, explain and apply the relations among linear attenuation coefficient, mass attenuation coefficient, density and composition of materials. 4. Distinguish between absorption of energy and the attenuation of a beam of photons and describe the build-up of secondary particles. 5. (a) Describe and compare the processes (photoelectric effect, Compton effect, Rayleigh scattering, pair production) by which photons interact with matter. (b) Describe and explain in general terms how attenuation coefficients and the relative importance of those processes vary with photon energy and explain the origin of absorption edges.
    [Show full text]
  • Lecture 2 - Energy and Momentum
    Lecture 2 - Energy and Momentum E. Daw February 16, 2012 1 Energy In discussing energy in a relativistic course, we start by consid- ering the behaviour of energy in the three regimes we worked with last time. In the first regime, the particle velocity v is much less than c, or more precisely β < 0:3. In this regime, the rest energy ER that the particle has by virtue of its non{zero rest mass is much greater than the kinetic energy T which it has by virtue of its kinetic energy. The rest energy is given by Einstein's famous equation, 2 ER = m0c (1) So, here is an example. An electron has a rest mass of 0:511 MeV=c2. What is it's rest energy?. The important thing here is to realise that there is no need to insert a factor of (3×108)2 to convert from rest mass in MeV=c2 to rest energy in MeV. The units are such that 0.511 is already an energy in MeV, and to get to a mass you would need to divide by c2, so the rest mass is (0:511 MeV)=c2, and all that is left to do is remove the brackets. If you divide by 9 × 1016 the answer is indeed a mass, but the units are eV m−2s2, and I'm sure you will appreciate why these units are horrible. Enough said about that. Now, what about kinetic energy? In the non{relativistic regime β < 0:3, the kinetic energy is significantly smaller than the rest 1 energy.
    [Show full text]
  • Relativistic Particle Orbits
    H. Kleinert, PATH INTEGRALS August 12, 2014 (/home/kleinert/kleinert/books/pathis/pthic19.tex) Agri non omnes frugiferi sunt Not all fields are fruitful Cicero (106 BC–43 BC), Tusc. Quaest., 2, 5, 13 19 Relativistic Particle Orbits Particles moving at large velocities near the speed of light are called relativistic particles. If such particles interact with each other or with an external potential, they exhibit quantum effects which cannot be described by fluctuations of a single particle orbit. Within short time intervals, additional particles or pairs of particles and antiparticles are created or annihilated, and the total number of particle orbits is no longer invariant. Ordinary quantum mechanics which always assumes a fixed number of particles cannot describe such processes. The associated path integral has the same problem since it is a sum over a given set of particle orbits. Thus, even if relativistic kinematics is properly incorporated, a path integral cannot yield an accurate description of relativistic particles. An extension becomes necessary which includes an arbitrary number of mutually linked and branching fluctuating orbits. Fortunately, there exists a more efficient way of dealing with relativistic particles. It is provided by quantum field theory. We have demonstrated in Section 7.14 that a grand-canonical ensemble of particle orbits can be described by a functional integral of a single fluctuating field. Branch points of newly created particle lines are accounted for by anharmonic terms in the field action. The calculation of their effects proceeds by perturbation theory which is systematically performed in terms of Feynman diagrams with calculation rules very similar to those in Section 3.18.
    [Show full text]
  • Light and Heavy Mesons in the Complex Mass Scheme
    MAXLA-2/19, “Meson” September 25, 2019 Light and Heavy Mesons in The Complex Mass Scheme Mikhail N. Sergeenko Fr. Skaryna Gomel State University, BY-246019, Gomel, BELARUS [email protected] Mesons containing light and heavy quarks are studied. Interaction of quarks is described by the funnel-type potential with the distant dependent strong cou- pling, αS(r). Free particle hypothesis for the bound state is developed: quark and antiquark move as free particles in of the bound system. Relativistic two- body wave equation with position dependent particle masses is used to describe the flavored Qq systems. Solution of the equation for the system in the form of a standing wave is given. Interpolating complex-mass formula for two exact asymptotic eigenmass expressions is obtained. Mass spectra for some leading- state flavored mesons are calculated. Pacs: 11.10.St; 12.39.Pn; 12.40.Nn; 12.40.Yx Keywords: bound state, meson, resonance, complex mass, Regge trajectory arXiv:1909.10511v1 [hep-ph] 21 Sep 2019 PRESENTED AT NONLINEAR PHENOMENA IN COMPLEX SYSTEMS XXVI International Seminar Chaos, Fractals, Phase Transitions, Self-organization May 21–24, 2019, Minsk, Belarus 1 I. INTRODUCTION Mesons are most numerous of hadrons in the Particle Data Group (PDG) tables [1]. They are simplest relativistic quark-antiquark systems in case of equal-mass quarks, but they are not simple if quarks’ masses are different. It is believed that physics of light and heavy mesons is different; this is true only in asymptotic limits of large and small distances. Most mesons listed in the PDG being unstable and are resonances, exited quark-antiquark states.
    [Show full text]
  • Monte Carlo Simulations of D-Mesons with Extended Targets in the PANDA Detector
    UPTEC F 16016 Examensarbete 30 hp April 2016 Monte Carlo simulations of D-mesons with extended targets in the PANDA detector Mattias Gustafsson Abstract Monte Carlo simulations of D-mesons with extended targets in the PANDA detector Mattias Gustafsson Teknisk- naturvetenskaplig fakultet UTH-enheten Within the PANDA experiment, proton anti-proton collisions will be studied in order to gain knowledge about the strong interaction. One interesting aspect is the Besöksadress: production and decay of charmed hadrons. The charm quark is three orders of Ångströmlaboratoriet Lägerhyddsvägen 1 magnitude heavier than the light up- and down-quarks which constitue the matter we Hus 4, Plan 0 consist of. The detection of charmed particles is a challenge since they are rare and often hidden in a large background. Postadress: Box 536 751 21 Uppsala There will be three different targets used at the experiment; the cluster-jet, the untracked pellet and the tracked pellet. All three targets meet the experimental Telefon: requirements of high luminosity. However they have different properties, concerning 018 – 471 30 03 the effect on beam quality and the determination of the interaction point. Telefax: 018 – 471 30 00 In this thesis, simulations and reconstruction of the charmed D-mesons using the three different targets have been made. The data quality, such as momentum Hemsida: resolution and vertex resolution has been studied, as well as how the different targets http://www.teknat.uu.se/student effect the reconstruction efficiency of D-meson have been analysed. The results are consistent with the results from a similar study in 2006, but provide additional information since it takes the detector response into account.
    [Show full text]
  • Differences Between Electron and Ion Linacs
    Differences between electron and ion linacs M. Vretenar CERN, Geneva, Switzerland Abstract The fundamental difference between electron and ion masses is at the origin of the different technologies used for electron and ion linear accelerators. In this paper accelerating structure design, beam dynamics principles and construction technologies for both types of accelerators are reviewed, underlining the main differences and the main common features. 1 Historical background While the origin of linear accelerators dates back to the pioneering work of Ising, Wideröe, Sloan and Lawrence in the decade between 1924 and 1934 [1], the development of modern linear accelerator technology starts in earnest in the years following the end of World War II, profiting of the powerful generators and of the competences in high frequencies developed for the radars during the war. Starting from such a common technological ground two parallel developments went on around the San Francisco Bay in the years between 1945 and 1955. At Berkeley, the team of L. Alvarez designed and built the first Drift Tube Linac for protons [2], while at Stanford the group of E. Ginzton, W. Hansen and W. Panofsky developed the first disc-loaded linac for electrons [3]. Following these first developments ion and electron linac technologies progressed rather separately, and only in recent years more ambitious requirements for particle acceleration as well as the widening use of superconductivity paved the way for a convergence between the two technologies. The goal of this paper is to underline the basic common principles of ion and electron RF linacs, to point out their main differences, and finally to give an overview of the design of modern linacs.
    [Show full text]
  • Relativistic Particle Injection and Interplanetary Transport During The
    29th International Cosmic Ray Conference Pune (2005) 1, 229–232 Relativistic Particle Injection and Interplanetary Transport during the January 20, 2005 Ground Level Enhancement £ £ ¤ ¤ Alejandro Saiz´ ¢¡ , David Ruffolo , Manit Rujiwarodom , John W. Bieber , John Clem , ¥ ¤ ¦ Paul Evenson ¤ , Roger Pyle , Marc L. Duldig and John E. Humble (a) Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand (b) Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (c) Bartol Research Institute, University of Delaware, Newark, Delaware, U.S.A. (d) Australian Antarctic Division, Kingston, Tasmania, Australia (e) School of Mathematics and Physics, University of Tasmania, Hobart, Tasmania, Australia Presenter: J.W. Bieber ([email protected]), tha-saiz-A-abs1-sh15-poster Besides producing the largest ground level enhancement (GLE) in half a century, the relativistic solar particles detected during the event of January 20, 2005 showed some interesting temporal and directional features, including extreme anisotropy. In this paper we analyze the time evolution of cosmic ray density and anisotropy as characterized by data from the “Spaceship Earth” network of neutron monitors by using numerical solutions of the Fokker-Planck equation for particle transport. We find that a sudden change in the transport conditions during the event is needed to explain the data, and we propose that this change was caused by the solar particles themselves. 1. Introduction The remarkable solar event of 2005 January 20 produced the highest flux of relativistic solar particles observed at many neutron monitor stations for nearly 50 years [1]. This event provides an opportunity to measure rel- ativistic solar particle fluxes with high statistical accuracy, and in particular the recently completed Spaceship Earth network of polar neutron monitors with uniform detection characteristics [2] provides a precise determi- nation of the directional distribution.
    [Show full text]