November 2013 Storm Data Publication

Total Page:16

File Type:pdf, Size:1020Kb

November 2013 Storm Data Publication NOVEMBER 2013 VOLUME 55 STORM DATA NUMBER 11 AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: This cover represents a few weather conditions such as snow, hurricanes, tornadoes, heavy rain and flooding that may occur in any given location any month of the year. (Photos courtesy of NCDC) TABLE OF CONTENTS Page Storm Data and Unusual Weather……………………………………………………………………..3 Additions/Corrections………………………………...…………………………………………….191 Reference Notes…………………………………………………………………………………....285 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: Rhonda Herndon STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events resulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confirmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition. Except for limited editing to correct grammatical errors, the data in Storm Data are published as received. Note: “None Reported” means that no severe weather occurred and “Not Received” means that no reports were received for this region at the time of printing. Subscription, pricing, and ordering information is available from: NOAA \ National Climatic Data Center Attn: User Engagement & Services Branch 151 Patton Avenue Asheville, NC 28801-5001 (828) 271-4800, option 2 (Customer Services) Storm Data National Climatic Data Center 151 Patton Avenue Asheville, NC 28801-5001 e-mail: [email protected] Any such items received by the editor will be for use in STORM DATA only. Any other use will be with the permission of the owner of said items. Materials will be returned if requested. This is an official publication of the National Oceanic and Atmospheric Administration and is compiled from information received at the National Climatic Data Center Asheville, North Carolina 28801-5001. Thomas R. Karl Director, National Climatic Data Center 2 Time Path Path Number of Estimated November 2013 Local/ Length Width Persons Damage Location Date Standard (Miles) (Yards) Killed Injured Property Crops Character of Storm ALABAMA, North ALZ006 Madison 12 1500CST 1700CST 0 0 1.0K 0.00K Strong Wind North winds gusted from 30 to 40 mph behind an Arctic cold front during the afternoon hours of the 12th. A tree was blown down onto power lines in northwest Huntsville causing a brief power outage. ALASKA, Northern AKZ207-213 Chukchi Sea Coast - St Lawrence Island Bering Strait 06 0916AKS 07 1956AKS 0 0 0.00K 0.00K High Wind A 951 mb low moved north over the central Bering Sea on the 6th and over the Chukotsk Peninsula on the 7th and began to weaken. This system brought high winds to a few locations over western Alaska. Zone 213: the AWOS at Gambell reported a peak gust of 54 kt (62 mph) early on the 6th and the AWOS at Wales reported a peak gust of 55 kt (63 mph) during the early afternoon on the 7th. Zone 207: the AWOS at Point Hope reported a peak gust of 58 kt (67 mph) overnight on the 6th and early morning of the 7th. AKZ203-204 Central Beaufort Sea Coast - Eastern Beaufort Sea Coast 19 1200AKS 0127AKS 0 0 0.00K 0.00K Blizzard A 998 mb low near Banks Island by 1000AKST on the 19th coupled with a strong 1038 mb high pressure center over the Chukchi Sea created a strong pressure gradient, providing strong winds and blizzard conditions along the eastern north slope during the afternoon of the 19th. Zone 203: Blizzard conditions were observed at Deadhorse from approximately 1200AKST through 1600AKST on the 19th. The visibility was reduced to one quarter mile or less in snow and blowing snow. There was a peak wind gust of 31 kt (36 mph) at the Deadhorse ASOS. Zone 204: Blizzard conditions were observed at Barter Island from approximately 1200AKST through 1600AKST on the 19th. The visibility was reduced to one quarter mile or less in snow and blowing snow. There was a peak wind gust of 52 kt (60 mph) at the Barter Island AWOS. AKZ223 Deltana and Tanana 21 2300AKS 22 0343AKS 0 0 0.00K 0.00K High Wind A 1044 mb high pressure over western Canada coupled with a low pressure center of 984 mb in the northern Gulf of Alaska produced a strong wind belt along the Tanana River from Dot Lake to west of Delta Junction. The strongest winds were measured near the Delta Junction during the late evening of the 21st and early morning of the 22nd where the highest gust was 64 kt (74 mph). ALASKA, Southeast AKZ025 Juneau Borough and Northern Admiralty Island 16 2328AKS 18 0427AKS 0 0 0.00K 0.00K High Wind This was the first cold air outbreak with high outflow winds coming out of Taku Inlet and Lynn Canal. A moderate low pressure system was over the Southern Panhandle as a strong ridge of high pressure build over the Northern Yukon on 11/17. Peak wind for several locations in Downtown Juneau and southeastern Gastineau Channel ranged between 55 to 86 MPH into the early morning hours on 11/18. No damage was reported. Strong wind to 45 MPH persisted into 11/19. AKZ023 Cape Decision to Salisbury Sound Coastal Area 20 1315AKS 21 0600AKS 0 0 0.00K 0.00K Winter Storm 3 Time Path Path Number of Estimated November 2013 Local/ Length Width Persons Damage Location Date Standard (Miles) (Yards) Killed Injured Property Crops Character of Storm ALASKA, Southeast AKZ017-020>022- Astern Baranof Island and Southern Admiralty Island - Cape Fairweather to Cape Suckling Coastal Area 024>026-029 - Eastern Chichagof Island - Glacier Bay - Inner Channels from Kupreanof Island to Etolin Island - Juneau Borough and Northern Admiralty Island - Misty Fjords - Salisbury Sound to Cape Fairweather Coastal Area 21 0000AKS 22 0600AKS 0 0 1.0K 0.00K Winter Storm Arctic air had persisted over SE Alaska for nearly a week when the flow aloft changed to SW and warm moist air began to lift over the Panhandle on 11/21. The arctic front was pushed slowly northward on 11/21 through 11/22 which became the focus of heavy snow. As the snow changed to rain, precipitation became freezing rain in a few locations. Strong winds began on the 11/22 though 11/23 with a switch over to rain. Temperatures warmed rapidly causing the snow pack to become very difficult to manage. This storm was notable in that the snowfall, freezing rain, and wind problems were widespread. AKZ018-019 Haines Borough and Lynn Canal - Taiya Inlet and Klondike Highway 27 1200AKS 28 0500AKS 0 0 0.00K 0.00K Winter Storm A series of weak low pressure systems persisted just off the coast in the Eastern Gulf while the wind aloft became south over the northern part of Lynn Canal. Cold air had settled into this area and the south flow aloft had plenty of moisture for a snow event just in time to impede traffic on the holiday weekend. Higher elevations had more snow than near sea level. Snow amounts: Haines Customs = 5.5 inches White Pass = 8 inches (roadobs) Skagway Customs = 2inches Haines Junction got 7 cm Fraser got 8 cm. ALASKA, Southern AKZ187-191 Central Aleutians - Western Aleutians 05 1235AKS 1600AKS 0 0 0.00K 0.00K High Wind AKZ195 Pribilof Islands 06 0015AKS 0500AKS 0 0 0.00K 0.00K High Wind A large intense Bering Sea storm produced strong wind across the Aleutian Islands to the Pribilof Islands. The strongest measured wind was 70 KT at Adak. AKZ155 Kuskokwim Delta 06 1600AKS 09 1800AKS 0 0 0.00K 0.00K Coastal Flood An intense and large storm in the Bering Sea produced a long fetch of strong wind across the Bering Sea aligned with the Kuskokwim Delta coast November 6th through the 9th. This produced a surge of up to 5 feet along the Kuskokwim Delta Coast. AKZ131 Northeastern Prince William Sound 11 0700AKS 12 0300AKS 0 0 0.00K 0.00K Blizzard A storm over the northern Gulf of Alaska pushed moisture over the arctic front into the Chugach Mountains. This resulted in over two and a half feet of snow in the mountains. Strong high pressure over interior Alaska produced the typical strong outflow winds through the passes of the coastal mountains. The combination of the snow and wind resulted in a blizzard through Thompson Pass. AKZ145 Susitna Valley 20 2300AKS 21 2100AKS 0 0 0.00K 0.00K Heavy Snow 4 Time Path Path Number of Estimated November 2013 Local/ Length Width Persons Damage Location Date Standard (Miles) (Yards) Killed Injured Property Crops Character of Storm ALASKA, Southern AKZ161 Bristol Bay 21 1600AKS 22 0400AKS 0 0 0.00K 0.00K Heavy Snow AKZ131 Northeastern Prince William Sound 21 2100AKS 23 0030AKS 0 0 0.00K 0.00K Blizzard AKZ101-111 Anchorage Muni to Bird Creek - Matanuska Valley 22 0900AKS 1200AKS 0 0 60.0K 0.00K Ice Storm A strong North Pacific storm moved into the Gulf of Alaska November 21st pushing copious moisture and warm air aloft over the southern mainland of Alaska. This storm produced snow and blowing snow across the Chugach Mountains, freezing rain over the Kenai Peninsula to the southern Susitna Valley, and areas of snow and freezing rain across southwest Alaska.
Recommended publications
  • Homeowners Handbook to Prepare for Natural Disasters
    HOMEOWNERS HANDBOOK HANDBOOK HOMEOWNERS DELAWARE HOMEOWNERS TO PREPARE FOR FOR TO PREPARE HANDBOOK TO PREPARE FOR NATURAL HAZARDSNATURAL NATURAL HAZARDS TORNADOES COASTAL STORMS SECOND EDITION SECOND Delaware Sea Grant Delaware FLOODS 50% FPO 15-0319-579-5k ACKNOWLEDGMENTS This handbook was developed as a cooperative project among the Delaware Emergency Management Agency (DEMA), the Delaware Department of Natural Resources and Environmental Control (DNREC) and the Delaware Sea Grant College Program (DESG). A key priority of this project partnership is to increase the resiliency of coastal communities to natural hazards. One major component of strong communities is enhancing individual resilience and recognizing that adjustments to day-to- day living are necessary. This book is designed to promote individual resilience, thereby creating a fortified community. The second edition of the handbook would not have been possible without the support of the following individuals who lent their valuable input and review: Mike Powell, Jennifer Pongratz, Ashley Norton, David Warga, Jesse Hayden (DNREC); Damaris Slawik (DEMA); Darrin Gordon, Austin Calaman (Lewes Board of Public Works); John Apple (Town of Bethany Beach Code Enforcement); Henry Baynum, Robin Davis (City of Lewes Building Department); John Callahan, Tina Callahan, Kevin Brinson (University of Delaware); David Christopher (Delaware Sea Grant); Kevin McLaughlin (KMD Design Inc.); Mark Jolly-Van Bodegraven, Pam Donnelly and Tammy Beeson (DESG Environmental Public Education Office). Original content from the first edition of the handbook was drafted with assistance from: Mike Powell, Greg Williams, Kim McKenna, Jennifer Wheatley, Tony Pratt, Jennifer de Mooy and Morgan Ellis (DNREC); Ed Strouse, Dave Carlson, and Don Knox (DEMA); Joe Thomas (Sussex County Emergency Operations Center); Colin Faulkner (Kent County Department of Public Safety); Dave Carpenter, Jr.
    [Show full text]
  • Contextualizing Disaster
    Contextualizing Disaster This open access edition has been made available under a CC BY-NC-ND 4.0 license, thanks to the support of Knowledge Unlatched. Catastrophes in Context Series Editors: Gregory V. Button, former faculty member of University of Michigan at Ann Arbor Mark Schuller, Northern Illinois University / Université d’État d’Haïti Anthony Oliver-Smith, University of Florida Volume ͩ Contextualizing Disaster Edited by Gregory V. Button and Mark Schuller This open access edition has been made available under a CC BY-NC-ND 4.0 license, thanks to the support of Knowledge Unlatched. Contextualizing Disaster Edited by GREGORY V. BUTTON and MARK SCHULLER berghahn N E W Y O R K • O X F O R D www.berghahnbooks.com This open access edition has been made available under a CC BY-NC-ND 4.0 license, thanks to the support of Knowledge Unlatched. First published in 2016 by Berghahn Books www.berghahnbooks.com ©2016 Gregory V. Button and Mark Schuller Open access ebook edition published in 2019 All rights reserved. Except for the quotation of short passages for the purposes of criticism and review, no part of this book may be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system now known or to be invented, without written permission of the publisher. Library of Congress Cataloging-in-Publication Data Names: Button, Gregory, editor. | Schuller, Mark, 1973– editor. Title: Contextualizing disaster / edited by Gregory V. Button and Mark Schuller. Description: New York : Berghahn Books, [2016] | Series: Catastrophes in context ; v.
    [Show full text]
  • P4.6 Observations from the 13 April 2004 Wake Low Damaging Wind Event in South Florida
    P4.6 OBSERVATIONS FROM THE 13 APRIL 2004 WAKE LOW DAMAGING WIND EVENT IN SOUTH FLORIDA Robert R. Handel and Pablo Santos NOAA/NWS, Miami, Florida 1. INTRODUCTION of April 12th persisted across the Florida Straits. This boundary exhibited pseudo-warm frontal characteristics, Damaging winds affected portions of South Florida and was lifting northward over South Florida (white during the early morning of April 13, 2004. These winds dashed line in Fig. 1). To the north of the boundary, a occurred behind a large area of stratiform precipitation cool and stable surface layer was present over land. associated with a mesoscale convective system (MCS) A high amplitude longwave mid/upper tropospheric that moved across the southeastern Gulf of Mexico trough was located over the eastern United States. The during the evening of April 12, 2004 (Fig. 1). Wind axis of this trough extended from the Great Lakes speeds sustained between 30 and 50 mph with gusts southward to the central Gulf of Mexico while South reaching 76 mph were recorded on Lake Okeechobee. Florida was upstream of the ridge axis located near These winds produced a seiche effect on Lake 65°W longitude. In addition, a 130-knot (67 m s-1) polar Okeechobee, resulting in a 5.5 ft maximum water level jet and 60-knot (31 m s-1) subtropical jet were splitting differential between the north and south sides of this over the Gulf of Mexico and South Florida producing shallow lake (Fig. 8). In addition, damage from the high significant upper level diffluence over South Florida.
    [Show full text]
  • Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions Christopher D
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2012 Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions Christopher D. Karstens Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Atmospheric Sciences Commons, and the Meteorology Commons Recommended Citation Karstens, Christopher D., "Observations and Laboratory Simulations of Tornadoes in Complex Topographical Regions" (2012). Graduate Theses and Dissertations. 12778. https://lib.dr.iastate.edu/etd/12778 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Observations and laboratory simulations of tornadoes in complex topographical regions by Christopher Daniel Karstens A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Meteorology Program of Study Committee: William A. Gallus, Jr., Major Professor Partha P. Sarkar Bruce D. Lee Catherine A. Finley Raymond W. Arritt Xiaoqing Wu Iowa State University Ames, Iowa 2012 Copyright © Christopher Daniel Karstens, 2012. All rights reserved. ii TABLE OF CONTENTS LIST OF FIGURES ..............................................................................................
    [Show full text]
  • Template for Electronic Journal of Severe Storms Meteorology
    Lyza, A. W., A. W. Clayton, K. R. Knupp, E. Lenning, M. T. Friedlein, R. Castro, and E. S. Bentley, 2017: Analysis of mesovortex characteristics, behavior, and interactions during the second 30 June‒1 July 2014 midwestern derecho event. Electronic J. Severe Storms Meteor., 12 (2), 1–33. Analysis of Mesovortex Characteristics, Behavior, and Interactions during the Second 30 June‒1 July 2014 Midwestern Derecho Event ANTHONY W. LYZA, ADAM W. CLAYTON, AND KEVIN R. KNUPP Department of Atmospheric Science, Severe Weather Institute—Radar and Lightning Laboratories University of Alabama in Huntsville, Huntsville, Alabama ERIC LENNING, MATTHEW T. FRIEDLEIN, AND RICHARD CASTRO NOAA/National Weather Service, Romeoville, Illinois EVAN S. BENTLEY NOAA/National Weather Service, Portland, Oregon (Submitted 19 February 2017; in final form 25 August 2017) ABSTRACT A pair of intense, derecho-producing quasi-linear convective systems (QLCSs) impacted northern Illinois and northern Indiana during the evening hours of 30 June through the predawn hours of 1 July 2014. The second QLCS trailed the first one by only 250 km and approximately 3 h, yet produced 29 confirmed tornadoes and numerous areas of nontornadic wind damage estimated to be caused by 30‒40 m s‒1 flow. Much of the damage from the second QLCS was associated with a series of 38 mesovortices, with up to 15 mesovortices ongoing simultaneously. Many complex behaviors were documented in the mesovortices, including: a binary (Fujiwhara) interaction, the splitting of a large mesovortex in two followed by prolific tornado production, cyclic mesovortexgenesis in the remains of a large mesovortex, and a satellite interaction of three small mesovortices around a larger parent mesovortex.
    [Show full text]
  • The South Texas Regional Cocorahs Newsletter
    NWS Corpus The South Texas Regional Christi CoCoRaHS Newsletter Winter 2012 Edition by Christina Barron Quite the weather pattern, eh? Some- But even with some of these good, strong times it still feels like Summer even fronts, rain has been lacking lately. Moisture though we’re officially in Winter! But over the area just has not been able to re- we’ve had some Fall and Winter tem- bound after these strong, fast moving fronts. peratures over the past months, with a few good strong cold fronts that blew In this edition of the newsletter, we’ll talk Inside this issue: through the area. Lows dipped into the about the changes in the upcoming weather 40s to even 30s for the first time since pattern with a recap of the Summer. Also, Welcome Message 1 last winter during mid-November. Tem- we’ll talk about a new way to do SKYWARN peratures even dropped into the mid training. The 2012 Active Hurri- 1-2 20s over areas in mid-to-late December cane Season as strong Arctic fronts moved in. Drought Conditions to 2-3 Persist Observer Honors 3 by Juan Alanis 2012 Daily Reporters 4 The 2012 Atlantic Hurricane season came to a close November 30th, continuing a decades- SKYWARN Classes 4 long streak of very active hurricane seasons. Observer Corner 5 The 2012 season finished well above average with 19 named storms, 10 of which became hurricanes (winds > 73 mph), with one of CoCoRaHS Webinars 5 those becoming a major hurricane (winds >110 mph). The climatologically average is 12 National Weather Ser- 6 named storms in a season.
    [Show full text]
  • Emergency Managers On-Line Survey on Extratropical and Tropical Cyclone Forecast Information: Hurricane Forecast Improvement Program/Storm Surge Roadmap
    Emergency Managers National Science On-FoundationLine Survey on Extratropical and Tropical Cyclone Forecast Information: Hurricane Forecast Improvement Program/Storm Surge Roadmap January, 2013 Betty Hearn Morrow Jeffrey K. Lazo Research Applications Laboratory Weather Systems and Assessment Program Societal Impacts Program NCAR Technical Notes National Center for Atmospheric Research P. O. Box 3000 Boulder, Colorado 80307-3000 www.ucar.edu NCAR/TN-497 +STR NCAR TECHNICAL NOTES http://www.ucar.edu/library/collections/technotes/technotes.jsp The Technical Notes series provides an outlet for a variety of NCAR Manuscripts that contribute in specialized ways to the body of scientific knowledge but that are not yet at a point of a formal journal, monograph or book publication. Reports in this series are issued by the NCAR scientific divisions, published by the NCAR Library. Designation symbols for the series include: EDD – Engineering, Design, or Development Reports Equipment descriptions, test results, instrumentation, and operating and maintenance manuals. IA – Instructional Aids Instruction manuals, bibliographies, film supplements, and other research or instructional aids. PPR – Program Progress Reports Field program reports, interim and working reports, survey reports, and plans for experiments. PROC – Proceedings Documentation or symposia, colloquia, conferences, workshops, and lectures. (Distribution maybe limited to attendees). STR – Scientific and Technical Reports Data compilations, theoretical and numerical investigations, and experimental results. The National Center for Atmospheric Research (NCAR) is operated by the nonprofit University Corporation for Atmospheric Research (UCAR) under the sponsorship of the National Science Foundation. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
    [Show full text]
  • Vortex Polygons Nature Astron 4-02-21
    Polygonal patterns of cyclones on Jupiter: Convective forcing and anticyclonic shielding Andrew Ingersoll ( [email protected] ) California Institute of Technology https://orcid.org/0000-0002-2035-9198 Shawn P. Ewald California Institute of Technology Federico Tosi Istituto Nazionale di AstroFisica Alberto Adriani Istituto Nazionale di AstroFisica Alessandro Mura Istituto Nazionale di AstroFisica Davide Grassi Istituto Nazionale di AstroFisica Christina Plainaki Agenzia Spaziale Italiana Giuseppe Sindoni Agenzia Spaziale Italiana Cheng Li University of Michigan Lia Siegelman Scripps Institution of Oceanography Patrice Klein California Institute of Technology William R. Young Scripps Institution of Oceanography Article Keywords: Jupiter, Juno, vortex, convection, atmosphere Posted Date: May 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-388198/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Polygonal patterns of cyclones on Jupiter: 2 Convective forcing and anticyclonic shielding 3 4 Andrew P. Ingersolla,1, Shawn P. Ewalda, Federico Tosib, Alberto Adrianib, Alessandro Murab, Davide 5 Grassib, Christina Plainakic, Giuseppe Sindonic, Cheng Lid, Lia Siegelmane, Patrice Kleinf, William R. 6 Younge 7 8 aPlanetary Science, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, 9 USA 10 bIstituto Nazionale di AstroFisica – Istituto di Astrofisica e Planetologia Spaziali (INAF-IAPS), Rome, Italy 11 cAgenzia Spaziale Italiana (ASI), Via del Politecnico snc, 00133 - Rome, Italy 12 dClimate and Space Sciences and Engineering, University of Michigan, 2455 Hayward Street, Ann Arbor, 13 MI 48109, USA 14 eScripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92037, USA 15 16 fEnvironmental Science and Engineering Department, Geological and Planetary Sciences Division, 17 CALTECH, 1200E California Blvd, Pasadena CA 91125, USA 18 19 1Corresponding author: Andrew P.
    [Show full text]
  • Near Or Above Normal Atlantic Hurricane Season Predicted
    Near or Above Normal Atlantic Hurricane Season Predicted NOAA’s Climate Prediction Center indicates climate conditions point to a near normal or above normal hurricane season in the Atlantic Basin this season. Their outlook calls for a 65 percent probability of an above normal season and a 25 percent probability of a near normal season. This means there is a 90 percent chance of a near or above normal season. The climate patterns expected during this year’s hurricane season have in past seasons produced a wide range of activity and have been associated with both near-normal and above-normal seasons. For 2008, the outlook indicates a 60 to 70 percent chance of 12 to 16 named storms, including 6 to 9 hurricanes and 2 to 5 major hurricanes (Category 3, 4 or 5 on the Saffir-Simpson Scale). An average season has 11 named storms, including six hurricanes for which two reach major status. The science behind the outlook is rooted in the analysis and prediction of current and future global climate patterns as compared to previous seasons with similar conditions. “The main factors influencing this year’s seasonal outlook are the continuing multi-decadal signal (the combination of ocean and atmospheric conditions that have spawned increased hurricane activity since 1995), and the anticipated lingering effects of La Niña,” said Gerry Bell, Ph.D., lead seasonal hurricane forecaster at NOAA’s Climate Prediction Center. “One of the expected oceanic conditions is a continuation since 1995 of warmer-than-normal temperatures in the eastern tropical Atlantic.” “The outlook is a general guide to the overall seasonal hurricane activity,” said retired Navy Vice Adm.
    [Show full text]
  • HURRICANE IRMA (AL112017) 30 August–12 September 2017
    NATIONAL HURRICANE CENTER TROPICAL CYCLONE REPORT HURRICANE IRMA (AL112017) 30 August–12 September 2017 John P. Cangialosi, Andrew S. Latto, and Robbie Berg National Hurricane Center 1 24 September 2021 VIIRS SATELLITE IMAGE OF HURRICANE IRMA WHEN IT WAS AT ITS PEAK INTENSITY AND MADE LANDFALL ON BARBUDA AT 0535 UTC 6 SEPTEMBER. Irma was a long-lived Cape Verde hurricane that reached category 5 intensity on the Saffir-Simpson Hurricane Wind Scale. The catastrophic hurricane made seven landfalls, four of which occurred as a category 5 hurricane across the northern Caribbean Islands. Irma made landfall as a category 4 hurricane in the Florida Keys and struck southwestern Florida at category 3 intensity. Irma caused widespread devastation across the affected areas and was one of the strongest and costliest hurricanes on record in the Atlantic basin. 1 Original report date 9 March 2018. Second version on 30 May 2018 updated casualty statistics for Florida, meteorological statistics for the Florida Keys, and corrected a typo. Third version on 30 June 2018 corrected the year of the last category 5 hurricane landfall in Cuba and corrected a typo in the Casualty and Damage Statistics section. This version corrects the maximum wind gust reported at St. Croix Airport (TISX). Hurricane Irma 2 Hurricane Irma 30 AUGUST–12 SEPTEMBER 2017 SYNOPTIC HISTORY Irma originated from a tropical wave that departed the west coast of Africa on 27 August. The wave was then producing a widespread area of deep convection, which became more concentrated near the northern portion of the wave axis on 28 and 29 August.
    [Show full text]
  • Chapter 3 Mesoscale Processes and Severe Convective Weather
    CHAPTER 3 JOHNSON AND MAPES Chapter 3 Mesoscale Processes and Severe Convective Weather RICHARD H. JOHNSON Department of Atmospheric Science. Colorado State University, Fort Collins, Colorado BRIAN E. MAPES CIRESICDC, University of Colorado, Boulder, Colorado REVIEW PANEL: David B. Parsons (Chair), K. Emanuel, J. M. Fritsch, M. Weisman, D.-L. Zhang 3.1. Introduction tion, mesoscale phenomena occur on horizontal scales between ten and several hundred kilometers. This Severe convective weather events-tornadoes, hail­ range generally encompasses motions for which both storms, high winds, flash floods-are inherently mesoscale ageostrophic advections and Coriolis effects are im­ phenomena. While the large-scale flow establishes envi­ portant (Emanuel 1986). In general, we apply such a ronmental conditions favorable for severe weather, pro­ definition here; however, strict application is difficult cesses on the mesoscale initiate such storms, affect their since so many mesoscale phenomena are "multiscale." evolution, and influence their environment. A rich variety For example, a -100-km-Iong gust front can be less of mesocale processes are involved in severe weather, than -1 km across. The triggering of a storm by the ranging from environmental preconditioning to storm initi­ collision of gust fronts can actually occur on a ation to feedback of convection on the environment. In the -lOO-m scale (the microscale). Nevertheless, we will space available, it is not possible to treat all of these treat this overall process (and others similar to it) as processes in detail. Rather, we will introduce s~veral mesoscale since gust fronts are generally regarded as general classifications of mesoscale processes relatmg to mesoscale phenomena.
    [Show full text]
  • 1 Jp2.2 a Case Study of a Wake Low in Northern Illinois And
    JP2.2 A CASE STUDY OF A WAKE LOW IN NORTHERN ILLINOIS AND THE WRF PREDICTION OF THE WAKE LOW William Wilson * National Weather Service, Chicago, Illinois Erik Janzon Northern Illinois University We ran four test runs. At 06 UTC A wake low occurred in northern Illinois initialization time one run was using an and southern Wisconsin, during the 11.7 km grid spacing and the other run morning of May 30, 2008. The surface using a 3.4 km grid spacing. At 12 UTC wind was 45 to 55 mph (22 to 28 m/s) initialization, one run was using a 11.7 with gusts to 65 mph (33 m/s). The wind km grid spacing and the other run was was not forecasted or expected. using a 3.4 km grid spacing. The time Forecasters had to quickly issue wind period of the WRF model runs were a 15 warnings as the strong wind was hour run with initialization at 06 UTC occurring. We hope to find ways to and a 12 hour model run with predict wake lows of this strength so to initialization at 12 UTC. We wanted to give forecasters some lead time or investigate the initialization effects on anticipation of wake low development. the wake low production, and the effect The Weather Research and Forecasting of grid spacing. The 3.4 km grid spacing (WRF), Advanced Research WRF model run was without the Kain and (ARW) model is used as a local Fritch convective scheme (Kain and operational model at the National Fritsch, 1990).
    [Show full text]