2. Laser Physics - Basics

Total Page:16

File Type:pdf, Size:1020Kb

2. Laser Physics - Basics 2. Laser physics - basics Spontaneous and stimulated processes Einstein A and B coefficients Rate equation analysis Gain saturation What is a laser? LASER: Light Amplification by Stimulated Emission of Radiation "light" could mean anything from microwaves to x-rays Essential elements: 1. A laser medium - a collection of atoms, molecules, etc. 2. A pumping process - puts energy into the laser medium 3. Optical feedback - provides a mechanism for the light to interact (possibly many times) with the laser medium The two-level atom Quantum energy levels excited state ground state Absorption: promotes an electron from the ground to the excited state Emission: drops the electron back to the ground state "spontaneous emission" - the decay of an excited state to the ground state with the corresponding emission of a photon Conservation of energy: Eexcited -Eground = Ephoton Three things can occur Absorption •Promotes molecule to a higher energy state •Decreases the number of photons Spontaneous Emission •Molecule drops from a high energy state to a lower state •Increases the number of photons •This is the only one that does NOT require a photon in the initial state Stimulated Emission •Molecule drops from a high energy state to a lower state •The presence of one photon stimulates the emission of a second one Relaxation of the two-level atom An atom in the excited state can relax to the ground state by: . spontaneous emission: rate is rad . any of a variety of non-radiative pathways: rate = nr All of these processes are single-atom processes; each atom acts independently of all the others. Thus, evolution of the excited state population only depends on the number of atoms in the excited state: dN e NN N dt rad e nr e10 e 10 = total spontaneous relaxation rate from state 1 to state 0 A collection of two-level atoms "Stimulated transitions" - a collective process involving many two-level atoms stimulated absorption: light induces a transition from 0 to 1 stimulated emission: light induces a transition from 1 to 0 In the emission process, the emitted photon is identical to the photon that caused the emission! Stimulated transitions: likelihood depends on the number of photons around How did it all begin? Rayleigh-Jeans law (circa 1900): energy density of a radiation field u() = 82kT/c3 Note: the units of this expression are correct. Strictly speaking, u() is an energy density per unit bandwidth, such that the integral ud gives an answer with units of energy/volume. Total energy radiated from a black body: ud uh-oh… the "ultraviolet catastrophe" Solution: quantum mechanics Time-dependent perturbation theory As a result of a perturbation h(t), a system in quantum state 1 makes a transition to quantum state 2 with probability given by: 2 t Notation : 1 iE t ' 21 E P12 2 ehtdt'' 21 21 Harmonic perturbation Key example: suppose we subject a two-level system, initially in state 1, to a harmonic perturbation, of the form: 00t (and suppose that the frequency of ht the perturbation, , is close to 21) 2sinAtt0 0 Transition probability to state 2 is: 2 2 t A0 it21 ' it'' it Peeedt12 2 ' RWA 0 2 it/2 it /2 4A2 etet21sin / 2 21 sin / 2 0 21 21 2 21 21 2 2 sin t / 2 Note that PP12 21 4A0 21 2 2 Absorption and stimulated 21 emission are equally likely! Einstein A and B coefficients Consider a radiation field and a collection of two-level systems, in thermal equilibrium with each other. stimulated emission probability: proportional to the number of atoms in upper state N2, and also to the number of photons spontaneous emission probability: proportional to N2, but does not depend on the photon density! Note: this is the WANBuN21 2 2 same as rad stimulated absorption probability: proportional to the number of atoms in lower state N1, and also to the number of photons spontaneous absorption: there is no such thing WBuN12 1 Quantum mechanics says that these two coefficients must be equal! But: in thermal equilibrium, the upward and downward transition rates must balance: WW12 21 Einstein A and B coefficients N ABu Equate these two rates: 1 NBu2 N EEkT But Boltzmann's Law tells us that 1 e21 (in equilibrium) N2 Recognizing that E2 E1 = h, we solve for u(): A B u h e kT 1 Also has units of energy This must correspond to the Rayleigh-Jeans result in the density per unit bandwidth classical limit (h 0), which implies: A 8 h 3 B c3 c3 Since A = , we can now solve for B also: B rad rad 8 h 3 Transition rates Our expression for the downward transition rate is now: WANBuN21 2 2 Bose-Einstein distribution B AN2 1 u A A B 1 But sinceu we therefore have h WAN21 21 hkT e kT 1 e 1 In other words, W21 is proportional to: 1 + the number of photons. It is easy to see that the upward transition rate, W12, is proportional to the number of photons: 1 WBuNAN12 1 1hkT e 1 Rate equation analysis e spontaneous emission: proportional to initial state population g stimulated transitions: stimulated spontaneous proportional to initial state population proportional to photon density np the same for upwards, downwards transitions dN dN e N KnKnN N g dt eg e PPge dt dNe egNKnNN e P g e dt Note: the constant K is simply given by h·B, where B is the Einstein B coefficient Rate equation analysis, continued dNe egNKnNN e P g e dt emitted photons go emitted photons go only into the in all directions direction of the incident light So, photon number varies according to: dnP KnPg N N e Kn P N dt Number of photons grows exponentially if Ne > Ng A LASER! Rate equation analysis, part 3 In thermal equilibrium: EkT Neegg N N Population inversion is impossible in equilibrium. In a steady-state situation: dNe egNKnNN e P g e 0 dt KnP NNNegg eg Kn P Population inversion is impossible in steady-state. So how do you make a laser? Four-level system Steps 1 and 2: Combine to give an effective 3 Non-radiative pumping rate for level 2: Rp decay Step 3: 2 stimulated transitions due to np Pump Lasing transition spontaneous decay rate: 1 21 Non-radiative Step 4: decay spontaneous decay rate: 0 10 dN2 Rp 21 N2 + Kn p (N1 N2 ) dt dN 1 N Kn (N N ) N dt 21 2 p 1 2 10 1 dN 0 N R dt 10 1 p The four-level model Steady-state solution: RP 21 10 NNN12 10 21 KnP Population inversion (i.e., N < 0) is assured if 10 > 21 (even if np = 0, and even if Rp is small) A necessary condition for lasing Other necessary conditions: • a resonant cavity - provides feedback • net gain per round trip > net loss per round trip - “threshold” Saturation in the four-level atom RP 21 10 21 10 1 N RP 10 21 KnP 21 101Wsig 21 • population inversion when > 2 1 Kn 1/ • small signal inversion is proportional to N0 p 21 the pump rate • inversion level drops when Wsig > 21 • the characteristic intensity for this effect is 1 0 0.8 independent of pump rate Rp N 0.6 "gain saturation" N/ 0.4 Note: Wsig is proportional to nP and therefore to the 0.2 intensity of the light in the medium. Thus, we can 0 0 2 4 6 8 10 define a saturation intensity Isat such that: Wsig 21 WIIsig 21 sat.
Recommended publications
  • An Application of the Theory of Laser to Nitrogen Laser Pumped Dye Laser
    SD9900039 AN APPLICATION OF THE THEORY OF LASER TO NITROGEN LASER PUMPED DYE LASER FATIMA AHMED OSMAN A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics. UNIVERSITY OF KHARTOUM FACULTY OF SCIENCE DEPARTMENT OF PHYSICS MARCH 1998 \ 3 0-44 In this thesis we gave a general discussion on lasers, reviewing some of are properties, types and applications. We also conducted an experiment where we obtained a dye laser pumped by nitrogen laser with a wave length of 337.1 nm and a power of 5 Mw. It was noticed that the produced radiation possesses ^ characteristic^ different from those of other types of laser. This' characteristics determine^ the tunability i.e. the possibility of choosing the appropriately required wave-length of radiation for various applications. DEDICATION TO MY BELOVED PARENTS AND MY SISTER NADI A ACKNOWLEDGEMENTS I would like to express my deep gratitude to my supervisor Dr. AH El Tahir Sharaf El-Din, for his continuous support and guidance. I am also grateful to Dr. Maui Hammed Shaded, for encouragement, and advice in using the computer. Thanks also go to Ustaz Akram Yousif Ibrahim for helping me while conducting the experimental part of the thesis, and to Ustaz Abaker Ali Abdalla, for advising me in several respects. I also thank my teachers in the Physics Department, of the Faculty of Science, University of Khartoum and my colleagues and co- workers at laser laboratory whose support and encouragement me created the right atmosphere of research for me. Finally I would like to thank my brother Salah Ahmed Osman, Mr.
    [Show full text]
  • Population Inversion X-Ray Laser Oscillator
    Population inversion X-ray laser oscillator Aliaksei Halavanaua, Andrei Benediktovitchb, Alberto A. Lutmanc , Daniel DePonted, Daniele Coccoe , Nina Rohringerb,f, Uwe Bergmanng , and Claudio Pellegrinia,1 aAccelerator Research Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; bCenter for Free Electron Laser Science, Deutsches Elektronen-Synchrotron, Hamburg 22607, Germany; cLinac & FEL division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; dLinac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025; eLawrence Berkeley National Laboratory, Berkeley, CA 94720; fDepartment of Physics, Universitat¨ Hamburg, Hamburg 20355, Germany; and gStanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 Contributed by Claudio Pellegrini, May 13, 2020 (sent for review March 23, 2020; reviewed by Roger Falcone and Szymon Suckewer) Oscillators are at the heart of optical lasers, providing stable, X-ray free-electron lasers (XFELs), first proposed in 1992 transform-limited pulses. Until now, laser oscillators have been (8, 9) and developed from the late 1990s to today (10), are a rev- available only in the infrared to visible and near-ultraviolet (UV) olutionary tool to explore matter at the atomic length and time spectral region. In this paper, we present a study of an oscilla- scale, with high peak power, transverse coherence, femtosecond tor operating in the 5- to 12-keV photon-energy range. We show pulse duration, and nanometer to angstrom wavelength range, that, using the Kα1 line of transition metal compounds as the but with limited longitudinal coherence and a photon energy gain medium, an X-ray free-electron laser as a periodic pump, and spread of the order of 0.1% (11).
    [Show full text]
  • Amplified and Directional Spontaneous Emission from Arbitrary Composite
    PHYSICAL REVIEW B 93, 125415 (2016) Amplified and directional spontaneous emission from arbitrary composite bodies: A self-consistent treatment of Purcell effect below threshold Weiliang Jin,1 Chinmay Khandekar,1 Adi Pick,2 Athanasios G. Polimeridis,3 and Alejandro W. Rodriguez1 1Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA 2Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 3Skolkovo Institute of Science and Technology, Moscow, Russia (Received 19 October 2015; revised manuscript received 22 December 2015; published 9 March 2016) We study amplified spontaneous emission (ASE) from wavelength-scale composite bodies—complicated arrangements of active and passive media—demonstrating highly directional and tunable radiation patterns, depending strongly on pump conditions, materials, and object shapes. For instance, we show that under large enough gain, PT symmetric dielectric spheres radiate mostly along either active or passive regions, depending on the gain distribution. Our predictions are based on a recently proposed fluctuating-volume-current formulation of electromagnetic radiation that can handle inhomogeneities in the dielectric and fluctuation statistics of active media, e.g., arising from the presence of nonuniform pump or material properties, which we exploit to demonstrate an approach to modeling ASE in regimes where Purcell effect (PE) has a significant impact on the gain, leading to spatial dispersion and/or changes in power requirements. The nonlinear feedback of PE on the active medium, captured by the Maxwell-Bloch equations but often ignored in linear formulations of ASE, is introduced into our linear framework by a self-consistent renormalization of the (dressed) gain parameters, requiring the solution of a large system of nonlinear equations involving many linear scattering calculations.
    [Show full text]
  • Experimental Detection of Photons Emitted During Inhibited Spontaneous Emission
    Invited Paper Experimental detection of photons emitted during inhibited spontaneous emission David Branning*a, Alan L. Migdallb, Paul G. Kwiatc aDepartment of Physics, Trinity College, 300 Summit St., Hartford, CT 06106; bOptical Technology Division, NIST, Gaithersburg, MD, 20899-8441; cDepartment of Physics, University of Illinois,1110 W. Green St., Urbana, IL 61801 ABSTRACT We present an experimental realization of a “sudden mirror replacement” thought experiment, in which a mirror that is inhibiting spontaneous emission is quickly replaced by a photodetector. The question is, can photons be counted immediately, or only after a retardation time that allows the emitter to couple to the changed modes of the cavity, and for light to propagate to the detector? Our results, obtained with a parametric downconverter, are consistent with the cavity QED prediction that photons can be counted immediately, and are in conflict with the retardation time prediction. Keywords: inhibited spontaneous emission, cavity QED, parametric downconversion, quantum interference 1. INTRODUCTION When an excited atom is placed near a mirror, it is allowed to radiate only into the set of electromagnetic modes that satisfy the boundary conditions imposed by the mirror. The result is enhancement or suppression of the spontaneous emission rate, depending on the structure of the allowed modes. In particular, if the atom is placed between two mirrors separated by a distance smaller than the shortest emission wavelength, it will not radiate into the cavity [1-3]. This phenomenon, known as inhibited spontaneous emission, seems paradoxical; for if the atom is prohibited from emitting a photon, then how can it “know” that the cavity is there? One explanation is that the vacuum fluctuations which produce spontaneous emission cannot exist in the cavity, because the modes themselves do not exist [1].
    [Show full text]
  • Rate Equations
    Ultrafast Optical Physics II (SoSe 2019) Lecture 4, May 3, 2019 (1) Laser rate equations (2) Laser CW operation: stability and relaxation oscillation (3) Q-switching: active and passive 1 Possible laser cavity configurations The laser (oscillator) concept explained using a circuit model. 2 Self-consistent in steady state V.A. Lopota and H. Weber, fundamentals of the semiclassical laser theory 3 Laser rate equations Interaction cross section: [Unit: cm2] !") ") Spontaneous = −*") = − !$ τ21 emission § Interaction cross section is the probability that an interaction will occur between EM !" field and the atomic system. # = −'" ( !$ # § Interaction cross section only depends Absorption on the dipole matrix element and the linewidth of the transition !" ) Stimulated = −'")( !$ emission 4 How to achieve population inversion? relaxation relaxation rate relaxation Induced transitions Pumping rate relaxation Pumping by rate absorption relaxation relaxation rate Four-level gain medium 5 Laser rate equations for three-level laser medium If the relaxation rate is much faster than and the number of possible stimulated emission events that can occur , we can set N1 = 0 and obtain only a rate equation for the upper laser level: This equation is identical to the equation for the inversion of the two-level system: upper level lifetime equilibrium upper due to radiative and level population w/o non-radiative photons present processes 6 More on laser rate equations Laser gain material V:= Aeff L Mode volume fL: laser frequency I: Intensity vg: group velocity
    [Show full text]
  • Terahertz Sources
    Terahertz sources Pavel Shumyatsky Robert R. Alfano Downloaded from SPIE Digital Library on 22 Mar 2011 to 128.59.62.83. Terms of Use: http://spiedl.org/terms Journal of Biomedical Optics 16(3), 033001 (March 2011) Terahertz sources Pavel Shumyatsky and Robert R. Alfano City College of New York, Institute for Ultrafast Spectroscopy and Lasers, Physics Department, MR419, 160 Convent Avenue, New York, New York 10031 Abstract. We present an overview and history of terahertz (THz) sources for readers of the biomedical and optical community for applications in physics, biology, chemistry, medicine, imaging, and spectroscopy. THz low-frequency vibrational modes are involved in many biological, chemical, and solid state physical processes. C 2011 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.3554742] Keywords: terahertz sources; time domain terahertz spectroscopy; pumps; probes. Paper 10449VRR received Aug. 10, 2010; revised manuscript received Jan. 19, 2011; accepted for publication Jan. 25, 2011; published online Mar. 22, 2011. 1 Introduction Yajima et al.4 first reported on tunable far-infrared radiation by One of the most exciting areas today to explore scientific and optical difference-frequency mixing in nonlinear crystals. These engineering phenomena lies in the terahertz (THz) spectral re- works have laid the foundation and were used for a decade and gion. THz radiation are electromagnetic waves situated between initiated the difference-frequency generation (DFG), parametric the infrared and microwave regions of the spectrum. The THz amplification, and optical rectification methods. frequency range is defined as the region from 0.1 to 30 THz. The The THz region became more attractive for investigation active investigations of the terahertz spectral region did not start owing to the appearance of new methods for generating T-rays until two decades ago with the advent of ultrafast femtosecond based on picosecond and femtosecond laser pulses.
    [Show full text]
  • The Concept of the Photon—Revisited
    The concept of the photon—revisited Ashok Muthukrishnan,1 Marlan O. Scully,1,2 and M. Suhail Zubairy1,3 1Institute for Quantum Studies and Department of Physics, Texas A&M University, College Station, TX 77843 2Departments of Chemistry and Aerospace and Mechanical Engineering, Princeton University, Princeton, NJ 08544 3Department of Electronics, Quaid-i-Azam University, Islamabad, Pakistan The photon concept is one of the most debated issues in the history of physical science. Some thirty years ago, we published an article in Physics Today entitled “The Concept of the Photon,”1 in which we described the “photon” as a classical electromagnetic field plus the fluctuations associated with the vacuum. However, subsequent developments required us to envision the photon as an intrinsically quantum mechanical entity, whose basic physics is much deeper than can be explained by the simple ‘classical wave plus vacuum fluctuations’ picture. These ideas and the extensions of our conceptual understanding are discussed in detail in our recent quantum optics book.2 In this article we revisit the photon concept based on examples from these sources and more. © 2003 Optical Society of America OCIS codes: 270.0270, 260.0260. he “photon” is a quintessentially twentieth-century con- on are vacuum fluctuations (as in our earlier article1), and as- Tcept, intimately tied to the birth of quantum mechanics pects of many-particle correlations (as in our recent book2). and quantum electrodynamics. However, the root of the idea Examples of the first are spontaneous emission, Lamb shift, may be said to be much older, as old as the historical debate and the scattering of atoms off the vacuum field at the en- on the nature of light itself – whether it is a wave or a particle trance to a micromaser.
    [Show full text]
  • A Fundamental Approach to Phase Noise Reduction in Hybrid Si/III-V Lasers
    A fundamental approach to phase noise reduction in hybrid Si/III-V lasers Thesis by Scott Tiedeman Steger In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy California Institute of Technology Pasadena, California 2014 (Defended May 14, 2014) ii © 2014 Scott Tiedeman Steger All Rights Reserved iii Contents Acknowledgements ix Abstract xi 1 Introduction1 1.1 Narrow-linewidth laser sources in coherent communication......1 1.2 Low phase noise Si/III-V lasers.....................4 2 Phase noise in laser fields7 2.1 Optical cavities..............................8 2.1.1 Loss................................8 2.1.2 Gain................................9 2.1.3 Quality factor........................... 10 2.1.4 Threshold condition....................... 11 2.2 Interaction of carriers with cavity modes................ 11 2.2.1 Spontaneous transitions into the lasing mode.......... 12 2.2.2 Spontaneous transitions into all modes............. 17 2.2.3 The spontaneous emission coupling factor........... 19 2.2.4 Stimulated transitions...................... 19 2.3 A phenomenological calculation of spontaneous emission into a lasing mode above threshold........................... 21 2.3.1 Number of carriers........................ 21 2.3.2 Total spontaneous emission rate................. 21 2.4 Phasor description of phase noise in a laser............... 23 iv 2.4.1 Spontaneous photon generation................. 25 2.4.2 Photon storage.......................... 27 2.4.3 Spectral linewidth of the optical field.............. 29 2.4.4 Phase noise power spectral density............... 30 2.4.5 Linewidth enhancement factor.................. 32 2.4.6 Total linewidth.......................... 34 3 Phase noise in hybrid Si/III-V lasers 35 3.1 The advantages of hybrid Si/III-V...................
    [Show full text]
  • Arxiv:1410.6667V2 [Physics.Optics]
    Self-starting stable coherent mode-locking in a two-section laser R. M. Arkhipova, M. V. Arkhipovb, I. Babushkinc,d a ITMO University, Kronverkskiy prospekt, 49, 197101 St. Petersburg, Russia, b Faculty of Physics, St. Petersburg State University, Ulyanovskaya 1, Petrodvoretz, St. Petersburg 198504, Russia c Institute of Quantum Optics, Leibniz University Hannover, Welfengarten 1 30167, Hannover, Germany d Max Born Institute, Max Born Str. 2a, 12489 Berlin, Germany Coherent mode-locking (CML) uses self-induced transparency (SIT) soliton formation to achieve, in contrast to conventional schemes based on absorption saturation, the pulse durations below the limit allowed by the gain line width. Despite of the great promise it is difficult to realize it experimentally because a complicated setup is required. In all previous theoretical considerations CML is believed to be non-self-starting. In this article we show that if the cavity length is selected properly, a very stable (CML) regime can be realized in an elementary two-section ring-cavity geometry, and this regime is self-developing from the non-lasing state. The stability of the pulsed regime is the result of a dynamical stabilization mechanism arising due to finite-cavity-size effects. I. INTRODUCTION Development of ultrashort laser pulse sources with high repetition rates and peak power is an area of principal in- terest in optics. Such lasers have applications in a high- bit-rate optical communications, real time-monitoring of ultrafast processes in matter etc. A well-known method for generating high power ultrashort optical pulses is a passive mode-locking (PML) [1–6]. In order to achieve PML, a nonlinear saturable absorbing medium is placed into the laser cavity.
    [Show full text]
  • Chapter 6. Laser: Theory and Applications
    Chapter 6. Laser: Theory and Applications Reading: Sigman, Chapter 6, 7, and 26 Bransden & Joachain, Chapter 15 Laser Basics Light Amplification by Stimulated Emission of Radiation hν = E − E E1 1 0 Stimulated emission hν E0 Population inversion (N1 > N0) ⇒ laser, maser 2 2 4π ⎛ e ⎞ I(ω ) 2 Transition rate W = ⎜ ⎟ 01 M (ω ) ∝ I(ω ) for stimulated emission 01 2 ⎜ ⎟ 2 01 01 01 m c ⎝ 4πε0 ⎠ ω01 Incident light intensity Pumping (optical, electrical, etc.) for population inversion Gain medium High reflector Out coupler Optical cavity Longitudinal Modes in an Optical Cavity EM wave in a cavity Boundary condition: λ cτ πc L = m = m = m m = 1, 2, 3, … 2 2 ω 2L c π c ⇒ λ = ,ν = m, ω = m m 2L L 2L Round-trip time of flight: T = = mτ c Typical laser cavity: L = 1.5 m, λ = 0.75 µm 2L 3 m : T = = =10−8 sec =10 nsec : c 3×108 m / sec 1 ⇒ ν = =108 Hz =100 MHz R T 2L 3 m L m = = = 4×106 = 4 milion !! λ 0.75×10−6 m Single mode 2 2 I(t) = cosω0t = cost Spectrum Intensity 1 Frequency Intensity -100 -50 0 50 100 Time Cavity Quality Factors, Qc End mirror L Out coupler R ≈ 1 T = 1 ~ 5 % Energy loss by reflection, transmission, etc. ∞ −δct /T −iω0t E(ω) = E0e e dt ∫0 E e−δct /T e−iω0t 0 E = 0 i(ω −ω0 ) +δc /T t E(ω) 2 Lorentzian Emission spectrum 2 2 E δ c ω E(ω) = 0 ~ = 2 2 2 T Q (ω −ω ) +δ /T c 0 c ω ω0 Energy of circulating EM wave, Icirc(t) ⎡ t ⎤ 2L T = Icirc (t) = Icirc (0)×exp⎢−δ c ⎥, : round-trip time of flight ⎣ T ⎦ c Number of round trips in t ⎡ ω ⎤ ⇒ Icirc (t) = Icirc (0)×exp⎢− t⎥ ⎣ Qc ⎦ Q-factor of a RLC circuit ωT 4π L 1 ω ωL Q = = Q = = where
    [Show full text]
  • PAM Dirac and the Discovery of Quantum Mechanics
    P.A.M. Dirac and the Discovery of Quantum Mechanics Kurt Gottfried∗ Laboratory for Elementary Particle Physics Cornell University, Ithaca New York 14853 Dirac’s contributions to the discovery of non-relativist quantum mechanics and quantum elec- trodynamics, prior to his discovery of the relativistic wave equation, are described. 1 Introduction Dirac’s most famous contributions to science, the Dirac equation and the prediction of anti-matter, are known to all physicists. But as I have learned, many today are unaware of how crucial Dirac’s earlier contributions were – that he played a key role in the discovery and development of non- relativistic quantum mechanics, and that the formulation of quantum electrodynamics is almost entirely due to him. I therefore restrict myself here to his work prior to his discovery of the Dirac equation in 1928.1 Dirac was one of the great theoretical physicist of all times. Among the founders of ‘mod- ern’ theoretical physics, his stature is comparable to that of Bohr and Heisenberg, and surpassed only by Einstein. Dirac had an astounding physical intuition combined with the ability to invent new mathematics to create new physics. His greatest papers are, for long stretches, argued with inexorable logic, but at crucial points there are critical, illogical jumps. Among the inventors of quantum mechanics, only deBroglie, Heisenberg, Schr¨odinger and Dirac wrote breakthrough papers that have such brilliantly successful long jumps. Dirac was also a great stylist. In my view his book arXiv:1006.4610v1 [physics.hist-ph] 23 Jun 2010 The Principles of Quantum Mechanics belongs to the great literature of the 20th Century; it has an austere tone that reminds me of Kafka.2 When we speak or write quantum mechanics we use a language that owes a great deal to Dirac.
    [Show full text]
  • 4.4. Spontaneous Emission
    4-19 4.4. SPONTANEOUS EMISSION What doesn’t come naturally out of semi-classical treatments is spontaneous emission—transitions when the field isn’t present. To treat it properly requires a quantum mechanical treatment of the field, where energy is conserved, such that annihilation of a quantum leads to creation of a photon with the same energy. We need to treat the particles and photons both as quantized objects. You can deduce the rates for spontaneous emission from statistical arguments (Einstein). For a sample with a large number of molecules, we will consider transitions between two states m and n with EEmn> . The Boltzmann distribution gives us the number of molecules in each state. −ωmn /kT NNmn/ = e (4.71) For the system to be at equilibrium, the time-averaged transitions up Wmn must equal those down Wnm . In the presence of a field, we would want to write for an ensemble ? NBUmnm()ωω mn= NBU nmn () mn (4.72) but clearly this can’t hold for finite temperature, where NNmn< , so there must be another type of emission independent of the field. So we write WWnm= mn (4.73) NAm() nm+= BU nm()ωω mn NBU n mn() mn Andrei Tokmakoff, MIT Department of Chemistry, 5/19/2005 4-20 If we substitute the Boltzmann equation into this and use Bmn= B nm , we can solve for Anm : ωmn /kT ABUnm=− nm(ω mn )( e 1) (4.74) For the energy density we will use Planck’s blackbody radiation distribution: ω3 1 U ()ω = (4.75) π 23c ωmn /kT −1 e U ω Nω Uω is the energy density per photon of frequency ω.
    [Show full text]