Monte Carlo Simulations of D-Mesons with Extended Targets in the PANDA Detector
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mesons Modeled Using Only Electrons and Positrons with Relativistic Onium Theory Ray Fleming [email protected]
All mesons modeled using only electrons and positrons with relativistic onium theory Ray Fleming [email protected] All mesons were investigated to determine if they can be modeled with the onium model discovered by Milne, Feynman, and Sternglass with only electrons and positrons. They discovered the relativistic positronium solution has the mass of a neutral pion and the relativistic onium mass increases in steps of me/α and me/2α per particle which is consistent with known mass quantization. Any pair of particles or resonances can orbit relativistically and particles and resonances can collocate to form increasingly complex resonances. Pions are positronium, kaons are pionium, D mesons are kaonium, and B mesons are Donium in the onium model. Baryons, which are addressed in another paper, have a non-relativistic nucleon combined with mesons. The results of this meson analysis shows that the compo- sition, charge, and mass of all mesons can be accurately modeled. Of the 220 mesons mod- eled, 170 mass estimates are within 5 MeV/c2 and masses of 111 of 121 D, B, charmonium, and bottomonium mesons are estimated to within 0.2% relative error. Since all mesons can be modeled using only electrons and positrons, quarks and quark theory are unnecessary. 1. Introduction 2. Method This paper is a report on an investigation to find Sternglass and Browne realized that a neutral pion whether mesons can be modeled as combinations of (π0), as a relativistic electron-positron pair, can orbit a only electrons and positrons using onium theory. A non-relativistic particle or resonance in what Browne companion paper on baryons is also available. -
B2.IV Nuclear and Particle Physics
B2.IV Nuclear and Particle Physics A.J. Barr February 13, 2014 ii Contents 1 Introduction 1 2 Nuclear 3 2.1 Structure of matter and energy scales . 3 2.2 Binding Energy . 4 2.2.1 Semi-empirical mass formula . 4 2.3 Decays and reactions . 8 2.3.1 Alpha Decays . 10 2.3.2 Beta decays . 13 2.4 Nuclear Scattering . 18 2.4.1 Cross sections . 18 2.4.2 Resonances and the Breit-Wigner formula . 19 2.4.3 Nuclear scattering and form factors . 22 2.5 Key points . 24 Appendices 25 2.A Natural units . 25 2.B Tools . 26 2.B.1 Decays and the Fermi Golden Rule . 26 2.B.2 Density of states . 26 2.B.3 Fermi G.R. example . 27 2.B.4 Lifetimes and decays . 27 2.B.5 The flux factor . 28 2.B.6 Luminosity . 28 2.C Shell Model § ............................. 29 2.D Gamma decays § ............................ 29 3 Hadrons 33 3.1 Introduction . 33 3.1.1 Pions . 33 3.1.2 Baryon number conservation . 34 3.1.3 Delta baryons . 35 3.2 Linear Accelerators . 36 iii CONTENTS CONTENTS 3.3 Symmetries . 36 3.3.1 Baryons . 37 3.3.2 Mesons . 37 3.3.3 Quark flow diagrams . 38 3.3.4 Strangeness . 39 3.3.5 Pseudoscalar octet . 40 3.3.6 Baryon octet . 40 3.4 Colour . 41 3.5 Heavier quarks . 43 3.6 Charmonium . 45 3.7 Hadron decays . 47 Appendices 48 3.A Isospin § ................................ 49 3.B Discovery of the Omega § ...................... -
Ions, Protons, and Photons As Signatures of Monopoles
universe Article Ions, Protons, and Photons as Signatures of Monopoles Vicente Vento Departamento de Física Teórica-IFIC, Universidad de Valencia-CSIC, 46100 Burjassot (Valencia), Spain; [email protected] Received: 8 October 2018; Accepted: 1 November 2018; Published: 7 November 2018 Abstract: Magnetic monopoles have been a subject of interest since Dirac established the relationship between the existence of monopoles and charge quantization. The Dirac quantization condition bestows the monopole with a huge magnetic charge. The aim of this study was to determine whether this huge magnetic charge allows monopoles to be detected by the scattering of charged ions and protons on matter where they might be bound. We also analyze if this charge favors monopolium (monopole–antimonopole) annihilation into many photons over two photon decays. 1. Introduction The theoretical justification for the existence of classical magnetic poles, hereafter called monopoles, is that they add symmetry to Maxwell’s equations and explain charge quantization. Dirac showed that the mere existence of a monopole in the universe could offer an explanation of the discrete nature of the electric charge. His analysis leads to the Dirac Quantization Condition (DQC) [1,2] eg = N/2, N = 1, 2, ..., (1) where e is the electron charge, g the monopole magnetic charge, and we use natural units h¯ = c = 1 = 4p#0. Monopoles have been a subject of experimental interest since Dirac first proposed them in 1931. In Dirac’s formulation, monopoles are assumed to exist as point-like particles and quantum mechanical consistency conditions lead to establish the value of their magnetic charge. Because of of the large magnetic charge as a consequence of Equation (1), monopoles can bind in matter [3]. -
Spectator Model in D Meson Decays
Transaction B: Mechanical Engineering Vol. 16, No. 2, pp. 140{148 c Sharif University of Technology, April 2009 Spectator Model in D Meson Decays H. Mehrban1 Abstract. In this research, the e ective Hamiltonian theory is described and applied to the calculation of current-current (Q1;2) and QCD penguin (Q3; ;6) decay rates. The channels of charm quark decay in the quark levels are: c ! dud, c ! dus, c ! sud and c ! sus where the channel c ! sud is dominant. The total decay rates of the hadronic of charm quark in the e ective Hamiltonian theory are calculated. The decay rates of D meson decays according to Spectator Quark Model (SQM) are investigated for the calculation of D meson decays. It is intended to make the transition from decay rates at the quark level to D meson decay rates for two body hadronic decays, D ! h1h2. By means of that, the modes of nonleptonic D ! PV , D ! PP , D ! VV decays where V and P are light vector with J P = 0 and pseudoscalar with J P = 1 mesons are analyzed, respectively. So, the total decay rates of the hadronic of charm quark in the e ective Hamiltonian theory, according to Colour Favoured (C-F) and Colour Suppressed (C-S) are obtained. Then the amplitude of the Colour Favoured and Colour Suppressed (F-S) processes are added and their decay rates are obtained. Using the spectator model, the branching ratio of some D meson decays are derived as well. Keywords: E ective Hamilton; c quark; D meson; Spectator model; Hadronic; Colour favoured; Colour suppressed. -
HADRONIC DECAYS of the Ds MESON and a MODEL-INDEPENDENT DETERMINATION of the BRANCHING FRACTION
SLAC-R-95-470 UC-414 HADRONIC DECAYS OF THE Ds MESON AND A MODEL-INDEPENDENT DETERMINATION OF THE BRANCHING FRACTION FOR THE Ds DECAY OF THE PHI PI* John Nicholas Synodinos Stanford Linear Accelerator Center Stanford University Stanford, California 94309 To the memory of my parents, July 1995 Alexander and Cnryssoula Synodinos Prepared for the Department of Energy under contract number DE-AC03-76SF00515 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. *Ph.D. thesis 0lSr^BUTlONoFT^ J "OFTH/3DOCUM*.~ ^ Abstract Acknowledgements During the running periods of the years 1992, 1993, 1994 the BES experiment at This work would not have been possible without the continuing guidance and support the Beijing Electron Positron Collider (BEPC) collected 22.9 ± 0.7pt_1 of data at an from BES collaborators, fellow graduate students, family members and friends. It is energy of 4.03 GeV, which corresponds to a local peak for e+e~ —* DfD~ production. difficult to give proper recognition to all of them, and I wish to apologize up front to Four Ds hadronic decay modes were tagged: anyone whose contributions I have overlooked in these acknowledgements. I owe many thanks to my advisor, Jonathan Dorfan, for providing me with guid• • D -> <t>w; <t> -* K+K~ s ance and encouragement. It was a priviledge to have been his graduate student. I wish to thank Bill Dunwoodie for his day to day advice. His understanding of physics • Ds~> 7F(892)°A'; 7F°(892) -> K~JT+ and his willingness to share his knowledge have been essential to the completion of • D -» WK; ~K° -> -K+TT- s this analysis. -
STRANGE MESON SPECTROSCOPY in Km and K$ at 11 Gev/C and CHERENKOV RING IMAGING at SLD *
SLAC-409 UC-414 (E/I) STRANGE MESON SPECTROSCOPY IN Km AND K$ AT 11 GeV/c AND CHERENKOV RING IMAGING AT SLD * Youngjoon Kwon Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 January 1993 Prepared for the Department of Energy uncer contract number DE-AC03-76SF005 15 Printed in the United States of America. Available from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, Virginia 22161. * Ph.D. thesis ii Abstract This thesis consists of two independent parts; development of Cherenkov Ring Imaging Detector (GRID) system and analysis of high-statistics data of strange meson reactions from the LASS spectrometer. Part I: The CIUD system is devoted to charged particle identification in the SLAC Large Detector (SLD) to study e+e- collisions at ,/Z = mzo. By measuring the angles of emission of the Cherenkov photons inside liquid and gaseous radiators, r/K/p separation will be achieved up to N 30 GeV/c. The signals from CRID are read in three coordinates, one of which is measured by charge-division technique. To obtain a N 1% spatial resolution in the charge- division, low-noise CRID preamplifier prototypes were developed and tested re- sulting in < 1000 electrons noise for an average photoelectron signal with 2 x lo5 gain. To help ensure the long-term stability of CRID operation at high efficiency, a comprehensive monitoring and control system was developed. This system contin- uously monitors and/or controls various operating quantities such as temperatures, pressures, and flows, mixing and purity of the various fluids. -
Lecture 2 - Energy and Momentum
Lecture 2 - Energy and Momentum E. Daw February 16, 2012 1 Energy In discussing energy in a relativistic course, we start by consid- ering the behaviour of energy in the three regimes we worked with last time. In the first regime, the particle velocity v is much less than c, or more precisely β < 0:3. In this regime, the rest energy ER that the particle has by virtue of its non{zero rest mass is much greater than the kinetic energy T which it has by virtue of its kinetic energy. The rest energy is given by Einstein's famous equation, 2 ER = m0c (1) So, here is an example. An electron has a rest mass of 0:511 MeV=c2. What is it's rest energy?. The important thing here is to realise that there is no need to insert a factor of (3×108)2 to convert from rest mass in MeV=c2 to rest energy in MeV. The units are such that 0.511 is already an energy in MeV, and to get to a mass you would need to divide by c2, so the rest mass is (0:511 MeV)=c2, and all that is left to do is remove the brackets. If you divide by 9 × 1016 the answer is indeed a mass, but the units are eV m−2s2, and I'm sure you will appreciate why these units are horrible. Enough said about that. Now, what about kinetic energy? In the non{relativistic regime β < 0:3, the kinetic energy is significantly smaller than the rest 1 energy. -
Effective Field Theory for Doubly Heavy Baryons and Lattice
E®ective Field Theory for Doubly Heavy Baryons and Lattice QCD by Jie Hu Department of Physics Duke University Date: Approved: Thomas C. Mehen, Supervisor Shailesh Chandrasekharan Albert M. Chang Haiyan Gao Mark C. Kruse Dissertation submitted in partial ful¯llment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2009 ABSTRACT E®ective Field Theory for Doubly Heavy Baryons and Lattice QCD by Jie Hu Department of Physics Duke University Date: Approved: Thomas C. Mehen, Supervisor Shailesh Chandrasekharan Albert M. Chang Haiyan Gao Mark C. Kruse An abstract of a dissertation submitted in partial ful¯llment of the requirements for the degree of Doctor of Philosophy in the Department of Physics in the Graduate School of Duke University 2009 Copyright °c 2009 by Jie Hu All rights reserved. Abstract In this thesis, we study e®ective ¯eld theories for doubly heavy baryons and lattice QCD. We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1=mQ) symmetry violating operators. The theory is used to predict 3 the electromagnetic decay width of the J = 2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong de- cay widths of low lying excited doubly heavy baryons. We derive the couplings of heavy diquarks to weak currents in the limit of heavy quark-diquark symmetry, and construct the chiral Lagrangian for doubly heavy baryons coupled to weak currents. -
Relativistic Particle Orbits
H. Kleinert, PATH INTEGRALS August 12, 2014 (/home/kleinert/kleinert/books/pathis/pthic19.tex) Agri non omnes frugiferi sunt Not all fields are fruitful Cicero (106 BC–43 BC), Tusc. Quaest., 2, 5, 13 19 Relativistic Particle Orbits Particles moving at large velocities near the speed of light are called relativistic particles. If such particles interact with each other or with an external potential, they exhibit quantum effects which cannot be described by fluctuations of a single particle orbit. Within short time intervals, additional particles or pairs of particles and antiparticles are created or annihilated, and the total number of particle orbits is no longer invariant. Ordinary quantum mechanics which always assumes a fixed number of particles cannot describe such processes. The associated path integral has the same problem since it is a sum over a given set of particle orbits. Thus, even if relativistic kinematics is properly incorporated, a path integral cannot yield an accurate description of relativistic particles. An extension becomes necessary which includes an arbitrary number of mutually linked and branching fluctuating orbits. Fortunately, there exists a more efficient way of dealing with relativistic particles. It is provided by quantum field theory. We have demonstrated in Section 7.14 that a grand-canonical ensemble of particle orbits can be described by a functional integral of a single fluctuating field. Branch points of newly created particle lines are accounted for by anharmonic terms in the field action. The calculation of their effects proceeds by perturbation theory which is systematically performed in terms of Feynman diagrams with calculation rules very similar to those in Section 3.18. -
Light and Heavy Mesons in the Complex Mass Scheme
MAXLA-2/19, “Meson” September 25, 2019 Light and Heavy Mesons in The Complex Mass Scheme Mikhail N. Sergeenko Fr. Skaryna Gomel State University, BY-246019, Gomel, BELARUS [email protected] Mesons containing light and heavy quarks are studied. Interaction of quarks is described by the funnel-type potential with the distant dependent strong cou- pling, αS(r). Free particle hypothesis for the bound state is developed: quark and antiquark move as free particles in of the bound system. Relativistic two- body wave equation with position dependent particle masses is used to describe the flavored Qq systems. Solution of the equation for the system in the form of a standing wave is given. Interpolating complex-mass formula for two exact asymptotic eigenmass expressions is obtained. Mass spectra for some leading- state flavored mesons are calculated. Pacs: 11.10.St; 12.39.Pn; 12.40.Nn; 12.40.Yx Keywords: bound state, meson, resonance, complex mass, Regge trajectory arXiv:1909.10511v1 [hep-ph] 21 Sep 2019 PRESENTED AT NONLINEAR PHENOMENA IN COMPLEX SYSTEMS XXVI International Seminar Chaos, Fractals, Phase Transitions, Self-organization May 21–24, 2019, Minsk, Belarus 1 I. INTRODUCTION Mesons are most numerous of hadrons in the Particle Data Group (PDG) tables [1]. They are simplest relativistic quark-antiquark systems in case of equal-mass quarks, but they are not simple if quarks’ masses are different. It is believed that physics of light and heavy mesons is different; this is true only in asymptotic limits of large and small distances. Most mesons listed in the PDG being unstable and are resonances, exited quark-antiquark states. -
Charm Meson Decays 3 for Charm Production Is Relatively High, Σ(D0D¯ 0) = 3.66 0.03 0.06 Nb and Σ(D+D−) = 2.91 0.03 0.05 Nb (6)
Charm Meson Decays 1 Charm Meson Decays Marina Artusoa, Brian Meadowsb, Alexey A Petrovc,d aSyracuse University, Syracuse, NY 13244, USA bUniversity of Cincinnati, Cincinnati, OH 45221, USA cWayne State University, Detroit, MI 48201, USA dMCTP, University of Michigan, Ann Arbor, MI 48109, USA Key Words charmed quark, charmed meson, weak decays, CP-violation Abstract We review some recent developments in charm meson physics. In particular, we discuss theoretical predictions and experimental measurements of charmed meson decays to lep- tonic, semileptonic, and hadronic final states and implications of such measurements to searches 0 for new physics. We discuss D0 − D -mixing and CP-violation in charm, and discuss future experimental prospects and theoretical challenges in this area. CONTENTS INTRODUCTION .................................... 2 LEPTONIC AND SEMILEPTONIC DECAYS .................... 3 Theoretical Predictions for the Decay Constant ...................... 5 Experimental Determinations of fD ............................. 5 Constraints on New Physics from fD ............................ 6 Absolute Branching Fractions for Semileptonic D Decays ................. 6 Form Factors For The Decays D → K(π)ℓν ....................... 7 The CKM Matrix ...................................... 9 Form Factors in Semileptonic D → V ℓν Decays ...................... 9 arXiv:0802.2934v1 [hep-ph] 20 Feb 2008 RARE AND RADIATIVE DECAYS .......................... 10 Theoretical Motivation .................................... 10 Experimental Information -
B Meson Decays Marina Artuso1, Elisabetta Barberio2 and Sheldon Stone*1
Review Open Access B meson decays Marina Artuso1, Elisabetta Barberio2 and Sheldon Stone*1 Address: 1Department of Physics, Syracuse University, Syracuse, NY 13244, USA and 2School of Physics, University of Melbourne, Victoria 3010, Australia Email: Marina Artuso - [email protected]; Elisabetta Barberio - [email protected]; Sheldon Stone* - [email protected] * Corresponding author Published: 20 February 2009 Received: 20 February 2009 Accepted: 20 February 2009 PMC Physics A 2009, 3:3 doi:10.1186/1754-0410-3-3 This article is available from: http://www.physmathcentral.com/1754-0410/3/3 © 2009 Stone et al This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We discuss the most important Physics thus far extracted from studies of B meson decays. Measurements of the four CP violating angles accessible in B decay are reviewed as well as direct CP violation. A detailed discussion of the measurements of the CKM elements Vcb and Vub from semileptonic decays is given, and the differences between resulting values using inclusive decays versus exclusive decays is discussed. Measurements of "rare" decays are also reviewed. We point out where CP violating and rare decays could lead to observations of physics beyond that of the Standard Model in future experiments. If such physics is found by directly observation of new particles, e.g. in LHC experiments, B decays can play a decisive role in interpreting the nature of these particles.