数字 悪性腫瘍 Malignant Tumor 悪性貯留液 Malignant Effusion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Emergencies in Paediatrics and Neonatology Published and Forthcoming Titles in the Emergencies in … Series
OXFORD MEDICAL PUBLICATIONS Emergencies in Paediatrics and Neonatology Published and forthcoming titles in the Emergencies in … series: Emergencies in Adult Nursing Edited by Philip Downing Emergencies in Anaesthesia Edited by Keith Allman, Andrew McIndoe, and Iain H. Wilson Emergencies in Cardiology Edited by Saul G. Myerson, Robin P. Choudhury, and Andrew Mitchell Emergencies in Children’s and Young People’s Nursing Edited by E.A. Glasper, Gill McEwing, and Jim Richardson Emergencies in Clinical Surgery Edited by Chris Callaghan, Chris Watson and Andrew Bradley Emergencies in Critical Care, 2e Edited by Martin Beed, Richard Sherman, and Ravi Mahajan Emergencies in Gastroenterology and Hepatology Marcus Harbord and Daniel Marks Emergencies in Mental Health Nursing Edited by Patrick Callaghan Emergencies in Obstetrics and Gynaecology Edited by S. Arulkumaran Emergencies in Oncology Edited by Martin Scott-Brown, Roy A.J. Spence, and Patrick G. Johnston Emergencies in Paediatrics and Neonatology, 2e Edited by Stuart Crisp and Jo Rainbow Emergencies in Palliative and Supportive Care Edited by David Currow and Katherine Clark Emergencies in Primary Care Chantal Simon, Karen O’Reilly, John Buckmaster, and Robin Proctor Emergencies in Psychiatry, 2e Basant Puri and Ian Treasaden Emergencies in Radiology Edited by Richard Graham and Ferdia Gallagher Emergencies in Respiratory Medicine Edited by Robert Parker, Catherine Thomas, and Lesley Bennett Emergencies in Sports Medicine Edited by Julian Redhead and Jonathan Gordon Head, Neck and Dental -
Oral Health and Respiratory Infection
C LINICAL P RACTICE Oral Health and Respiratory Infection • Philippe Mojon, DMD, PhD • Abstract The oral cavity has long been considered a potential reservoir for respiratory pathogens. The mechanisms of infec- tion could be aspiration into the lung of oral pathogens capable of causing pneumonia, colonization of dental plaque by respiratory pathogens followed by aspiration, or facilitation by periodontal pathogens of colonization of the upper airway by pulmonary pathogens. Several anaerobic bacteria from the periodontal pocket have been isolated from infected lungs. In elderly patients living in chronic care facilities, the colonization of dental plaque by pulmonary pathogens is frequent. Notably, the overreaction of the inflammatory process that leads to destruc- tion of connective tissue is present in both periodontal disease and emphysema. This overreaction may explain the association between periodontal disease and chronic obstructive pulmonary disease, the fourth leading cause of death in the United States. These findings underline the necessity for improving oral hygiene among patients who are at risk and those living in long-term care institutions. MeSH Key Words: aged; periodontal diseases/epidemiology; pneumonia, aspiration/epidemiology; pneumonia, aspiration/ prevention & control © J Can Dent Assoc 2002; 68(6):340-5 This article has been peer reviewed. he anatomical continuity between the lungs and the different for the 2 types. CAP is a frequent illness, with an oral cavity makes the latter a potential reservoir of incidence rate estimated at about 8 cases per 1,000 inhabi- Trespiratory pathogens. Yet an infective agent must tants per year in industrialized countries. The mortality rate defeat sophisticated immunological and mechanical is about 7% in hospitalized patients.1 Streptococcus pneumo- defence mechanisms to reach the lower respiratory tract. -
Sectional Survey of Staff Physicians, Residents and Medical Students
Open access Original research BMJ Open: first published as 10.1136/bmjopen-2020-044240 on 26 March 2021. Downloaded from Influence of language skills on the choice of terms used to describe lung sounds in a language other than English: a cross-sectional survey of staff physicians, residents and medical students Abraham Bohadana , Hava Azulai, Amir Jarjoui, George Kalak, Ariel Rokach, Gabriel Izbicki To cite: Bohadana A, Azulai H, ABSTRACT Strengths and limitations of this study Jarjoui A, et al. Influence of Introduction The value of chest auscultation would be language skills on the choice enhanced by the use of a standardised terminology. To ► To our knowledge, this is the first study to examine of terms used to describe lung that end, the recommended English terminology must sounds in a language other than the transfer to language other than English of the be transferred to a language other than English (LOTE) English: a cross-sectional survey recommended lung sound terminology in English. without distortion. of staff physicians, residents and ► True sound classification was validated by computer- Objective To examine the transfer to Hebrew—taken as medical students. BMJ Open based sound analysis. 2021;11:e044240. doi:10.1136/ a model of LOTE—of the recommended terminology in ► Participants were from the same hospital—which English. bmjopen-2020-044240 tends to limit the study generalisability—but had Design/setting Cross- sectional study; university- based Prepublication history and different clinical and educational background. ► hospital. supplemental material for this ► Use of more complex sounds (eg, rhonchus and Participants 143 caregivers, including 31 staff paper is available online. -
Diffuse Alveolar Hemorrhage Syndrome Secondary to Bocavirus
Case report Diffuse alveolar hemorrhage syndrome secondary to bocavirus and rhinovirus infection in a pediatric patient Síndrome de hemorragia alveolar difusa secundaria a coinfección por Rhinovirus y Bocavirus en un paciente pediátrico Carlos Eduardo Reina1 , Sandra Patricia Concha2, Rubén Eduardo Lasso2, Fernando Bermúdez2, María Teresa Agudelo3 Abstract The diffuse alveolar hemorrhage syndrome is characterized by the presence of blood in the pulmonary alveolus from arterioles, venules and pulmonary Date correspondence: capillaries, as a consequence of the lesion of the alveolar wall and without an Received: February 20, 2015. endobronchial alteration. Its presentation includes a classic triad of hemopty- Revised: September 11, 2017. sis, anemia and diffuse alveolar infiltrates. It´s a rare but potentially fatal entity Accepted: October 31, 2017. and there are no clear data on its real incidence in the pediatric population. We present the case of a previously healthy pediatric patient, immunocompetent, How to cite: who presented diffuse alveolar hemorrhage syndrome with secondary venti- Reina CE, Concha SP, Lasso RE, latory failure. After discarding all possible etiologies, coinfection by Rhinovirus Bermudez F, Agudelo MT. Diffuse and human Bocavirus was detected through the polymerase chain reaction, alveolar hemorrhage syndrome determining them as causal factors of the event. Recently, viral infections secondary to Rhinovirus and have been postulated as causing serious lung disease, especially coinfec- Bocavirus coinfection in a tion in immunocompromised patients, in this case Rhinovirus and human pediatric patient. Rev CES Bocavirus; however there are no reports on the syndrome caused by these Medicina. 2018; 32(1): 53-60. viruses. Open access Keywords: Diffuse alveolar hemorrhage; Respiratory failure; Rhinovirus; © Derecho de autor Human Bocavirus. -
The Health Bulletin [Serial]
HEALTH SCIENCES LIBRARY OF THE UNIVERSITY OF NORTH CAROLINA This book must not be token from the Library building. Form No. 471 NOTICE TO READER.— When you finish reading this magazine place a one-cent stamp on this notice, hand same to »ny postal em- ployee and it will be placed in the hands of our soldiers or sailors atihe front. NO WRAPPING— NO ADDRESS. Thl5 BulkliAwillbe 5er\t free to qimj citizen of the State uporxreguest j as second-clasa Entered matter at Postoffice at Raleigh, N. C, under Act of July 16, 1894. Published monthly at the office ef the Secretary of the Board, Raleigh, N. O. Vol..XXXIII APRIL, 1918 No. 1 HOGS OR FOLKS, WHICH? seepages ONLY THE PEOPLE CAN LOOSE THE BONDS TABLE OF CONTENTS Hogs or Folks, Which ? 3 Physician Found Guilty 13 Sentekced to Prison oe Steriliza- More Intelligent Excitement tion 3 Needed 13 Soldiers and Tobacco 4 Paste This on Your Mirror 14 Popular Mistakes 4 What Vaccination Will Do 14 State Death Rate 5 Low Know How to Live 15 Three Things to Do 5 Spring Fever and Bran ... 16 Tanlac—The Master Medicine .... 5 Wheat Large Scars and Sore Arms Unneces- First Aid Instructions 17 sary 6 How to Stop Worrying 18 Cancer Not Inherited 7 Gasoline as an Emergency Medicine 19 School Epidemics 8 Don't Stand so Much 19 Where Ignorance is Crimin.a.l 9 Safe Guide to Healthful Eating. 19 Play is the Thing 10 Saving Mothers 20 How an Epidemic Developed 11 Why Register a Baby? 21 Sex Hygiene 12 Avoid Early Handicaps 21 Typhoid Bacillus Carries foe Over Why Nurse Your Baby ? 21 Forty Years 12 Have Early Diagnosis 22 Open-Air Schools 12 Symptoms of Tuberculosis 24 MEMBERS OF THE NORTH CAROLINA STATE BOARD OF HEALTH J. -
Investigation of Respiratory Disease Chapter 4.2 (B)
4.1 THE CLINICAL PRESENTATION OF CHEST DISEASES 347 Table 1 Modified Borg Scale∗ Chapter 4.1 Number Verbal description 10 Severe The clinical presentation of chest 9 diseases 8 Moderately severe 7 D. J. Lane 6 5 Moderate 4 The predominant symptoms of chest diseases are cough, breath- 3 lessness, chest pain and haemoptysis. 2 Slight 1 0 None ∗Modified from Borg, G.A.V. (1982). Psychological basis of perceived exertion. Cough Medical Science of Sports and Exercise, 14, 377–81. The cough reflex is initiated by stimulation of receptors in the larynx and major airways, by mechanical or chemical irritants. The afferent fibres run in branches of the superior laryngeal nerve and vagus. Haemoptysis A dry cough, short and repeated, is heard in tracheobronchitis A definite cause is only found in some 50 per cent of cases and it is and early pneumonia. In laryngitis the sound is hoarse and harsh. important to be sure that the blood does truly come from the lungs In abductor paralysis of the vocal cords it is prolonged and and not from the nose or gastrointestinal tract. Haemoptysis is a blowing. Weakness of thoracic muscles lessens the expulsive force classical presenting feature of tuberculosis, carcinoma, and bronchi- and cough may be suppressed when there is severe thoracic or ectasis, but there are many other causes, for instance Goodpasture’s upper abdominal pain. Cough with expectoration in the morning syndrome, mitral valve disease, coagulation defects, or even endo- is characteristic of chronic bronchitis and large volumes of yellow metriosis. It is rare in pulmonary embolism, when it reflects infarction sputum throughout the day suggests bronchiectasis. -
Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis
International Journal of Molecular Sciences Review Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis Olga Cañadas 1,2,Bárbara Olmeda 1,2, Alejandro Alonso 1,2 and Jesús Pérez-Gil 1,2,* 1 Departament of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; [email protected] (O.C.); [email protected] (B.O.); [email protected] (A.A.) 2 Research Institut “Hospital Doce de Octubre (imasdoce)”, 28040 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-913944994 Received: 9 May 2020; Accepted: 22 May 2020; Published: 25 May 2020 Abstract: Pulmonary surfactant is a lipid/protein complex synthesized by the alveolar epithelium and secreted into the airspaces, where it coats and protects the large respiratory air–liquid interface. Surfactant, assembled as a complex network of membranous structures, integrates elements in charge of reducing surface tension to a minimum along the breathing cycle, thus maintaining a large surface open to gas exchange and also protecting the lung and the body from the entrance of a myriad of potentially pathogenic entities. Different molecules in the surfactant establish a multivalent crosstalk with the epithelium, the immune system and the lung microbiota, constituting a crucial platform to sustain homeostasis, under health and disease. This review summarizes some of the most important molecules and interactions within lung surfactant and how multiple lipid–protein and protein–protein interactions contribute to the proper maintenance of an operative respiratory surface. Keywords: pulmonary surfactant film; surfactant metabolism; surface tension; respiratory air–liquid interface; inflammation; antimicrobial activity; apoptosis; efferocytosis; tissue repair 1. -
The Complete Poetry of James Hearst
The Complete Poetry of James Hearst THE COMPLETE POETRY OF JAMES HEARST Edited by Scott Cawelti Foreword by Nancy Price university of iowa press iowa city University of Iowa Press, Iowa City 52242 Copyright ᭧ 2001 by the University of Iowa Press All rights reserved Printed in the United States of America Design by Sara T. Sauers http://www.uiowa.edu/ϳuipress No part of this book may be reproduced or used in any form or by any means without permission in writing from the publisher. All reasonable steps have been taken to contact copyright holders of material used in this book. The publisher would be pleased to make suitable arrangements with any whom it has not been possible to reach. The publication of this book was generously supported by the University of Iowa Foundation, the College of Humanities and Fine Arts at the University of Northern Iowa, Dr. and Mrs. James McCutcheon, Norman Swanson, and the family of Dr. Robert J. Ward. Permission to print James Hearst’s poetry has been granted by the University of Northern Iowa Foundation, which owns the copyrights to Hearst’s work. Art on page iii by Gary Kelley Printed on acid-free paper Library of Congress Cataloging-in-Publication Data Hearst, James, 1900–1983. [Poems] The complete poetry of James Hearst / edited by Scott Cawelti; foreword by Nancy Price. p. cm. Includes index. isbn 0-87745-756-5 (cloth), isbn 0-87745-757-3 (pbk.) I. Cawelti, G. Scott. II. Title. ps3515.e146 a17 2001 811Ј.52—dc21 00-066997 01 02 03 04 05 c 54321 01 02 03 04 05 p 54321 CONTENTS An Introduction to James Hearst by Nancy Price xxix Editor’s Preface xxxiii A journeyman takes what the journey will bring. -
Respiratory System
RESPIRATORY SYSTEM Dept.Dept. ofof HistologyHistology andand EmbryologyEmbryology 周莉周莉 教授教授 Respiratory System Nose Pharynx Larynx Trachea Bronchus Lung NASAL CAVITY 1. Mucosa:epithelium and lamina propria 1.1 Vestibular Region: 1.2 Respiratory Region: pseudostratified ciliated columnar epithelium, mixture glands (nasal glands), abundant blood vessels and lymphoid tissue in lamina propria 1.3 Olfactory Region (1) Olfactory epithelium: pseudostratified ciliated columnar epithelium A. supporting cells B. olfactory cells C. basal cells (2) Lamina Propria: olfactory glands (serous type) Olfactory epithelium TRACHEA AND BRONCHUS Mucosa: Pseudostratified ciliated columnar epiothelium Lamina propia Submucosa:LCT Advantitia: cartilage tissue and CT 1. Mucosa 1.11.1 PseudostratifiedPseudostratified ciliatedciliated columnarcolumnar epitheliumepithelium (1)(1) ciliatedciliated cellscells (2)(2) gobletgoblet cellscells (3)(3) basalbasal cellscells (4)(4) brushbrush cellscells (5)(5) diffusediffuse neuroendocrineneuroendocrine cellscells (small(small granulegranule cells)cells) Tracheal Sueface (SEM) Pseudostratified ciliated columnar epithelium(LM) 1.21.2 LaminaLamina PropriaPropria ThickThick basementbasement membrane,membrane, CTCT,, immuneimmune cellscells 2.2. SubmucosaSubmucosa::LCTLCT TrachealTracheal glandsglands (( mixturemixture type)type),, mucousmucous barrierbarrier lymphoidlymphoid tissuetissue thethe effectseffects ofof sIgAsIgA Tracheal wall 3. Advantitia C- shaped rings of hyaline cartilage and LCT membrane portion:ligament rich in -
Automatic Adventitious Respiratory Sound Analysis: a Systematic Review
RESEARCH ARTICLE Automatic adventitious respiratory sound analysis: A systematic review Renard Xaviero Adhi Pramono, Stuart Bowyer, Esther Rodriguez-Villegas* Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom * [email protected] Abstract a1111111111 Background a1111111111 Automatic detection or classification of adventitious sounds is useful to assist physicians in a1111111111 a1111111111 diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Dis- a1111111111 ease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. OPEN ACCESS Citation: Pramono RXA, Bowyer S, Rodriguez- Objective Villegas E (2017) Automatic adventitious respiratory sound analysis: A systematic review. To provide a review of existing algorithms for the detection or classification of adventitious PLoS ONE 12(5): e0177926. https://doi.org/ respiratory sounds. This systematic review provides a complete summary of methods used 10.1371/journal.pone.0177926 in the literature to give a baseline for future works. Editor: Thomas Penzel, Charite - UniversitaÈtsmedizin Berlin, GERMANY Received: December 16, 2016 Data sources Accepted: May 5, 2017 A systematic review of English articles published between 1938 and 2016, searched using Published: May 26, 2017 the Scopus (1938-2016) -
Investigation on Microparticle Transport and Deposition Mechanics in Rhythmically Expanding Alveolar Chip
micromachines Article Investigation on Microparticle Transport and Deposition Mechanics in Rhythmically Expanding Alveolar Chip Jun Dong 1,† , Yan Qiu 1,†, Huimin Lv 1, Yue Yang 2,* and Yonggang Zhu 2,* 1 School of Science, Harbin Institute of Technology, Shenzhen 518055, China; [email protected] (J.D.); [email protected] (Y.Q.); [email protected] (H.L.) 2 School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China * Correspondence: [email protected] (Y.Y.); [email protected] (Y.Z.) † These authors contributed equally to this work. Abstract: The transport and deposition of micro/nanoparticles in the lungs under respiration has an important impact on human health. Here, we presented a real-scale alveolar chip with movable alveolar walls based on the microfluidics to experimentally study particle transport in human lung alveoli under rhythmical respiratory. A new method of mixing particles in aqueous solution, instead of air, was proposed for visualization of particle transport in the alveoli. Our novel design can track the particle trajectories under different force conditions for multiple periods. The method proposed in this study gives us better resolution and clearer images without losing any details when mapping the particle velocities. More detailed particle trajectories under multiple forces with different directions in an alveolus are presented. The effects of flow patterns, drag force, gravity and gravity directions are evaluated. By tracing the particle trajectories in the alveoli, we find that the drag force contributes to the reversible motion of particles. However, compared to drag force, the gravity is the decisive factor for particle deposition in the alveoli. -
Synchrotron X-Ray Imaging of Pulmonary Alveoli in Respiration In
View metadata, citation and similar papers at core.ac.uk brought to you by CORE OPEN Synchrotron x-ray imaging of pulmonary SUBJECT AREAS: alveoli in respiration in live intact mice RESPIRATION Soeun Chang1,2*, Namseop Kwon1,3*, Jinkyung Kim1, Yoshiki Kohmura4, Tetsuya Ishikawa4, IMAGING TECHNIQUES Chin Kook Rhee5, Jung Ho Je1,2,4 & Akira Tsuda6 IMAGING 1X-ray Imaging Center, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea, 2Department Received of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang, 790-784, Korea, 3School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, San 31, Hyoja- 19 September 2014 4 5 dong, Pohang, 790-784, Korea, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo, Hyogo, 679-5198, Japan, Division of Accepted Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary’s Hospital, Catholic University of Korea, 6 3 February 2015 505 Banpo-dong, Seocho-Gu, Seoul, 137-701, Korea, Harvard School of Public Health, Boston, Massachusetts, USA. Published 4 March 2015 Despite nearly a half century of studies, it has not been fully understood how pulmonary alveoli, the elementary gas exchange units in mammalian lungs, inflate and deflate during respiration. Understanding alveolar dynamics is crucial for treating patients with pulmonary diseases. In-vivo, real-time visualization of the alveoli during respiration has been hampered by active lung movement. Previous studies have been Correspondence and therefore limited to alveoli at lung apices or subpleural alveoli under open thorax conditions. Here we report requests for materials direct and real-time visualization of alveoli of live intact mice during respiration using tracking X-ray should be addressed to microscopy.