The Ecology and Evolutionary History of Two Musk Turtles in the Southeastern United States

Total Page:16

File Type:pdf, Size:1020Kb

The Ecology and Evolutionary History of Two Musk Turtles in the Southeastern United States The University of Southern Mississippi The Aquila Digital Community Dissertations Spring 2020 The Ecology and Evolutionary History of Two Musk Turtles in the Southeastern United States Grover Brown Follow this and additional works at: https://aquila.usm.edu/dissertations Part of the Genetics Commons Recommended Citation Brown, Grover, "The Ecology and Evolutionary History of Two Musk Turtles in the Southeastern United States" (2020). Dissertations. 1762. https://aquila.usm.edu/dissertations/1762 This Dissertation is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Dissertations by an authorized administrator of The Aquila Digital Community. For more information, please contact [email protected]. THE ECOLOGY AND EVOLUTIONARY HISTORY OF TWO MUSK TURTLES IN THE SOUTHEASTERN UNITED STATES by Grover James Brown III A Dissertation Submitted to the Graduate School, the College of Arts and Sciences and the School of Biological, Environmental, and Earth Sciences at The University of Southern Mississippi in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Approved by: Brian R. Kreiser, Committee Co-Chair Carl P. Qualls, Committee Co-Chair Jacob F. Schaefer Micheal A. Davis Willian W. Selman II ____________________ ____________________ ____________________ Dr. Brian R. Kreiser Dr. Jacob Schaefer Dr. Karen S. Coats Committee Chair Director of School Dean of the Graduate School May 2020 COPYRIGHT BY Grover James Brown III 2020 Published by the Graduate School ABSTRACT Turtles are among one of the most imperiled vertebrate groups on the planet with more than half of all species worldwide listed as threatened, endangered or extinct by the International Union of the Conservation of Nature. The Southeastern United States is a global biodiversity hotspot for turtles, and it likely represents the last area on the planet of both high diversity and high abundance of turtle species. In the past century, there has been an exponential increase in the number of publications on turtles in the United States and Canada, however a recent review of the literature suggests that this research attention has not been spread evenly across taxa. The mud turtles (genus Kinosternon) and musk turtles (genus Sternotherus) of the family Kinosternidae remain one of the least studied turtle families. The lotic Sternotherus species have received very little research attention, particularly the stripe-necked musk turtle (Sternotherus peltifer) and the razorback musk turtle (Sternotherus carinatus) with the latter considered one of the top-ten least studied turtle species in the United States and Canada. No studies have examined the population genetics of these highly aquatic species across their geographic ranges, and this is particularly concerning as some states have had to issue moratoriums on commercial harvest of these species to prevent population declines. Harvested turtles are generally destined for overseas markets, as Southeast Asia has decimated its own turtle populations and must look to other areas of high diversity and abundance of turtles to satiate demand. Considering that very little is still known about these species, it is important to have baseline data on the population genetics of these species, as well as fill in knowledge gaps on their ecology to help make more informed conservation and management decisions. ii ACKNOWLEDGMENTS I would like to thank my advisors, Brian Kreiser and Carl Qualls, for their insightful academic guidance throughout my graduate career, particularly for allowing me free reign to develop and pursue this research on these species. They have been pivotal to my development as a biologist. I would also like to thank Dr. Jen Lamb for other statistical, logistical and emotional support throughout my tenure at the University of Southern Mississippi. Dr. Will Selman for valuable insights not just into Mississippi turtle biology, but for valuable career advice along this journey. This research would not have been possible without grants, funding and other support provided by (in alphabetical order): the American Museum of Natural History, the American Turtle Observatory, the Birmingham Audubon Society, the Chicago Herpetological Society, the National Science Foundation, the Turtle Survival Alliance, and the University of Southern Mississippi. iii DEDICATION I would like to partially dedicate this dissertation to the host of people who have inspired me to pursue a career in herpetology. I would first like to thank my family, but in particular my aunt Margaret Rose White, and my grandfather James Bryan White Jr., for introducing me to turtles at a young age and sparking a lifelong passion. I would like to thank Owen Kinney for taking me under his wing in high school and showing me what a career in herpetology looks like. I thank Dr. John Maerz for his mentoring in herpetology during my undergraduate career, and I also want to acknowledge Drs. Kurt Buhlmann and Whit Gibbons for showing me what a lifetime of passion for herpetology can accomplish. I would be remiss not to mention the wonderful friends who have helped me, inspired me and taught me so much: Gabbie Berry, Cyndi Carter, Lucas Haralson, Cybil Huntzinger, Jen Lamb, Luke Pearson, Chris Pellecchia, Todd Pierson, Theresa Stratmann. But mostly, I would like to dedicate this dissertation to my parents, Grover James (Jimmy) Brown Jr. and Carolyn W. Brown, who fostered and supported my interest in wildlife, particularly turtles, from a young age, and who invested so heavily in my education to make sure I had every tool necessary to follow my passion and pursue my dreams. They exemplify selflessness. They are my personal heroes, and no words or document will ever be enough to express my gratitude. iv TABLE OF CONTENTS ABSTRACT ........................................................................................................................ ii ACKNOWLEDGMENTS ................................................................................................. iii DEDICATION ................................................................................................................... iv LIST OF TABLES ............................................................................................................ vii LIST OF ILLUSTRATIONS ............................................................................................. ix CHAPTER I - INTRODUCTION TO TURTLES OF THE SOUTHEASTERN UNITED STATES .............................................................................................................................. 1 1.1 Introduction ............................................................................................................... 1 1.2 Literature Cited ....................................................................................................... 11 CHAPTER II - CHARACTERIZATION OF MICROSATELLITE LOCI FOR THE RAZORBACK MUSK TURTLE (STERNOTHERUS CARINATUS; GRAY 1856) AND THEIR CROSS-AMPLIFICATION IN FIVE OTHER SPECIES IN THE FAMILY KINOSTERNIDAE .......................................................................................................... 19 2.1 Introduction ............................................................................................................. 19 2.2 Methods................................................................................................................... 21 2.3 Results ..................................................................................................................... 23 2.4 Discussion ............................................................................................................... 23 2.5 Literature Cited ....................................................................................................... 26 CHAPTER III - RANGE-WIDE POPULATION GENETICS OF THE RAZORBACK MUSK TURTLE (STERNOTHERUS CARINATUS) ....................................................... 35 3.1 Introduction ............................................................................................................. 35 3.2 Methods................................................................................................................... 39 3.2.1 Field Collections .............................................................................................. 39 3.2.2 Molecular Methods .......................................................................................... 40 3.3 Results ..................................................................................................................... 43 3.4 Discussion ............................................................................................................... 46 3.5 Literature Cited ....................................................................................................... 63 CHAPTER IV – INTERACTIONS OF THE STRIPE-NECKED MUSK TURTLE AND RAZORBACK MUSK TURTLE IN SYMPATRY AND SYNTOPY IN THE PASCAGOULA RIVER SYSTEM .................................................................................. 71 4.1 Introduction ............................................................................................................. 72 4.2 Method .................................................................................................................... 76 4.2.1 Site Selection ................................................................................................... 76 4.2.2 Trapping ..........................................................................................................
Recommended publications
  • RCN NE Terrapin Conservation Strategy
    The Northern Diamondback Terrapin (Malaclemys terrapin terrapin) in the Northeast United States: A Regional Conservation Strategy Prepared by: Stephanie Egger, Wildlife Biologist Conserve Wildlife Foundation of New Jersey, Inc. with Contributions from the Diamondback Terrapin Working Group Prepared for: Northeast Association of Fish & Wildlife Agencies Northeast Regional Conservation Needs Grant Program 2016 Made possible by State Wildlife Grants and funded by the Northeast Regional Conservation Needs Grant Program. REGIONAL CONSERVATION NEEDS GRANT PROGRAM The Northern Diamondback Terrapin (Malaclemys terrapin terrapin) in the Northeastern United States: A Regional Conservation Strategy was supported by State Wildlife Grant funding awarded through the Northeast Regional Conservation Needs (RCN) Grant Program (RCN Grant 2013-02). The RCN Grant Program joins thirteen northeast States, the District of Columbia, and the U.S. Fish and Wildlife Service in a partnership to address landscape-scale, regional wildlife conservation issues. Progress on these regional issues is achieved through combining resources, leveraging funds, and prioritizing conservation actions identified in the State Wildlife Action Plans (SWAPs). See http://RCNGrants.org. COVER IMAGE: Female Northern diamondback terrapin © Brian Tang i STATE AGENCY PROJECT LEADS AND/OR CONTRIBUTORS New Hampshire (for technical support) Michael Marchand, New Hampshire Fish and Game Department, Concord, New Hampshire Massachusetts Dr. Jonathan Regosin, Massachusetts Division of Fisheries
    [Show full text]
  • Saving the Diamondback Terrapin
    Disney Worldwide Conservation Fund Allows Teachers to Broaden Awareness of the Plight of the Diamondback Terrapin Maggie Dugan: Upper Township Elementary School Jane Krajewski: Quinton Township School Mary Lyons and Lynn Tyskas: Millville Public Schools Our Mission • Gain greater insight into the Terrapin Conservation Project through direct participation with scientists/interns at the Wetlands Institute • Create lessons and activities that can be used throughout the state (and beyond ) to help enlighten others about the terrapin crisis • Provide instruction about the diamondback terrapin at upcoming conferences and disseminate our units to help enhance core standard teaching by incorporating terrapin education within objectives that are already in place in the classroom SAVING THE DIAMONDBACK TERRAPIN Jane Krajewski Quinton Township Elementary School ISN’T SHE CUTE? Diamondback terrapins are the only turtles that live in brackish (a mix of salt and fresh) water. Terrapin Fast Facts! • Females are usually bigger than males. Do you know why? •Females are larger because they are responsible for carrying the eggs. •They also have smaller tails that don’t get in the way when laying the eggs. • Females leave the water to nest above the high tide line. • They lay about 8-12 eggs. • Females will dig a nest with their back leg. • This plaster mold shows the size and shape of a nest. Egg chamber WHY IS THE FEMALE TERRAPIN MORE ENDANGERED? • Most turtles that cross the road are females. • Females enter the roadway because they are looking for suitable nesting sites. Because males do not have to do this, they are usually not the ones to get hit by cars.
    [Show full text]
  • AN INTRODUCTION to Texas Turtles
    TEXAS PARKS AND WILDLIFE AN INTRODUCTION TO Texas Turtles Mark Klym An Introduction to Texas Turtles Turtle, tortoise or terrapin? Many people get confused by these terms, often using them interchangeably. Texas has a single species of tortoise, the Texas tortoise (Gopherus berlanderi) and a single species of terrapin, the diamondback terrapin (Malaclemys terrapin). All of the remaining 28 species of the order Testudines found in Texas are called “turtles,” although some like the box turtles (Terrapene spp.) are highly terrestrial others are found only in marine (saltwater) settings. In some countries such as Great Britain or Australia, these terms are very specific and relate to the habit or habitat of the animal; in North America they are denoted using these definitions. Turtle: an aquatic or semi-aquatic animal with webbed feet. Tortoise: a terrestrial animal with clubbed feet, domed shell and generally inhabiting warmer regions. Whatever we call them, these animals are a unique tie to a period of earth’s history all but lost in the living world. Turtles are some of the oldest reptilian species on the earth, virtually unchanged in 200 million years or more! These slow-moving, tooth­ less, egg-laying creatures date back to the dinosaurs and still retain traits they used An Introduction to Texas Turtles | 1 to survive then. Although many turtles spend most of their lives in water, they are air-breathing animals and must come to the surface to breathe. If they spend all this time in water, why do we see them on logs, rocks and the shoreline so often? Unlike birds and mammals, turtles are ectothermic, or cold- blooded, meaning they rely on the temperature around them to regulate their body temperature.
    [Show full text]
  • N.C. Turtles Checklist
    Checklist of Turtles Historically Encountered In Coastal North Carolina by John Hairr, Keith Rittmaster and Ben Wunderly North Carolina Maritime Museums Compiled June 1, 2016 Suborder Family Common Name Scientific Name Conservation Status Testudines Cheloniidae loggerhead Caretta caretta Threatened green turtle Chelonia mydas Threatened hawksbill Eretmochelys imbricata Endangered Kemp’s ridley Lepidochelys kempii Endangered Dermochelyidae leatherback Dermochelys coriacea Endangered Chelydridae common snapping turtle Chelydra serpentina Emydidae eastern painted turtle Chrysemys picta spotted turtle Clemmys guttata eastern chicken turtle Deirochelys reticularia diamondback terrapin Malaclemys terrapin Special concern river cooter Pseudemys concinna redbelly turtle Pseudemys rubriventris eastern box turtle Terrapene carolina yellowbelly slider Trachemys scripta Kinosternidae striped mud turtle Kinosternon baurii eastern mud turtle Kinosternon subrubrum common musk turtle Sternotherus odoratus Trionychidae spiny softshell Apalone spinifera Special concern NOTE: This checklist was compiled and updated from several sources, both in the scientific and popular literature. For scientific names, we have relied on: Turtle Taxonomy Working Group [van Dijk, P.P., Iverson, J.B., Rhodin, A.G.J., Shaffer, H.B., and Bour, R.]. 2014. Turtles of the world, 7th edition: annotated checklist of taxonomy, synonymy, distribution with maps, and conservation status. In: Rhodin, A.G.J., Pritchard, P.C.H., van Dijk, P.P., Saumure, R.A., Buhlmann, K.A., Iverson, J.B., and Mittermeier, R.A. (Eds.). Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the IUCN/SSC Tortoise and Freshwater Turtle Specialist Group. Chelonian Research Monographs 5(7):000.329–479, doi:10.3854/crm.5.000.checklist.v7.2014; The IUCN Red List of Threatened Species.
    [Show full text]
  • Bite-Force Generation and Feeding Biomechanics in the Loggerhead Musk Turtle, Sternotherus Minor: Implications for the Ontogeny of Performance Joseph Bryce Pfaller
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2009 Bite-Force Generation and Feeding Biomechanics in the Loggerhead Musk Turtle, Sternotherus Minor: Implications for the Ontogeny of Performance Joseph Bryce Pfaller Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERISTY COLLEGE OF ARTS AND SCEINCES BITE-FORCE GENERATION AND FEEDING BIOMECHANICS IN THE LOGGERHEAD MUSK TURTLE, STERNOTHERUS MINOR: IMPLICATIONS FOR THE ONTOGENY OF PERFORMANCE By JOSEPH BRYCE PFALLER A Thesis submitted to the Department of Biological Science in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2009 The members of the Committee approve the Thesis of Joseph Bryce Pfaller defended on April 8th, 2009. ______________________________ Gregory M. Erickson Professor Directing Thesis ______________________________ Brian D. Inouye Committee Member ______________________________ William S. Oates Committee Member Approved: ________________________________________________________________________ P. Bryant Chase, Chair, Department of Biological Science The Graduate School has verified and approved the above named committee members. ii For my parents, Michael Pfaller and Beverly Ringenberg and my brother, Stephen Pfaller iii ACKNOWLEDGEMENTS First and foremost, I would like to sincerely thank Paul Gignac. Paul has been integral to my development as a scientist during my time at Florida State. He was always available for thought-provoking discussions and never hesitated to assist me when I sought help. He provided extensive statistical assistance and was vital to the success of the mechanical loading tests. Paul has been a great friend and colleague to me while at Florida State, and I thank him immensely.
    [Show full text]
  • Diets of Freshwater Turtles Often Reflect the Availability of Food Resources in the Environment
    Herpetological Conservation and Biology 8(3):561−570. HerpetologicalSubmitted: 26 March Conservation 2013; Accepted: and Biology 21 October 2013; Published: 31 December 2013. RazoR-Backed Musk TuRTle (SternotheruS carinatuS) dieT acRoss a GRadienT of invasion carla l. atkinSon1,2, 3 1Oklahoma Biological Survey, 111 E. Chesapeake St., Norman, OK 73019 2Department of Biology and Ecology and Evolutionary Biology Graduate Program, University of Oklahoma, Norman, Ok 73019 3Present Address: Dept. of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853 e-mail: [email protected] abstract.—diets of freshwater turtles often reflect the availability of food resources in the environment. accordingly, bottom- feeding turtles’ diets are typically composed of benthic macroinvertebrate fauna (e.g., insects and mollusks). However, the composition of benthic systems has changed because many freshwater ecosystems have been invaded by non-native species, including bivalve species such as the asian clam, corbicula fluminea. i studied the diet of Sternotherus carinatus, the Razor- backed Musk Turtle, in southeastern oklahoma across three zones of corbicula abundances: no corbicula, moderate corbicula densities, and high corbicula densities. i hypothesized that the composition of corbicula in the diet would increase with increased abundance of corbicula in the riverine environment. Turtles were caught by snorkel surveys in the little and Mountain fork rivers and kept overnight for the collection of fecal samples. The diet was similar to that found in previous studies on S. carinatus except that corbicula is a new component of the diet and composed the majority of the diet in high-density corbicula areas. an index of Relative importance (iRi) showed that corbicula was the most important prey item in the areas with high corbicula density, was equally as important as gastropods in the areas with moderate corbicula density, and was absent from the diet in areas without corbicula.
    [Show full text]
  • Sternotherus Depressus)
    UC Irvine UC Irvine Previously Published Works Title Phylogenetic distinctiveness of a threatened aquatic turtle (Sternotherus depressus) Permalink https://escholarship.org/uc/item/207246m8 Journal Conservation Biology, 12(3) ISSN 0888-8892 Authors Walker, D Ortí, G Avise, JC Publication Date 1998 DOI 10.1111/j.1523-1739.1998.97056.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Phylogenetic Distinctiveness of a Threatened Aquatic Turtle (Sternotherus depressus) DEETTE WALKER,* GUILLERMO ORTÍ,* AND JOHN C. AVISE Department of Genetics, University of Georgia, Athens, GA 30602, U.S.A. Abstract: The musk turtle (Sternotherus minor) is common throughout the southeastern United States. In 1955 a morphologically atypical form confined to the Black Warrior River System in Alabama was discov- ered and accorded full species status as S. depressus, the “flattened musk turtle.” Questions remain about the taxonomic status and evolutionary history of the flattened musk turtle because (1) the geographic distribu- tion of S. depressus is nested within the range of S. minor; (2) the flattened shell might be a recently evolved anti-predator adaptation; and (3) reports exist of intergrades between S. depressus and S. minor. We gener- ated and employed sequence data from mitochondrial DNA to address the phylogenetic distinctiveness and phylogeographic position of S. depressus relative to all other musk and mud turtles (Kinosternidae) in North America. The flattened musk turtle forms a well-supported monophyletic group separate from S. minor. Ge- netic divergence observed between S. depressus and geographic populations of S.
    [Show full text]
  • ( Malaclemys Terrapin Littoralis) at South Deer Island in Galveston Bay
    DistrictCover.fm Page 1 Thursday, May 20, 2004 2:19 PM In cooperation with the U.S. Fish and Wildlife Service Occurrence of the Diamondback Terrapin (Malaclemys terrapin littoralis) at South Deer Island in Galveston Bay, Texas, April 2001–May 2002 Open-File Report 03–022 TEXAS Galveston Bay GULF OF EXICO M U.S. Department of the Interior U.S. Geological Survey Cover: Drawing of Diamondback terrapin by L.S. Coplin, U.S. Geological Survey. U.S. Department of the Interior U.S. Geological Survey Occurrence of the Diamondback Terrapin (Malaclemys terrapin littoralis) at South Deer Island in Galveston Bay, Texas, April 2001–May 2002 By Jennifer L. Hogan U.S. GEOLOGICAL SURVEY Open-File Report 03–022 In cooperation with the U.S. Fish and Wildlife Service Austin, Texas 2003 U.S. DEPARTMENT OF THE INTERIOR Gale A. Norton, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. For additional information write to District Chief U.S. Geological Survey 8027 Exchange Dr. Austin, TX 78754–4733 E-mail: [email protected] Copies of this report can be purchased from U.S. Geological Survey Information Services Box 25286 Denver, CO 80225–0286 E-mail: [email protected] ii CONTENTS Abstract ................................................................................................................................................................................ 1 Introduction .........................................................................................................................................................................
    [Show full text]
  • Diamondback Terrapin Malaclemys Terrapin Contributors: Dubose Griffin, David Owens and J
    Diamondback Terrapin Malaclemys terrapin Contributors: DuBose Griffin, David Owens and J. Whitfield Gibbons DESCRIPTION Taxonomy and Basic Description The diamondback terrapin is a small, long-lived estuarine turtle endemic to coastal marshes, estuarine bays, lagoons and creeks ranging from Cape Cod, Massachusetts to the Gulf Coast of Texas. Currently, there are five (Hartsell 2001) or seven (Ernst et al. 1994) subspecies. More recently, Hart (2004) identified six management units. The subspecies found in South Carolina is Malaclemys terrapin centrata. Terrapins have varied coloration from black to spotted patterns on the soft tissue and dark or light-colored scutes with strong concentric layers on the carapace. The hind margin of the carapace curls up instead of flaring. Hind legs are large and toes have extensive webs. These turtles are strong, fast swimmers that feed on a variety of mollusks, crustaceans and other invertebrates. In South Carolina, salt marsh periwinkles (Littoraria irrorata) and blue crabs (Callinectes sapidus) are among the terrapin’s primary food sources (Tucker et al. 1995; Levesque 2000). Terrapins are sexually dimorphic. Females are much larger than males and reach 15 to 18 cm (6 to7 inches) in length; males reach 10 to 13 cm (4 to 5 inches) in length. Adult females also have enlarged heads. Terrapins hibernate in the mud during winter and mate in the spring. Eggs are laid May through early August and clutches have 5 to 12 eggs (Pritchard 1979). The number of clutches laid per female in South Carolina is undocumented; however two clutches may be common (David Owens, College of Charleston, pers.
    [Show full text]
  • In AR, FL, GA, IA, KY, LA, MO, OH, OK, SC, TN, and TX): Species in Red = Depleted to the Point They May Warrant Federal Endangered Species Act Listing
    Southern and Midwestern Turtle Species Affected by Commercial Harvest (in AR, FL, GA, IA, KY, LA, MO, OH, OK, SC, TN, and TX): species in red = depleted to the point they may warrant federal Endangered Species Act listing Common snapping turtle (Chelydra serpentina) – AR, GA, IA, KY, MO, OH, OK, SC, TX Florida common snapping turtle (Chelydra serpentina osceola) - FL Southern painted turtle (Chrysemys dorsalis) – AR Western painted turtle (Chrysemys picta) – IA, MO, OH, OK Spotted turtle (Clemmys gutatta) - FL, GA, OH Florida chicken turtle (Deirochelys reticularia chrysea) – FL Western chicken turtle (Deirochelys reticularia miaria) – AR, FL, GA, KY, MO, OK, TN, TX Barbour’s map turtle (Graptemys barbouri) - FL, GA Cagle’s map turtle (Graptemys caglei) - TX Escambia map turtle (Graptemys ernsti) – FL Common map turtle (Graptemys geographica) – AR, GA, OH, OK Ouachita map turtle (Graptemys ouachitensis) – AR, GA, OH, OK, TX Sabine map turtle (Graptemys ouachitensis sabinensis) – TX False map turtle (Graptemys pseudogeographica) – MO, OK, TX Mississippi map turtle (Graptemys pseuogeographica kohnii) – AR, TX Alabama map turtle (Graptemys pulchra) – GA Texas map turtle (Graptemys versa) - TX Striped mud turtle (Kinosternon baurii) – FL, GA, SC Yellow mud turtle (Kinosternon flavescens) – OK, TX Common mud turtle (Kinosternon subrubrum) – AR, FL, GA, OK, TX Alligator snapping turtle (Macrochelys temminckii) – AR, FL, GA, LA, MO, TX Diamond-back terrapin (Malaclemys terrapin) – FL, GA, LA, SC, TX River cooter (Pseudemys concinna) – AR, FL,
    [Show full text]
  • Sternotherus Depressus) in the Bankhead National Forest, Alabama
    Home Range, Activity, Movement, and Habitat Selection of the Flattened Musk Turtle (Sternotherus depressus) in the Bankhead National Forest, Alabama by Arthur Joseph Jenkins A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 3, 2019 Keywords: Flattened Musk Turtle, Sternotherus depressus, Habitat Selection, Home Range, Movement, Activity Copyright 2019 by Arthur Joseph Jenkins Approved by Daniel Warner, Chair, Assistant Professor of Biological Sciences John Feminella, Professor of Biological Sciences David Steen, Research Ecologist, Georgia Sea Turtle Center Todd Steury, Associate Professor of Forestry and Wildlife Sciences Abstract The Flattened Musk Turtle, Sternotherus depressus, is an imperiled aquatic species endemic to the Upper Black Warrior watershed in Alabama. As one of the most understudied turtles in the United States, little is known about its habits. This is especially true of their spatial ecology, one of the most important fields of ecological knowledge to inform management and conservation practices. To fill this information gap, this study employs radio telemetry, trapping, habitat, and wading (visual encounter) surveys to explore aspects of S. depressus spatial ecology in Bankhead National Forest (BNF) by describing home range and areas of core use, identifying factors that affect activity and movement, and modeling habitat selection on multiple levels (second-order, or population level; third-order, or patch level; and fourth-order, or microhabitat level). Home ranges, quantified as stream length inhabited, of 21 individuals averaged 332 m, ranging from 22 to 957 m. Areas of core stream use were also quantified as stream length by kernel density estimation using the Sheather-Jones plug-in method for individual bandwidth selection.
    [Show full text]
  • Common Musk Turtle
    Common Musk Turtle Common Musk Turtle [Stinkpot] - Pl. 1 (Sternotherus odoratus) Identification: 2" - 5 3/8". The Common Musk Turtle has an olive-brown to black carapace, sometimes marked with dark spots or streaks. The carapace is smooth and domed, and may have green algae growing on its surface. The plastron is yellow to brown. Two key identifying features on the relatively small plastron are: (1) a single hinge, and (2) squarish pectoral scutes (just in front of the hinge). Other key features are two light stripes on the head (these may be hidden by dark pigment), and barbels (small fleshy projections) on the chin and throat. Where to find them: The Common Musk Turtle can be found in still or slow-moving bodies of water, where it prefers to walk slowly along the bottom. It basks just at or below the surface, but can also be seen basking on fallen trees and branches overhanging the water. When to find them: Active April through October. Range: Entire state. Note: In New Jersey, the turtle most similar to this is the Eastern Mud Turtle, which lacks the stripes and the barbels, and has two hinges instead of one. Common Musk Turtle (Sternotherus odoratus) - text pg. 10 Key Features - Carapace: smooth & domed. - Plastron: small with single hinge. - Barbels on chin, two light stripes on head. New Jersey Division of Fish and Wildlife ~ 2003 Excerpt from: Schwartz, V. & D. Golden, “Field Guide to Reptiles and Amphibians of New Jersey”. New Jersey Division of Fish and Wildlife 2002. Order the complete guide at - http://www.state.nj.us/dep/fgw/products.htm.
    [Show full text]