A History in Sum

Total Page:16

File Type:pdf, Size:1020Kb

A History in Sum Book Review A History in Sum Reviewed by Steve Batterson mathematics.” Spoiler alert: If you would like to A History in Sum: 150 Years of Mathematics at make your own selections, the names are listed two Harvard (1825–1975) paragraphs below. In fleshing out these lives, the Steve Nadis and Shing-Tung Yau authors rely on interviews and published material Harvard University Press, October 2013 280 pages, $39.95 rather than archival sources. As in their first book, ISBN-13: 978-06747-250-03 The Shape of Inner Space, Nadis and Yau set out to make deep mathematics accessible. This time, instead of string theory, the topics range over the Mathematicians may be surprised by 1982 Fields various breakthroughs of their stars. Medalist Shing-Tung Yau’s collaboration with sci- Some readers will have opinions on the merits ence writer Steve Nadis on a history of the Harvard of a comprehensive departmental history versus mathematics department. Perhaps anticipating singling out its greatest men (at Harvard they are some bewilderment, Yau begins his portion of all men). I welcome both approaches as valuable the preface with a justification of why history is additions to the literature, particularly in view important to mathematics. For the purposes of of the distinction of the Harvard and Berkeley this review, I regard historical value as an axiom. A History in Sum joins Cal Moore’s Mathematics departments. In the interest of full disclosure, at Berkeley in the genre of book-length histories I need to state that I received honoraria from of American mathematics departments. Although Harvard University Press for commenting on the both volumes are dominated by biographies of manuscript at two stages of its development. university faculty, their underlying methodologies The division of labor between the two authors and objectives are very different. Moore wrote is not discussed beyond that the initiative arose what might be classified as a traditional history. He from Yau. One assumes that Yau selected the excavated the Berkeley archives and produced a names. His bona fides confer special interest on detailed record of the scholarly advancement of the what, in itself, is an intriguing list: Benjamin Peirce, department since the founding of the University Osgood, Bôcher, G. D. Birkhoff, Morse, Whitney, of California in 1868. His narrative includes the Mac Lane, Ahlfors, Mackey, Gleason, Zariski, Brauer, basic vitae of every faculty member and much Bott, and Tate. Yau acknowledges an element of more, analyzing changes in the department over subjectivity in making difficult decisions about the years. whom to include. While he understandably does not Nadis and Yau focus on the stories of Harvard discuss specific omissions, consider some of the personnel making pioneering mathematical dis- Harvard mathematicians who are not featured in coveries. A History in Sum features biographies of the book. Fields Medalists Mumford and Hironaka, fourteen Harvard faculty, from the period 1825– whose careers may have been regarded as too 1975, “that made the greatest contributions to late, get some attention as students of Zariski. Joseph Walsh and Marshall Stone receive a mere Steve Batterson is professor of mathematics and computer science at Emory University. His email address is sb@ paragraph apiece, comparable to Moore’s coverage mathcs.emory.edu. of Annie Dale Biddle Andrews, an obscure Berkeley DOI: http://dx.doi.org/10.1090/noti1133 instructor terminated in 1933. Dunham Jackson, June/July 2014 Notices of the AMS 603 who served on the Harvard agreed to provide full support for Zariski to visit faculty from 1911 until the institute for 1934–1935. In that same year leaving for Minnesota in Emmy Noether commuted to Princeton from Bryn 1919, is not mentioned. Mawr, delivering lectures on some of the algebraic The fourteen biogra- structures that Zariski needed. phies average about a In 1945 Zariski made the most of a posting dozen pages each, touch- as an exchange professor in São Paulo. There he ing on both personal and engaged in stimulating discussions with another mathematical lives. My visitor, André Weil. Two years after his return from prior knowledge of the Brazil, Zariski became the first tenured Jewish individual subjects var- mathematician on the Harvard faculty. By attracting ied substantially. To my strong students and bringing in distinguished surprise, I was most fasci- visitors, he soon made Harvard into an international nated by the story of Oscar center for algebraic geometry. In the late 1950s Zariski, about whom I knew the Zariski milieu included his students Heisuke Photo: AMS Archives. Oscar Zariski little. Hironaka, Michael Artin, and David Mumford, as Zariski was born at the well as the groundbreaking Europeans Jean-Pierre end of the nineteenth century in a Russian city Serre and Alexander Grothendieck. that is now part of Belarus. For his education he The biographies in A History in Sum illus- moved to the Ukraine, where World War I and then trate contrasting approaches to doing mathe- the Russian Revolution unfolded around him. In matics. Whereas Zariski thrived on interaction with 1919 Zariski was wounded by shrapnel when he other great scholars, Hassler Whitney preferred happened into a skirmish between Bolshevik and “solitude”. According to Nadis and Yau, Saunders Ukrainian forces. Two years later he left embattled Mac Lane’s most important contributions came Kiev to continue his mathematical education in out of his long-term collaboration with Samuel Italy. Eilenberg. Andrew Gleason never wrote a paper In Rome, Zariski came under the influence of the with his Harvard colleague George Mackey, but pioneering algebraic geometers Guido Castelnuovo, found inspiration from their frequent discussions. Federigo Enriques, and Francesco Severi. As was Interspersed throughout the twenty-one-page characteristic of his life, Zariski made the most section on Zariski is a variety of mathematical of the opportunities in an environment with excursions, beginning with the basic idea of alge- monumental barriers. Despite being a Communist braic geometry. The authors discuss the motivation Jew in a time and place where Mussolini was behind Zariski’s development of algebraic tools as advancing his fascist agenda, Zariski absorbed well as provide an introduction to problems over the classical techniques of his Italian teachers. He finite fields. I liked the explanation of resolution completed his Ph.D. in 1924 under Castelnuovo. of singularities, taken largely from an interview of Zariski was fortunate in that, of the Italian Hironaka in the October 2005 Notices. geometers, Castelnuovo recognized the limitations Nadis and Yau draw heavily from Carol Parikh’s of the Italian school. He encouraged Zariski to biography The Unreal Life of Oscar Zariski. Their study the topological techniques being introduced narrative is enhanced by fresh recollections of by Solomon Lefschetz. Lefschetz, himself a Russian mathematicians from Zariski’s circle. Over sixty Jew, had just moved from the University of Kansas interviews were conducted for the book, including to Princeton. Lefschetz used his influence to assist Tate, the only featured subject who survives. The Zariski in obtaining a research fellowship for remembrances about Raoul Bott give the reader a 1927–1928 at nearby Johns Hopkins. genuine feeling of Bott’s jovial charm. On the other At Hopkins, Zariski came into his own as hand, the section on Marston Morse only hints at an independent scholar, earning a position on the magnitude of his ego. the faculty. In preparing his comprehensive text The authors turned up a variety of biographical Algebraic Surfaces, Zariski gradually realized that sources on their subjects. A minor criticism is the entire subject of algebraic geometry rested that, in some cases, they could have used more on a wobbly geometric foundation. As he began discretion in filtering biased perspectives. For to craft a more rigorous algebraic replacement, a example, Garrett Birkhoff should not shape the fortuitous opportunity arose. When the Institute impression of his father. The dogmatic Norbert for Advanced Study opened in 1933, his Johns Wiener is a less-than-objective source on Harvard Hopkins colleague Egbert van Kampen was part faculty. Memorial tributes have a tendency to of an experiment in which several promising airbrush personal qualities. mathematicians spent a year in residence. The trial Nevertheless, the featured subjects stand on was so successful that the president of Hopkins the merits of their theorems. Tying them together 604 Notices of the AMS Volume 61, Number 6 is their link to Harvard. The strength of the A M S Harvard mathematics department, going back to Ahlfors and Birkhoff, is well known. The careers of Benjamin Peirce, W. F. Osgood, and Maxime Bôcher demonstrate that, with the exception of the ten years from Peirce’s death (1880) to the appointment of Osgood (1890), the university Selected Papers of V. S. faculty has included leading mathematicians since Varadarajan 1831. Indeed, Harvard merits consideration with Johns Hopkins and the University of Chicago as the Volumes 2 and 3 first academic home for mathematical scholarship Donald G. Babbitt and Ramesh Gangolli, K. R. Parthasarathy, Indian Statistical Institute, New Delhi, India, Enrico G. Beltrametti in the United States. and Gianni Cassinelli, University of Genova, Italy, Rita Fioresi, Although the authors focus on mathematics Università di Bologna, Italy, and Anatoly N. Kochubei, National at Harvard, a connection to the
Recommended publications
  • Bibliography
    Bibliography [1] Emil Artin. Galois Theory. Dover, second edition, 1964. [2] Michael Artin. Algebra. Prentice Hall, first edition, 1991. [3] M. F. Atiyah and I. G. Macdonald. Introduction to Commutative Algebra. Addison Wesley, third edition, 1969. [4] Nicolas Bourbaki. Alg`ebre, Chapitres 1-3.El´ements de Math´ematiques. Hermann, 1970. [5] Nicolas Bourbaki. Alg`ebre, Chapitre 10.El´ements de Math´ematiques. Masson, 1980. [6] Nicolas Bourbaki. Alg`ebre, Chapitres 4-7.El´ements de Math´ematiques. Masson, 1981. [7] Nicolas Bourbaki. Alg`ebre Commutative, Chapitres 8-9.El´ements de Math´ematiques. Masson, 1983. [8] Nicolas Bourbaki. Elements of Mathematics. Commutative Algebra, Chapters 1-7. Springer–Verlag, 1989. [9] Henri Cartan and Samuel Eilenberg. Homological Algebra. Princeton Math. Series, No. 19. Princeton University Press, 1956. [10] Jean Dieudonn´e. Panorama des mat´ematiques pures. Le choix bourbachique. Gauthiers-Villars, second edition, 1979. [11] David S. Dummit and Richard M. Foote. Abstract Algebra. Wiley, second edition, 1999. [12] Albert Einstein. Zur Elektrodynamik bewegter K¨orper. Annalen der Physik, 17:891–921, 1905. [13] David Eisenbud. Commutative Algebra With A View Toward Algebraic Geometry. GTM No. 150. Springer–Verlag, first edition, 1995. [14] Jean-Pierre Escofier. Galois Theory. GTM No. 204. Springer Verlag, first edition, 2001. [15] Peter Freyd. Abelian Categories. An Introduction to the theory of functors. Harper and Row, first edition, 1964. [16] Sergei I. Gelfand and Yuri I. Manin. Homological Algebra. Springer, first edition, 1999. [17] Sergei I. Gelfand and Yuri I. Manin. Methods of Homological Algebra. Springer, second edition, 2003. [18] Roger Godement. Topologie Alg´ebrique et Th´eorie des Faisceaux.
    [Show full text]
  • Tōhoku Rick Jardine
    INFERENCE / Vol. 1, No. 3 Tōhoku Rick Jardine he publication of Alexander Grothendieck’s learning led to great advances: the axiomatic description paper, “Sur quelques points d’algèbre homo- of homology theory, the theory of adjoint functors, and, of logique” (Some Aspects of Homological Algebra), course, the concepts introduced in Tōhoku.5 Tin the 1957 number of the Tōhoku Mathematical Journal, This great paper has elicited much by way of commen- was a turning point in homological algebra, algebraic tary, but Grothendieck’s motivations in writing it remain topology and algebraic geometry.1 The paper introduced obscure. In a letter to Serre, he wrote that he was making a ideas that are now fundamental; its language has with- systematic review of his thoughts on homological algebra.6 stood the test of time. It is still widely read today for the He did not say why, but the context suggests that he was clarity of its ideas and proofs. Mathematicians refer to it thinking about sheaf cohomology. He may have been think- simply as the Tōhoku paper. ing as he did, because he could. This is how many research One word is almost always enough—Tōhoku. projects in mathematics begin. The radical change in Gro- Grothendieck’s doctoral thesis was, by way of contrast, thendieck’s interests was best explained by Colin McLarty, on functional analysis.2 The thesis contained important who suggested that in 1953 or so, Serre inveigled Gro- results on the tensor products of topological vector spaces, thendieck into working on the Weil conjectures.7 The Weil and introduced mathematicians to the theory of nuclear conjectures were certainly well known within the Paris spaces.
    [Show full text]
  • Publications of Members, 1930-1954
    THE INSTITUTE FOR ADVANCED STUDY PUBLICATIONS OF MEMBERS 1930 • 1954 PRINCETON, NEW JERSEY . 1955 COPYRIGHT 1955, BY THE INSTITUTE FOR ADVANCED STUDY MANUFACTURED IN THE UNITED STATES OF AMERICA BY PRINCETON UNIVERSITY PRESS, PRINCETON, N.J. CONTENTS FOREWORD 3 BIBLIOGRAPHY 9 DIRECTORY OF INSTITUTE MEMBERS, 1930-1954 205 MEMBERS WITH APPOINTMENTS OF LONG TERM 265 TRUSTEES 269 buH FOREWORD FOREWORD Publication of this bibliography marks the 25th Anniversary of the foundation of the Institute for Advanced Study. The certificate of incorporation of the Institute was signed on the 20th day of May, 1930. The first academic appointments, naming Albert Einstein and Oswald Veblen as Professors at the Institute, were approved two and one- half years later, in initiation of academic work. The Institute for Advanced Study is devoted to the encouragement, support and patronage of learning—of science, in the old, broad, undifferentiated sense of the word. The Institute partakes of the character both of a university and of a research institute j but it also differs in significant ways from both. It is unlike a university, for instance, in its small size—its academic membership at any one time numbers only a little over a hundred. It is unlike a university in that it has no formal curriculum, no scheduled courses of instruction, no commitment that all branches of learning be rep- resented in its faculty and members. It is unlike a research institute in that its purposes are broader, that it supports many separate fields of study, that, with one exception, it maintains no laboratories; and above all in that it welcomes temporary members, whose intellectual development and growth are one of its principal purposes.
    [Show full text]
  • License Or Copyright Restrictions May Apply to Redistribution; See Https
    License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use EMIL ARTIN BY RICHARD BRAUER Emil Artin died of a heart attack on December 20, 1962 at the age of 64. His unexpected death came as a tremendous shock to all who knew him. There had not been any danger signals. It was hard to realize that a person of such strong vitality was gone, that such a great mind had been extinguished by a physical failure of the body. Artin was born in Vienna on March 3,1898. He grew up in Reichen- berg, now Tschechoslovakia, then still part of the Austrian empire. His childhood seems to have been lonely. Among the happiest periods was a school year which he spent in France. What he liked best to remember was his enveloping interest in chemistry during his high school days. In his own view, his inclination towards mathematics did not show before his sixteenth year, while earlier no trace of mathe­ matical aptitude had been apparent.1 I have often wondered what kind of experience it must have been for a high school teacher to have a student such as Artin in his class. During the first world war, he was drafted into the Austrian Army. After the war, he studied at the University of Leipzig from which he received his Ph.D. in 1921. He became "Privatdozent" at the Univer­ sity of Hamburg in 1923.
    [Show full text]
  • Right Ideals of a Ring and Sublanguages of Science
    RIGHT IDEALS OF A RING AND SUBLANGUAGES OF SCIENCE Javier Arias Navarro Ph.D. In General Linguistics and Spanish Language http://www.javierarias.info/ Abstract Among Zellig Harris’s numerous contributions to linguistics his theory of the sublanguages of science probably ranks among the most underrated. However, not only has this theory led to some exhaustive and meaningful applications in the study of the grammar of immunology language and its changes over time, but it also illustrates the nature of mathematical relations between chunks or subsets of a grammar and the language as a whole. This becomes most clear when dealing with the connection between metalanguage and language, as well as when reflecting on operators. This paper tries to justify the claim that the sublanguages of science stand in a particular algebraic relation to the rest of the language they are embedded in, namely, that of right ideals in a ring. Keywords: Zellig Sabbetai Harris, Information Structure of Language, Sublanguages of Science, Ideal Numbers, Ernst Kummer, Ideals, Richard Dedekind, Ring Theory, Right Ideals, Emmy Noether, Order Theory, Marshall Harvey Stone. §1. Preliminary Word In recent work (Arias 2015)1 a line of research has been outlined in which the basic tenets underpinning the algebraic treatment of language are explored. The claim was there made that the concept of ideal in a ring could account for the structure of so- called sublanguages of science in a very precise way. The present text is based on that work, by exploring in some detail the consequences of such statement. §2. Introduction Zellig Harris (1909-1992) contributions to the field of linguistics were manifold and in many respects of utmost significance.
    [Show full text]
  • Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES in APPLIED MATHEMATICS
    Hyberbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves CBMS-NSF REGIONAL CONFERENCE SERIES IN APPLIED MATHEMATICS A series of lectures on topics of current research interest in applied mathematics under the direction of the Conference Board of the Mathematical Sciences, supported by the National Science Foundation and published by SIAM. GARRETT BIRKHOFF, The Numerical Solution of Elliptic Equations D. V. LINDLEY, Bayesian Statistics, A Review R. S. VARGA, Functional Analysis and Approximation Theory in Numerical Analysis R. R. BAHADUR, Some Limit Theorems in Statistics PATRICK BILLINGSLEY, Weak Convergence of Measures: Applications in Probability J. L. LIONS, Some Aspects of the Optimal Control of Distributed Parameter Systems ROGER PENROSE, Techniques of Differential Topology in Relativity HERMAN CHERNOFF, Sequential Analysis and Optimal Design J. DURBIN, Distribution Theory for Tests Based on the Sample Distribution Function SOL I. RUBINOW, Mathematical Problems in the Biological Sciences P. D. LAX, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves I. J. SCHOENBERG, Cardinal Spline Interpolation IVAN SINGER, The Theory of Best Approximation and Functional Analysis WERNER C. RHEINBOLDT, Methods of Solving Systems of Nonlinear Equations HANS F. WEINBERGER, Variational Methods for Eigenvalue Approximation R. TYRRELL ROCKAFELLAR, Conjugate Duality and Optimization SIR JAMES LIGHTHILL, Mathematical Biofluiddynamics GERARD SALTON, Theory of Indexing CATHLEEN S. MORAWETZ, Notes on Time Decay and Scattering for Some Hyperbolic Problems F. HOPPENSTEADT, Mathematical Theories of Populations: Demographics, Genetics and Epidemics RICHARD ASKEY, Orthogonal Polynomials and Special Functions L. E. PAYNE, Improperly Posed Problems in Partial Differential Equations S. ROSEN, Lectures on the Measurement and Evaluation of the Performance of Computing Systems HERBERT B.
    [Show full text]
  • A Century of Mathematics in America, Peter Duren Et Ai., (Eds.), Vol
    Garrett Birkhoff has had a lifelong connection with Harvard mathematics. He was an infant when his father, the famous mathematician G. D. Birkhoff, joined the Harvard faculty. He has had a long academic career at Harvard: A.B. in 1932, Society of Fellows in 1933-1936, and a faculty appointmentfrom 1936 until his retirement in 1981. His research has ranged widely through alge­ bra, lattice theory, hydrodynamics, differential equations, scientific computing, and history of mathematics. Among his many publications are books on lattice theory and hydrodynamics, and the pioneering textbook A Survey of Modern Algebra, written jointly with S. Mac Lane. He has served as president ofSIAM and is a member of the National Academy of Sciences. Mathematics at Harvard, 1836-1944 GARRETT BIRKHOFF O. OUTLINE As my contribution to the history of mathematics in America, I decided to write a connected account of mathematical activity at Harvard from 1836 (Harvard's bicentennial) to the present day. During that time, many mathe­ maticians at Harvard have tried to respond constructively to the challenges and opportunities confronting them in a rapidly changing world. This essay reviews what might be called the indigenous period, lasting through World War II, during which most members of the Harvard mathe­ matical faculty had also studied there. Indeed, as will be explained in §§ 1-3 below, mathematical activity at Harvard was dominated by Benjamin Peirce and his students in the first half of this period. Then, from 1890 until around 1920, while our country was becoming a great power economically, basic mathematical research of high quality, mostly in traditional areas of analysis and theoretical celestial mechanics, was carried on by several faculty members.
    [Show full text]
  • Mathematicians Fleeing from Nazi Germany
    Mathematicians Fleeing from Nazi Germany Mathematicians Fleeing from Nazi Germany Individual Fates and Global Impact Reinhard Siegmund-Schultze princeton university press princeton and oxford Copyright 2009 © by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TW All Rights Reserved Library of Congress Cataloging-in-Publication Data Siegmund-Schultze, R. (Reinhard) Mathematicians fleeing from Nazi Germany: individual fates and global impact / Reinhard Siegmund-Schultze. p. cm. Includes bibliographical references and index. ISBN 978-0-691-12593-0 (cloth) — ISBN 978-0-691-14041-4 (pbk.) 1. Mathematicians—Germany—History—20th century. 2. Mathematicians— United States—History—20th century. 3. Mathematicians—Germany—Biography. 4. Mathematicians—United States—Biography. 5. World War, 1939–1945— Refuges—Germany. 6. Germany—Emigration and immigration—History—1933–1945. 7. Germans—United States—History—20th century. 8. Immigrants—United States—History—20th century. 9. Mathematics—Germany—History—20th century. 10. Mathematics—United States—History—20th century. I. Title. QA27.G4S53 2008 510.09'04—dc22 2008048855 British Library Cataloging-in-Publication Data is available This book has been composed in Sabon Printed on acid-free paper. ∞ press.princeton.edu Printed in the United States of America 10 987654321 Contents List of Figures and Tables xiii Preface xvii Chapter 1 The Terms “German-Speaking Mathematician,” “Forced,” and“Voluntary Emigration” 1 Chapter 2 The Notion of “Mathematician” Plus Quantitative Figures on Persecution 13 Chapter 3 Early Emigration 30 3.1. The Push-Factor 32 3.2. The Pull-Factor 36 3.D.
    [Show full text]
  • Prizes and Awards Session
    PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes ....................................................................................................................
    [Show full text]
  • RM Calendar 2017
    Rudi Mathematici x3 – 6’135x2 + 12’545’291 x – 8’550’637’845 = 0 www.rudimathematici.com 1 S (1803) Guglielmo Libri Carucci dalla Sommaja RM132 (1878) Agner Krarup Erlang Rudi Mathematici (1894) Satyendranath Bose RM168 (1912) Boris Gnedenko 1 2 M (1822) Rudolf Julius Emmanuel Clausius (1905) Lev Genrichovich Shnirelman (1938) Anatoly Samoilenko 3 T (1917) Yuri Alexeievich Mitropolsky January 4 W (1643) Isaac Newton RM071 5 T (1723) Nicole-Reine Etable de Labrière Lepaute (1838) Marie Ennemond Camille Jordan Putnam 2002, A1 (1871) Federigo Enriques RM084 Let k be a fixed positive integer. The n-th derivative of (1871) Gino Fano k k n+1 1/( x −1) has the form P n(x)/(x −1) where P n(x) is a 6 F (1807) Jozeph Mitza Petzval polynomial. Find P n(1). (1841) Rudolf Sturm 7 S (1871) Felix Edouard Justin Emile Borel A college football coach walked into the locker room (1907) Raymond Edward Alan Christopher Paley before a big game, looked at his star quarterback, and 8 S (1888) Richard Courant RM156 said, “You’re academically ineligible because you failed (1924) Paul Moritz Cohn your math mid-term. But we really need you today. I (1942) Stephen William Hawking talked to your math professor, and he said that if you 2 9 M (1864) Vladimir Adreievich Steklov can answer just one question correctly, then you can (1915) Mollie Orshansky play today. So, pay attention. I really need you to 10 T (1875) Issai Schur concentrate on the question I’m about to ask you.” (1905) Ruth Moufang “Okay, coach,” the player agreed.
    [Show full text]
  • Brauer Groups and Galois Cohomology of Function Fields Of
    Brauer groups and Galois cohomology of function fields of varieties Jason Michael Starr Department of Mathematics, Stony Brook University, Stony Brook, NY 11794 E-mail address: [email protected] Contents 1. Acknowledgments 5 2. Introduction 7 Chapter 1. Brauer groups and Galois cohomology 9 1. Abelian Galois cohomology 9 2. Non-Abelian Galois cohomology and the long exact sequence 13 3. Galois cohomology of smooth group schemes 22 4. The Brauer group 29 5. The universal cover sequence 34 Chapter 2. The Chevalley-Warning and Tsen-Lang theorems 37 1. The Chevalley-Warning Theorem 37 2. The Tsen-Lang Theorem 39 3. Applications to Brauer groups 43 Chapter 3. Rationally connected fibrations over curves 47 1. Rationally connected varieties 47 2. Outline of the proof 51 3. Hilbert schemes and smoothing combs 54 4. Ramification issues 63 5. Existence of log deformations 68 6. Completion of the proof 70 7. Corollaries 72 Chapter 4. The Period-Index theorem of de Jong 75 1. Statement of the theorem 75 2. Abel maps over curves and sections over surfaces 78 3. Rational simple connectedness hypotheses 79 4. Rational connectedness of the Abel map 81 5. Rational simply connected fibrations over a surface 82 6. Discriminant avoidance 84 7. Proof of the main theorem for Grassmann bundles 86 Chapter 5. Rational simple connectedness and Serre’s “Conjecture II” 89 1. Generalized Grassmannians are rationally simply connected 89 2. Statement of the theorem 90 3. Reductions of structure group 90 Bibliography 93 3 4 1. Acknowledgments Chapters 2 and 3 notes are largely adapted from notes for a similar lecture series presented at the Clay Mathematics Institute Summer School in G¨ottingen, Germany in Summer 2006.
    [Show full text]
  • I93&-J ZARISKI on ALGEBRAIC SURFACES to Come, by Bringing
    I93&-J ZARISKI ON ALGEBRAIC SURFACES 13 to come, by bringing within their immediate reach the best of what has been achieved in the theory of Fourier series. J. D. TAMARKIN ZARISKI ON ALGEBRAIC SURFACES Algebraic Surfaces. By Oscar Zariski. Ergebnisse der Mathematischen Wissen­ schaften, Volume 3, Berlin, 1935. v+198 pp. We are facing today, in the birational geometry of surfaces and varieties, more than in any other chapter of mathematics, the sharp need of a thorough­ going and critical exposition. In a subject reaching out in so many directions, the task is bound to be arduous. Nevertheless it is surely urgent and for two reasons. In the first place, a systematic examination of the positions acquired is destined to be of considerable value in subsequent campaigns. In the second place, the territory already conquered and safely held is exceedingly beautiful and deserves to be admired by tourists and not merely by members of the vig­ orous, but small, conquering army. To speak less metaphorically, in this quarter of mathematics "cantorian" criticism has not penetrated as deeply as in others. This has resulted in a widespread attitude of doubt towards the science, which it would be in the interest of all to dispel as rapidly as possible. Nothing will contribute more to this worthy end than Zariski's splendid book. It is indeed the first time that a competent specialist, informed on all phases of the subject, has examined it carefully and critically. The result is a most interesting and valuable monograph for the general mathematician, which is, in addition, an indispensable and standard vade mecum for all students of these questions.
    [Show full text]