A History in Sum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bibliography
Bibliography [1] Emil Artin. Galois Theory. Dover, second edition, 1964. [2] Michael Artin. Algebra. Prentice Hall, first edition, 1991. [3] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison Wesley, third edition, 1969. [4] Nicolas Bourbaki. Alg`ebre, Chapitres 1-3.El´ements de Math´ematiques. Hermann, 1970. [5] Nicolas Bourbaki. Alg`ebre, Chapitre 10.El´ements de Math´ematiques. Masson, 1980. [6] Nicolas Bourbaki. Alg`ebre, Chapitres 4-7.El´ements de Math´ematiques. Masson, 1981. [7] Nicolas Bourbaki. Alg`ebre Commutative, Chapitres 8-9.El´ements de Math´ematiques. Masson, 1983. [8] Nicolas Bourbaki. Elements of Mathematics. Commutative Algebra, Chapters 1-7. Springer–Verlag, 1989. [9] Henri Cartan and Samuel Eilenberg. Homological Algebra. Princeton Math. Series, No. 19. Princeton University Press, 1956. [10] Jean Dieudonn´e. Panorama des mat´ematiques pures. Le choix bourbachique. Gauthiers-Villars, second edition, 1979. [11] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, second edition, 1999. [12] Albert Einstein. Zur Elektrodynamik bewegter K¨orper. Annalen der Physik, 17:891–921, 1905. [13] David Eisenbud. Commutative Algebra With A View Toward Algebraic Geometry. GTM No. 150. Springer–Verlag, first edition, 1995. [14] Jean-Pierre Escofier. Galois Theory. GTM No. 204. Springer Verlag, first edition, 2001. [15] Peter Freyd. Abelian Categories. An Introduction to the theory of functors. Harper and Row, first edition, 1964. [16] Sergei I. Gelfand and Yuri I. Manin. Homological Algebra. Springer, first edition, 1999. [17] Sergei I. Gelfand and Yuri I. Manin. Methods of Homological Algebra. Springer, second edition, 2003. [18] Roger Godement. Topologie Alg´ebrique et Th´eorie des Faisceaux. -
Tōhoku Rick Jardine
INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces. -
Publications of Members, 1930-1954
THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes. -
License Or Copyright Restrictions May Apply to Redistribution; See Https
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use EMIL ARTIN BY RICHARD BRAUER Emil Artin died of a heart attack on December 20, 1962 at the age of 64. His unexpected death came as a tremendous shock to all who knew him. There had not been any danger signals. It was hard to realize that a person of such strong vitality was gone, that such a great mind had been extinguished by a physical failure of the body. Artin was born in Vienna on March 3,1898. He grew up in Reichen- berg, now Tschechoslovakia, then still part of the Austrian empire. His childhood seems to have been lonely. Among the happiest periods was a school year which he spent in France. What he liked best to remember was his enveloping interest in chemistry during his high school days. In his own view, his inclination towards mathematics did not show before his sixteenth year, while earlier no trace of mathe matical aptitude had been apparent.1 I have often wondered what kind of experience it must have been for a high school teacher to have a student such as Artin in his class. During the first world war, he was drafted into the Austrian Army. After the war, he studied at the University of Leipzig from which he received his Ph.D. in 1921. He became "Privatdozent" at the Univer sity of Hamburg in 1923. -
Right Ideals of a Ring and Sublanguages of Science
RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance. -
Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES in APPLIED MATHEMATICS
Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. GARRETT BIRKHOFF, The Numerical Solution of Elliptic Equations D. V. LINDLEY, Bayesian Statistics, A Review R. S. VARGA, Functional Analysis and Approximation Theory in Numerical Analysis R. R. BAHADUR, Some Limit Theorems in Statistics PATRICK BILLINGSLEY, Weak Convergence of Measures: Applications in Probability J. L. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems ROGER PENROSE, Techniques of Differential Topology in Relativity HERMAN CHERNOFF, Sequential Analysis and Optimal Design J. DURBIN, Distribution Theory for Tests Based on the Sample Distribution Function SOL I. RUBINOW, Mathematical Problems in the Biological Sciences P. D. LAX, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. SCHOENBERG, Cardinal Spline Interpolation IVAN SINGER, The Theory of Best Approximation and Functional Analysis WERNER C. RHEINBOLDT, Methods of Solving Systems of Nonlinear Equations HANS F. WEINBERGER, Variational Methods for Eigenvalue Approximation R. TYRRELL ROCKAFELLAR, Conjugate Duality and Optimization SIR JAMES LIGHTHILL, Mathematical Biofluiddynamics GERARD SALTON, Theory of Indexing CATHLEEN S. MORAWETZ, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics and Epidemics RICHARD ASKEY, Orthogonal Polynomials and Special Functions L. E. PAYNE, Improperly Posed Problems in Partial Differential Equations S. ROSEN, Lectures on the Measurement and Evaluation of the Performance of Computing Systems HERBERT B. -
A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members. -
Mathematicians Fleeing from Nazi Germany
Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
RM Calendar 2017
Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed. -
Brauer Groups and Galois Cohomology of Function Fields Of
Brauer groups and Galois cohomology of function fields of varieties Jason Michael Starr Department of Mathematics, Stony Brook University, Stony Brook, NY 11794 E-mail address: [email protected] Contents 1. Acknowledgments 5 2. Introduction 7 Chapter 1. Brauer groups and Galois cohomology 9 1. Abelian Galois cohomology 9 2. Non-Abelian Galois cohomology and the long exact sequence 13 3. Galois cohomology of smooth group schemes 22 4. The Brauer group 29 5. The universal cover sequence 34 Chapter 2. The Chevalley-Warning and Tsen-Lang theorems 37 1. The Chevalley-Warning Theorem 37 2. The Tsen-Lang Theorem 39 3. Applications to Brauer groups 43 Chapter 3. Rationally connected fibrations over curves 47 1. Rationally connected varieties 47 2. Outline of the proof 51 3. Hilbert schemes and smoothing combs 54 4. Ramification issues 63 5. Existence of log deformations 68 6. Completion of the proof 70 7. Corollaries 72 Chapter 4. The Period-Index theorem of de Jong 75 1. Statement of the theorem 75 2. Abel maps over curves and sections over surfaces 78 3. Rational simple connectedness hypotheses 79 4. Rational connectedness of the Abel map 81 5. Rational simply connected fibrations over a surface 82 6. Discriminant avoidance 84 7. Proof of the main theorem for Grassmann bundles 86 Chapter 5. Rational simple connectedness and Serre’s “Conjecture II” 89 1. Generalized Grassmannians are rationally simply connected 89 2. Statement of the theorem 90 3. Reductions of structure group 90 Bibliography 93 3 4 1. Acknowledgments Chapters 2 and 3 notes are largely adapted from notes for a similar lecture series presented at the Clay Mathematics Institute Summer School in G¨ottingen, Germany in Summer 2006. -
I93&-J ZARISKI on ALGEBRAIC SURFACES to Come, by Bringing
I93&-J ZARISKI ON ALGEBRAIC SURFACES 13 to come, by bringing within their immediate reach the best of what has been achieved in the theory of Fourier series. J. D. TAMARKIN ZARISKI ON ALGEBRAIC SURFACES Algebraic Surfaces. By Oscar Zariski. Ergebnisse der Mathematischen Wissen schaften, Volume 3, Berlin, 1935. v+198 pp. We are facing today, in the birational geometry of surfaces and varieties, more than in any other chapter of mathematics, the sharp need of a thorough going and critical exposition. In a subject reaching out in so many directions, the task is bound to be arduous. Nevertheless it is surely urgent and for two reasons. In the first place, a systematic examination of the positions acquired is destined to be of considerable value in subsequent campaigns. In the second place, the territory already conquered and safely held is exceedingly beautiful and deserves to be admired by tourists and not merely by members of the vig orous, but small, conquering army. To speak less metaphorically, in this quarter of mathematics "cantorian" criticism has not penetrated as deeply as in others. This has resulted in a widespread attitude of doubt towards the science, which it would be in the interest of all to dispel as rapidly as possible. Nothing will contribute more to this worthy end than Zariski's splendid book. It is indeed the first time that a competent specialist, informed on all phases of the subject, has examined it carefully and critically. The result is a most interesting and valuable monograph for the general mathematician, which is, in addition, an indispensable and standard vade mecum for all students of these questions.