PROGRESS REPORT on CONTROLLED FUSION

Total Page:16

File Type:pdf, Size:1020Kb

PROGRESS REPORT on CONTROLLED FUSION PROGRESS REPORT on CONTROLLED FUSION RESEARCH* by M. H. BRENNAN October, 1972 School of Physical Sciences The Flinders University of South Australia Bedford Park, South Australia 5042 'rReport prepared for the Australian Atomic Energy Commission. 1. INTRODUCTION In this report a survey is made of the international research programme directed towards the development of a controlled thermonuclear fusion reactor. The report is based on observations made during an overseas trip which included attendance at a meeting of the international Fusion Research Council and the Fifth European Conference on Controlled Fusion and Plasma Physics. The itinerary for the trip, which was from 13th August to 28th September, 1972, is included as Appendix A to this report. In order to provide a basis for evaluating the fusion research programme a brief summary is given in Section 2 of the basic requirements for a fusion reactor. In Sections 3 and k of the report brief summeries are given of the main features of the Council meeting and the Fifth European Conference. The current state of fusion research is reviewed in Section 5° The final Section of the report includes a discussion of the present and near-future international fusion research programme, and some comments on the Australian programme. 2. THE FUSION REACTOR 2.1 The Scientific Problem The most favourable nuclear reaction for the release of nuclear energy from the fusion of light elements is the deuterium-tritium reaction (D-T reaction). This reaction has a cross section, at energies of -100 keV, of several hundred times that for the D-D reaction (deuterium-deuterium). In addition, considerably more energy is released per interaction. We therefore concentrate our attention on the D-T reaction; it may be possible, at a later stage, to develop a reactor based on the D-D reaction. The reaction involved is 1H2 + 1H3 -*- aHe" + n1 + (17.6 Mev) . Approximately 14 Mev of the released energy is carried away by the neutron. The deuterium fuel is, of course, available from sea water; the total energy available is sufficient to satisfy the world's electrical energy requirements - 2 - for -JO years. The tritium fuel is, of course, not available naturally and is therefore produced in the reactor system, using a lithium blanket, which also serves as a neutron moderator and is a component of the heat exchange system. In order to achieve the high particle energies required, the fuel (a 50/50 mixture of deuterium and tritium) must be heated to a temperature of ~2 x 108 K, corresponding to a value of kT of 20 keVc At these high temperatures, the atoms of the fuel are all ionized and the gas is in the plasma state. In addition to the temperature requirement, the plasma particles must be contained in the reaction region for a sufficiently long period to allow nuclear interactions to take place, so that there is a net release of energy. Detailed calculations show that the break-even condition can be expressed as the Lawson criterion: ni > 101** cm"3 s , where n is the particle density (cm"3) and T is the confinement time (seconds). The scientific feasibility of nuclear fusion as an energy source thus requires heating a plasma to a temperature of ~20 keV and achieving a particle confinement time greater than that given by the Lawson criterion. 2.2 Confinement and Heatinc Schemes The basic confinement and heating conditions may be met, in principle, In many ways. In some systems, such as the stellarator, these two conditions may be satisfied more or less independantly; ?n the 0-pinch they are inextricably connected. The Lawson criterion allows a wide range of densities to be used in achieving fusion conditions; we may use th.s fact to classify the various confinement schemes into two broad categories: Low density (n~ 101* -1017 cm"3 T Z 1 - 10"3s) High density (n~1020 -1026 cm"3 T Z 10"6 - 10"12 s) . - 3 - 2.2.1 Low Density Systems The low density systems can again be divided according to two criteria: the magnetic field configuration - open or closed - and the ratio, (3, of plasma pressure to magnetic field pressure The major low density confinement systems are classified according to these two criteria in Table i. \« - nkT Low (< 0,1) High (> 0.1) Confining ^v field X. Open Mirror machine Straight 6-pinch Closed Stellarator, Diffuse pinch. torsatron Toroidal 6-pinch, Tokamak high-B stellarator Internal conductor Astron Table I Major types of low density confinement systems Mirror machine: The simple magnetic mirror system is macroscopically unstable against the magnetohydrodynamic (MHD) instability. Stability has been achieved against this instability by creating a "minimum-B1' configuration In which the magnetic field increases in all directions away from the central plasma region. Plasma production and heating have been achieved mainly by energetic particle injection, adiabatic compression, and r.f. heating. The major difficulty in these devices is the loss of particles along the magnetic field lines, through the mirrors. This may have two serious consequences: (a) the loss of energetic particles may represent too high a loss rate in a reactor system; - i» - (b) The non-Maxwellian nature of the resulting velocity distribution excites a variety of microscopic instabilities which may prevent the achievement of the required confinement times. Straight 0-pinch: in the 6-pinch, a rapidly rising axial magnetic field (B ) induces a surface current (L) in a low density pJasma,, The resultant jflB force rapidly compresses and heats the plasma, Confinement is achieved by the high axial magnetic field. The major loss mechanism is axial diffusion. Reactor conditions would require a length of several kilometres and very large electrical power output (1010 - 1011 watts). Stellarator, torsatron: ^A in the stellarator and related toroidal devices, particularly the torsatron, containment of the plasma is achieved by a magnetic field of complex geometry, consisting of closed nested toroidal surfaces, produced entirely by currents flowing in external conductors In the case of the stellarator, toroidal coils producing a large toroidal field, B , and helical windings produce the required field configuration. In the torsatron the required field configuration can be produced In a single set of variable pitch helical windings. A major feature of the stellarator is that heating and confinement are separated functions Thus, stellarator plasmas have been heated in a variety of ways, The most important of these, from the reactor point of view, are: (aj Neutral particle injection — a beam of energetic neutral particles is injected into the plasma (as is done in the mirror machines); (b) Turbulent heating — large currents induced in the plasma create sma'i scale turbulence which aids in the transfer of energy to the plasma; (c) Radio frequency heating — plasmas exhibit a number of natural resonances and energy transfer from waves to particles can be very efficient in the vicinity of some of these resonances. Tokamak: i.»Cf^ • -vrccoJ in the Tokamak the plasma is both heated and confined by currents flowing parallel to the major circumference of the torus. The self magnetic field, BQ, of this current, an externally-generated toroidal field, B , and - 5 - induced wal currents, or a small magnetic field parallel to the major axis of the torus, produce the required field configuration. Supplementary heating will probably be required: this may be achieved by any of the methods used for stellarator heating, in addition, adiabatic compress1on of the plasma, in principle, can be accomplished very simply and economically by moving the plasma (using the plasma current and a small transverse magnetic field) to a position of smaller major diameter; this moves the plasma to a region of higher magnetic field (because of the radial dependence of the large toroidal field) , thus compressing and heating it, interna^ conductor systems: Systems with internal current-carrying conductors are unlikely to be of interest for a reactor. However, they continue to provide valuable Information on plasma confinement and stability in easily variable magnetic field configurations. Astron: in the Astron a relativistic charged particle layer creates a dosed- Hne magnetic field configuration which !s capable, in principle, of heating and confining a plasma at reactor conditions. Currently, research is being conducted with relativistic electrons; favourable results would justify serious consideration being given to this approach. Diffuse pinch: in the Tokamak and stellarator the poloidal field is very much smaller than the toroidal field (B„/B ~ 0.1) and the 3-value is relatively o Z smallo A large expenditure is therefore required to produce the toroidal field. A more economically attractive approach (at least in this regard) is the general class of high-3 devices. The diffuse pinches, screw pinches, and belt pinches, are variants of configurations that are Mhigh-&, current carrying toroidal devices". In these devices Bfl~B -- the magnetic field y z has a very high shear and 3 may be as high as ~0.5. Zeta was the first major device of this type. — ^^u»«^ "r1"? Plasma heating in these devices is achieved by the large axial currents or by fast compression. - 6 - Toroidal 9-pinches, high-8 stellarators: The stellarator configuration is limited to very low (3-values. It may however be possible to achieve a stable configuration, at higher B, using more complex field configurations and, possibly, feedback stabilization. Examples of such devices are ISAR T-1 (Garching) which is a toroidal 6-pirich in which a combination of helical windings U=1 and £=2) may be able to provide an equilibrium configuration, in a similar, and larger device (SCYLLAC), the Los Alamos group is investigating feedback stabilization on a toroidal sector. Other approaches: This rather oversimplified classification scheme omits a number of possible devices.
Recommended publications
  • L-Shell and Energy Dependence of Magnetic Mirror Point of Charged
    Soni et al. Earth, Planets and Space (2020) 72:129 https://doi.org/10.1186/s40623-020-01264-5 FULL PAPER Open Access L-shell and energy dependence of magnetic mirror point of charged particles trapped in Earth’s magnetosphere Pankaj K. Soni* , Bharati Kakad and Amar Kakad Abstract In the Earth’s inner magnetosphere, there exist regions like plasmasphere, ring current, and radiation belts, where the population of charged particles trapped along the magnetic feld lines is more. These particles keep performing gyration, bounce and drift motions until they enter the loss cone and get precipitated to the neutral atmosphere. Theoretically, the mirror point latitude of a particle performing bounce motion is decided only by its equatorial pitch angle. This theoretical manifestation is based on the conservation of the frst adiabatic invariant, which assumes that the magnetic feld varies slowly relative to the gyro-period and gyro-radius. However, the efects of gyro-motion can- not be neglected when gyro-period and gyro-radius are large. In such a scenario, the theoretically estimated mirror point latitudes of electrons are likely to be in agreement with the actual trajectories due to their small gyro-radius. Nevertheless, for protons and other heavier charged particles like oxygen, the gyro-radius is relatively large, and the actual latitude of the mirror point may not be the same as estimated from the theory. In this context, we have carried out test particle simulations and found that the L-shell, energy, and gyro-phase of the particles do afect their mirror points. Our simulations demonstrate that the existing theoretical expression sometimes overestimates or underesti- mates the magnetic mirror point latitude depending on the value of L-shell, energy and gyro-phase due to underlying guiding centre approximation.
    [Show full text]
  • Nicholas Christofilos and the Astron Project in America's Fusion Program
    Elisheva Coleman May 4, 2004 Spring Junior Paper Advisor: Professor Mahoney Greek Fire: Nicholas Christofilos and the Astron Project in America’s Fusion Program This paper represents my own work in accordance with University regulations The author thanks the Program in Plasma Science and Technology and the Princeton Plasma Physics Laboratory for their support. Introduction The second largest building on the Lawrence Livermore National Laboratory’s campus today stands essentially abandoned, used as a warehouse for odds and ends. Concrete, starkly rectangular and nondescript, Building 431 was home for over a decade to the Astron machine, the testing device for a controlled fusion reactor scheme devised by a virtually unknown engineer-turned-physicist named Nicholas C. Christofilos. Building 431 was originally constructed in the late 1940s before the Lawrence laboratory even existed, for the Materials Testing Accelerator (MTA), the first experiment performed at the Livermore site.1 By the time the MTA was retired in 1955, the Livermore lab had grown up around it, a huge, nationally funded institution devoted to four projects: magnetic fusion, diagnostic weapon experiments, the design of thermonuclear weapons, and a basic physics program.2 When the MTA shut down, its building was turned over to the lab’s controlled fusion department. A number of fusion experiments were conducted within its walls, but from the early sixties onward Astron predominated, and in 1968 a major extension was added to the building to accommodate a revamped and enlarged Astron accelerator. As did much material within the national lab infrastructure, the building continued to be recycled. After Astron’s termination in 1973 the extension housed the Experimental Test Accelerator (ETA), a prototype for a huge linear induction accelerator, the type of accelerator first developed for Astron.
    [Show full text]
  • Anl-7807 Anl-7807 Survey of Thermonuclear-Reactor
    ANL-7807 ANL-7807 SURVEY OF THERMONUCLEAR-REACTOR PARAMETERS P. J. Persiani, W. C. Lipinski, and A. J. Hatcli U of C-AUA-USAECB ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS Prepared for the U.S. ATOMIC ENERGY COMMISSION under Contract W-31-109-Eng-38 The faciliUes of Argonne National Laboratory are owned by the "-'f •> S'^^f °°^^%'" ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. ""^^^^J^^'J/ Commission, Argonne Universities Association and The University of Chicago, the ""'J'"=">' employs the staff and operates the Laboratory in accordance with policies and programs formu- lated, approved and reviewed by the Association. MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION The Ohio State University The University of Arizona Kansas State University Carnegie-Mellon University The University of Kansas Ohio University Case Western Reserve University Loyola University The Pennsylvania State University The University of Chicago Marquette University Purdue University University o£ Cincinnati Michigan State University Saint Louis University Illinois Institute of Technology The University of Michigan Southern Illinois University University of Illinois University of Minnesota The University of Texas at Austin Indiana University University of Missouri Washington University Iowa State University Northwestern University Wayne State University The University of Iowa University of Notre Dame The University of Wisconsin NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontrac­ tors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.
    [Show full text]
  • Fusion-The-Energy-Of-The-Universe
    Fusion The Energy of the Universe WHAT IS THE COMPLEMENTARY SCIENCE SERIES? We hope you enjoy this book. If you would like to read other quality science books with a similar orientation see the order form and reproductions of the front and back covers of other books in the series at the end of this book. The Complementary Science Series is an introductory, interdisciplinary, and relatively inexpensive series of paperbacks for science enthusiasts. The series covers core subjects in chemistry, physics, and biological sciences but often from an interdisciplinary perspective. They are deliberately unburdened by excessive pedagogy, which is distracting to many readers, and avoid the often plodding treatment in many textbooks. These titles cover topics that are particularly appropriate for self-study although they are often used as complementary texts to supplement standard discussion in textbooks. Many are available as examination copies to professors teaching appropriate courses. The series was conceived to fill the gaps in the literature between conventional textbooks and monographs by providing real science at an accessible level, with minimal prerequisites so that students at all stages can have expert insight into important and foundational aspects of current scientific thinking. Many of these titles have strong interdisciplinary appeal and all have a place on the bookshelves of literate laypersons. Potentialauthorsareinvitedtocontactoureditorialoffice: [email protected]. Feedback on the titles is welcome. Titles in the Complementary Science Series are detailed at the end of these pages. A 15% discount is available (to owners of this edition) on other books in this series—see order form at the back of this book.
    [Show full text]
  • Effect of Quaslconflned Particles and I= 2 Stellarator Fields on the Negative Mass Lnstablllty in a Modified Betatron G
    TABLE II. Coefficients a and b + r of log(ac,) vs log[2/( p 1/p0 +Pel ACKNOWLEDGMENTS p,)J. We thank Jeanette Nelson for a careful reading of the log(ac1 ) =a+ b log(2/( pc/p1 + p 1/p0 ) l when a = 10 manuscript and G. Pollarolo for useful discussions about the NAG FORTRAN LIBRARY. The numerical computations were 0.1 <Pi <Po< 10 carried out on the Vax 11/780 ofINFN Sezione di Torino. M = 100 M=30 M =IO a; b; r 0.44; 0.06; 0.99 0.33; 0.06; 0.98 0.42; 0.04; 0.98 1 where r0 is the Lorentz factor and spans between 1 and 10. A. E. Gill, Phys. Fluids 8, 1428 (1965). The presence of a shear in cylindrical symmetry has not 2 A. Ferrari, B. Trusooni, and L. Zaninetti, Mon. Not. R. Astron. Soc. 196, yet been considered and will presumably produce a cutoff in !OSI (1981). 3H. Cohn, Astrophys. J. 269, 500 (1983). the instabilities where a> 21'Id, with d (in jet radius units) 4 D. G. Payne and H. Cohn, Astrophys. J. 287, 29S (1984). the length characterizing the thickness of the shear. ' A. M. Anile, J.C. Miller, and S. Motta, Phys. Fluids 26, 14SO (1983). Effect of quaslconflned particles and I= 2 stellarator fields on the negative mass lnstablllty in a modified betatron G. Roberts and N. Rostoker Department ofPhy sics, University ofCalifomia, Irvine. California 92717 (Received 5 February 1985; accepted 10 October 1985) A sufficient stability condition for the negative mass instability is derived.
    [Show full text]
  • The US and the International Quest for Fusion Energy
    Chapter 4 Fusion Science and Technology Chapter 4 Fusion Science and Technology Great progress has been made over the past for lack of funds; science had a higher funding 35 years of fusion research. Nevertheless, many priority. In addition, fusion technologies that re- scientific and technological issues have yet to be quire a source of fusion power to be tested and resolved before fusion reactors can be designed developed have had to await a device that could and built. Fundamental questions in plasma sci- supply the power. Until recently, the fusion sci- ence remain, especially involving the behavior ence database has not been sufficient to permit of plasmas that actually produce fusion power. such a device to be designed with confidence. Other plasma science questions involve the be- This chapter discusses the various confinement havior and operation of the various confinement concepts under study, the systems required in a concepts that might be used to hold fusion fusion reactor, and the issues that must be re- plasmas. solved before such systems can be built. It then To date, engineering issues have not been stud- outlines the research plan required to resolve ied as extensively as plasma science issues. For these issues and estimates the amount of time and many years, engineering studies were deferred money that such a research plan will take. CONFINEMENT CONCEPTS’ Most of the fusion program’s research has fo- Table 4-1 lists the principal confinement schemes cused on different magnetic confinement con- presently under investigation in the United States cepts that can be used to create, confine, and and classifies them according to their level of de- understand the behavior of plasmas.
    [Show full text]
  • Publ. Astron. Obs. Belgrade No. 99 (2020), 256 - 257 Invited Lecture
    Publ. Astron. Obs. Belgrade No. 99 (2020), 256 - 257 Invited Lecture CHALLENGES AND PROGRESS ON THE PATH TOWARDS FUSION ELECTRICITY A. J. H. DONNÉ EUROfusion, Garching, Germany E-mail [email protected] Abstract. The European Roadmap to the Realisation of Fusion Energy1 breaks the quest for fusion energy into eight missions: 1. Plasma regimes of operation: Demonstrate plasma scenarios (based on the tokamak configuration) that increase the success margin of ITER and satisfy the requirements of DEMO. 2. Heat-exhaust systems: Demonstrate an integrated approach that can handle the large power leaving ITER and DEMO plasmas. 3. Neutron tolerant materials: Develop materials that withstand the large 14MeV neutron flux for long periods while retaining adequate physical properties. 4. Tritium self-sufficiency: Find an effective technological solution for the breeding blanket that also drives the generators. 5. Implementation of the intrinsic safety features of fusion: Ensure safety is integral to the design of DEMO using the experience gained with ITER. 6. Integrated DEMO design and system development: Bring together the plasma and all the systems coherently, resolving issues by targeted R&D activities 7. Competitive cost of electricity: Ensure the economic potential of fusion by minimising the DEMO capital and lifetime costs and developing long-term technologies to further reduce power plant costs. 8. Stellarator: Bring the stellarator line to maturity to determine the feasibility of a stellarator power plant. Now we are approaching the end of the 8th European Framework Programme (2014- 2020), it is a good moment to look back at the achievements since the establishment of EUROfusion in 2014, while at the same time have a peek into the future, to see which challenges lay ahead of us as well as the strategy to tackle them.
    [Show full text]
  • Observation of Nuclear Fusion Driven by a Pyroelectric Crystal
    letters to nature 1900þ14. I. An interpretive study of BeppoSAX and Ulysses observations. Astrophys. J. 549, electrostatic field of the crystal is used to generate and accelerate 1021–1038 (2001). a deuteron beam (>100 keV and >4 nA), which, upon striking a 10. Gaensler, B. M. et al. Second-epoch VLA observations of SGR 1806220. GRB Circ. Network 2933 (2005). deuterated target, produces a neutron flux over 400 times the 11. Corbel, S. & Eikenberry, S. S. The connection between W31, SGR 1806220, and LBV 1806220: background level. The presence of neutrons from the reaction Distance, extinction, and structure. Astron. Astrophys. 419, 191–201 (2004). D 1 D ! 3He (820 keV) 1 n (2.45 MeV) within the target is 12. Kolpak, M. A., Jackson, J. M., Bania, T. M. & Dickey, J. M. The radial distribution of cold atomic hydrogen in the galaxy. Astrophys. J. 578, 868–876 (2002). confirmed by pulse shape analysis and proton recoil spectro- 13. Corbel, S. et al. The distance of the soft gamma repeater SGR 1806220. Astrophys. J. 478, 624–630 scopy. As further evidence for this fusion reaction, we use a novel (1997). time-of-flight technique to demonstrate the delayed coincidence 14. Hartmann, D. & Burton, W. B. Atlas of Galactic Neutral Hydrogen. Ch. 4, 169 (Cambridge Univ. Press, between the outgoing a-particle and the neutron. Although the Cambridge, 1997). 15. Garwood, R. W. & Dickey, J. M. Cold atomic gas in the inner Galaxy. Astrophys. J. 338, 841–861 (1989). reported fusion is not useful in the power-producing sense, we 16. Figer, D.
    [Show full text]
  • Astron 104 Laboratory #7 Nuclear Fusion and Stars Chapter 12
    Lab #7 Name: Date: Section: Astron 104 Laboratory #7 Nuclear Fusion and Stars Chapter 12 Introduction You are intimately linked to the nuclear fusion that occurs in stars. Life on Earth thrives on sunlight, which originates as energy produced at the center of the Sun as hydrogen is fused to form helium. Even the very atoms and molecules of your body | iron in your blood, calcium in your bones, phosphorous in your DNA | were forged in stars and dispersed to the interstellar medium in spectacular explosions. In this lab, you will explore the creation of heavy elements and release of energy through nuclear fusion in stars. Learning Objectives At the completion of this lab, you should be able to: 1. Describe the components of atomic nuclei and the properties of subatomic particles 2. Describe the force between two protons as a function of their separation distance 3. Describe the temperature required for nuclear fusion of hydrogen and heavier elements 4. Describe how nuclear fusion produces energy 5. Describe why iron is the heaviest element that can be made via nuclear fusion in stars Atomic Nuclei [5 pts each, 15 pts total] Atomic nuclear are made of combinations of sub-microscopic particles called protons and neutrons. The neutron is slight more massive than the proton, but for now we will ignore that difference and assume the neutron and proton each have a mass of 1 unit. Protons have a positive electrical charge (let's call it +1 unit) and neutrons have no electrical charge. Astron 104 Fall 2015 1 Lab #7 1.
    [Show full text]
  • Towards Nuclear Fusion
    TOWARDS NUCLEAR FUSION The outlook for controlled nuclear fusion has many people had apparently been led to believe. become much more complex than it appeared to be - Professor Teller said that while he believed that at least to the general public - when the possibility of thermonuclear energy generation was possible, it was taming thermonuclear reactions for the production of not going to be "quite easy". Professor L.A.Artsim- useful power was optimistically mentioned at the 1955 ovich of the Soviet Union remarked: "We do not Geneva conference on the peaceful uses of atomic wish to be pessimistic in appraising the future of our energy. Indeed, it may now be impossible to re­ work, yet we must not underestimate the difficulties capture the widespread excitement that followed the which will have to be overcome before we learn to prediction about thermonuclear power by the Presi­ master thermonuclear fusion. " Dr. P. C. Thonemann dent of the conference. Dr. Homi J. Bhabha of India, of the United Kingdom thought that an answer to the and the subsequent disclosures that research on con­ question whether electrical power could be generated trolled nuclear fusion was actively under way in some "using the light elements as fuel by themselves" could of the technically advanced countries. be given only in the next decade, and if the answer was "yes" a further ten years would be required to The significance of this possibility was immedi­ answer the question whether such a power source was ately recognized and there were many enthusiastic economically valuable. accounts of what the generation of power from fusion reactions would mean to the world.
    [Show full text]
  • STATUS of FUSION RESEARCH and IMPLICATIONS for D-3He SYSTEMS
    STATUS OF FUSION RESEARCH AND IMPLICATIONS FOR D-3He SYSTEMS George H. Miley Fusion Studies Laboratory University of Illinois 103 South Goodwin Avenue Urbana, IL 61801 World-wide programs in both magnetic confinement and inertial confinement fusion research have made steady progress towards the experimental demonstration of energy breakeven.(*-') Both approaches are now in reach of this goal within the next few years using a D-T equivalent plasma. For magnetic confinement, this step is expected in one of the large tokamak experimental devices such as TFTR (USA), JET (EC), JT-60 (Japan), or T-15 (USSR). Upgraded versions of the Nova glass laser (USA) and CEKKO (Japan) also appear to have a good chance at this goal. The light-ion beam facility "PBFA-11" is viewed as a "dark horse" candidate. Recent physics parameters obtained in these various experiments will be briefly reviewed in this presentation. However, after breakeven is achieved, considerable time and effort must still be expended to develop a usable power plant. The time schedules envisioned by workers in the various countries involved are fairly similar.(l-J) For example, the European Community (EC) proposes to go from the physics studies in JET to an engineering test reactor (NET) which has a construction decision in 1991. This is projected to result in a demonstration reactor after 2015. Plans for inertial confinement are-currently centered on the development of a "next-step'' target facility based on an advanced 5-megajoule laser on roughly the same time scale as NET.(5) The facilities required for both magnetic and inertial confinement will be large and expensive.
    [Show full text]
  • Introduction to Fusion Energy Plasma Physics (K
    BOOK REVIEWS S',".'"" o book, tor review " based on the editor's 'P'"'""' ",,,d'", possible reader E interest and on the availability of the book to the editor. Occasional selections may include II. L><:5.NB; ns books on topics somewhat peripheral to the subject matter ordinarily considered acceptable. 1111. Controlled Nuclear Fusion - Fundamentals of Its experiments and design studies have evidently so consumed Utilization for Energy Supply the time of experienced workers that there is a great short­ age of rigorous but comprehensible review articles that Authors J. Raeder, K. Borass, R. Bunde, W. should serve as the basis for such a text. Danner, R. Klingelhofer, L. Lengyel, In summary, the book by Raeder et al. should serve as F. Leuterer, M. Soli a useful supplementary text for courses on controlled fusion and a useful enough reference to justify its purchase by Publisher John Wiley & Sons, Inc., Somerset, researchers and instructors active in the various fields of New Jersey (1986) tokamak research that it covers. Despite the recent publica­ tion of a number of very good efforts, the definitive, self­ Pages 316 (illustrated) contained, introductory text on fusion reactor design and a more widely useful reference work for tokamak researchers Price $100.00 remain to be written. Clifford E. Singer Reviewer Clifford E. Singer received his PhD at the University of California, Berkeley. He has worked on the theory and This book is a translation of Kontrol/ierte Kernfusion, applied physics ofplasma transport in tokamak experiments written in 1980. Despite the delay in translation, the book and reactors at Princeton Plasma Physics Laboratory (and remains a timely summary of many aspects of tokamak the University ofIllinois) since 1977.
    [Show full text]