Observation of Nuclear Fusion Driven by a Pyroelectric Crystal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Theories of Low Energy Nuclear Transmutations
Theories of Low Energy Nuclear Transmutations Y. N. Srivastava Department of Physics & INFN, University of Perugia, Perugia, IT A. Widom and J. Swain Physics Department, Northeastern University, Boston MA, USA Employing concrete examples from nuclear physics it is shown that low energy nuclear reactions can and have been induced by all of the four fundamental interactions (i) (stellar) gravitational, (ii) strong, (iii) electromagnetic and (iv) weak. Differences are highlighted through the great diversity in the rates and similarity through the nature of the nuclear reactions initiated by each. PACS numbers: 26.65.+t, 96.60.Jw, 25.85.Ec, 29.25.Dz,24.75.+i, 25.85.-w, 28.41.Ak,24.75.+i I. INTRODUCTION We show below through physical examples that low energy nuclear reactions have been induced by all of the four fundamental interactions: gravitational, strong, electromagnetic and weak. Gravity: Gravitational interactions are well known to cause nuclear reactions and fusion in a star. Were it not for nuclear activity, a star would be dynamically unstable and undergo gravitational collapse[1, 2]. In fact, standard theory predicts the collapse of a star when the nuclear fuel is exhausted as the star can no longer counteract the inward compression due to gravitation. Nuclear: A laboratory example of low energy strong interaction fusion is provided by a fast discharge in fine deuterated polymer fibers. In such fibers, deuterons are accelerated to speeds high enough to overcome the barrier due to mutual Coulomb repulsion, giving rise to the production of 2:5 MeV neutrons through low energy reactions such as d + d ! n + 3He: (1) In the same set of experiments[3], also non deuterated fibers exhibit an \anomalous" production of neutrons, at a rate over 6 orders of magnitude larger than that expected through natural contamination of deuterons in a normal material. -
L-Shell and Energy Dependence of Magnetic Mirror Point of Charged
Soni et al. Earth, Planets and Space (2020) 72:129 https://doi.org/10.1186/s40623-020-01264-5 FULL PAPER Open Access L-shell and energy dependence of magnetic mirror point of charged particles trapped in Earth’s magnetosphere Pankaj K. Soni* , Bharati Kakad and Amar Kakad Abstract In the Earth’s inner magnetosphere, there exist regions like plasmasphere, ring current, and radiation belts, where the population of charged particles trapped along the magnetic feld lines is more. These particles keep performing gyration, bounce and drift motions until they enter the loss cone and get precipitated to the neutral atmosphere. Theoretically, the mirror point latitude of a particle performing bounce motion is decided only by its equatorial pitch angle. This theoretical manifestation is based on the conservation of the frst adiabatic invariant, which assumes that the magnetic feld varies slowly relative to the gyro-period and gyro-radius. However, the efects of gyro-motion can- not be neglected when gyro-period and gyro-radius are large. In such a scenario, the theoretically estimated mirror point latitudes of electrons are likely to be in agreement with the actual trajectories due to their small gyro-radius. Nevertheless, for protons and other heavier charged particles like oxygen, the gyro-radius is relatively large, and the actual latitude of the mirror point may not be the same as estimated from the theory. In this context, we have carried out test particle simulations and found that the L-shell, energy, and gyro-phase of the particles do afect their mirror points. Our simulations demonstrate that the existing theoretical expression sometimes overestimates or underesti- mates the magnetic mirror point latitude depending on the value of L-shell, energy and gyro-phase due to underlying guiding centre approximation. -
Optical Properties of KTP Crystals and Their Potential for Terahertz Generation
crystals Article Optical Properties of KTP Crystals and Their Potential for Terahertz Generation Alexander Mamrashev 1,* ID , Nazar Nikolaev 1 ID , Valery Antsygin 1, Yury Andreev 2,3, Grigory Lanskii 2,3 and Arkady Meshalkin 4 1 Institute of Automation & Electrometry, SB RAS, 1, Ac. Koptyug Ave., Novosibirsk 630090, Russia; [email protected] (N.N.); [email protected] (V.A.) 2 Institute of Monitoring of Climatic and Ecological Systems, SB RAS, 10/3, Akademicheskii Ave., Tomsk 634055, Russia; [email protected] (Y.A.); [email protected] (G.L.) 3 Siberian Physical Technical Institute of Tomsk State University, 1 Novosobornaya Sq., Tomsk 634050, Russia 4 Institute of Thermophysics, SB RAS, 1, Ac. Lavrent’ev Ave., Novosibirsk 630090, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-383-330-8378 Received: 30 June 2018; Accepted: 28 July 2018; Published: 31 July 2018 Abstract: High nonlinearity, wide transparency range and optical quality allowed potassium titanyl phosphate (KTiOPO4, KTP) crystals to be used in a wide range of nonlinear applications. The success of KTP usage in the visible and infrared (IR) ranges drives interest in applying it at longer wavelengths, that is, in the terahertz (THz) range. We use THz optical properties of KTP crystals measured by terahertz time-domain spectrometer (THz-TDS) and refractive index approximated in the form of Sellmeier equations to investigate KTP application possibilities for IR-to-THz and THz-to-THz wave conversion. As a result, phase matching for s − f ! f and s − f ! s types of difference frequency generation (DFG) of Ti:Sapphire laser (at the wavelengths of 0.65, 0.8 and 1.1 µm) is found possible, as well as second harmonic generation (SHG) of THz waves by f + s ! f type of interaction in the XZ principle plane of the crystal. -
Nicholas Christofilos and the Astron Project in America's Fusion Program
Elisheva Coleman May 4, 2004 Spring Junior Paper Advisor: Professor Mahoney Greek Fire: Nicholas Christofilos and the Astron Project in America’s Fusion Program This paper represents my own work in accordance with University regulations The author thanks the Program in Plasma Science and Technology and the Princeton Plasma Physics Laboratory for their support. Introduction The second largest building on the Lawrence Livermore National Laboratory’s campus today stands essentially abandoned, used as a warehouse for odds and ends. Concrete, starkly rectangular and nondescript, Building 431 was home for over a decade to the Astron machine, the testing device for a controlled fusion reactor scheme devised by a virtually unknown engineer-turned-physicist named Nicholas C. Christofilos. Building 431 was originally constructed in the late 1940s before the Lawrence laboratory even existed, for the Materials Testing Accelerator (MTA), the first experiment performed at the Livermore site.1 By the time the MTA was retired in 1955, the Livermore lab had grown up around it, a huge, nationally funded institution devoted to four projects: magnetic fusion, diagnostic weapon experiments, the design of thermonuclear weapons, and a basic physics program.2 When the MTA shut down, its building was turned over to the lab’s controlled fusion department. A number of fusion experiments were conducted within its walls, but from the early sixties onward Astron predominated, and in 1968 a major extension was added to the building to accommodate a revamped and enlarged Astron accelerator. As did much material within the national lab infrastructure, the building continued to be recycled. After Astron’s termination in 1973 the extension housed the Experimental Test Accelerator (ETA), a prototype for a huge linear induction accelerator, the type of accelerator first developed for Astron. -
Powder Synthesis and Properties of Litao3 Ceramics ⇑ Tao Yang, Yan-Gai Liu , Lei Zhang, Mei-Ling Hu, Qian Yang, Zhao-Hui Huang, Ming-Hao Fang
Advanced Powder Technology 25 (2014) 933–936 Contents lists available at ScienceDirect Advanced Powder Technology journal homepage: www.elsevier.com/locate/apt Original Research Paper Powder synthesis and properties of LiTaO3 ceramics ⇑ Tao Yang, Yan-gai Liu , Lei Zhang, Mei-ling Hu, Qian Yang, Zhao-hui Huang, Ming-hao Fang School of Materials Science and Technology, China University of Geosciences (Beijing), Beijing 100083, PR China article info abstract Article history: The LiTaO3 powders with sub micrometer grade grain size have been synthesized successfully using a Received 26 April 2013 molten salt method. Lithium tantalate began to form at 400 °C reaction temperature and transformed Received in revised form 8 January 2014 to pure phase without residual reactants when it was processed at 500 °C for 4 h in static air. The Accepted 17 January 2014 undoped LiTaO ceramics with a Curie temperature about 663 °C were obtained by pressureless sintering Available online 28 January 2014 3 at 1300 °C for 3 h. The relative dielectric constant (er) increases from 50 to 375 at temperature ranging from 30 to 663 °C and then decreases quickly as the temperature increases above 663 °C. The ceramics Keywords: shows a relative dielectric constant of 49.4, a dielectric loss factor (tand) of 0.007, a coercive field (Ec) Lithium tantalite ceramics of 28.66 kV/cm and a remnant polarization (Pr) of 32.48 C/cm2 at room temperature. Molten salt method l Sintering Ó 2014 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Ferroelectric properties Technology Japan. -
Tourmalines and Relaxor Ferroelectrics of The
Correlations between Crystal Structure and Elastic Properties of Piezoelectric Crystals: Tourmalines and Relaxor Ferroelectrics of the type CaxBa1-xNb2O6 and Ce:CaxBa1-xNb2O6 DISSERTATION zur Erlangung des akademischen Grades eines “Doktor der Naturwissenschaften” an der Fakultät für Geowissenschaften der Ruhr-Universität Bochum Germany von Chandra Shekhar Pandey aus Bareilly (India) Bochum, 2010 1. Gutachter Prof. Dr. Jürgen Schreuer 2. Gutachter Prof. Dr. Ladislav Bohatý Datum der Vorlage 20.10.2010 Datum der Disputation 17.12.2010 “If we knew what we were doing, it wouldn't be research” Albert Einstein This thesis is dedicated to My Love Arti & My sweet ‘n’ cute loving daughter Aditi Abstract In this thesis the elastic properties of two distinct groups of piezoelectric crystals are presented: one is natural tourmaline occurring with a vast variability in chemical compositions with a stable phase over a wide temperature range and hence allowing to examine the influence of chemical composition on its physical properties; while the other is synthetically grown relaxor ferroelectric calcium barium niobate (CBN) exhibiting a ferroelectric-paraelectric phase transition and thus invoking the interest to investigate the variation of elastic properties in both phases as well as in the vicinity of the phase transition. To this end the non-destructive innovative method of resonant ultrasound spectroscopy (RUS) was employed. The full sets of elastic, piezoelectric, dielectric constants and coefficients of thermal expansion of five natural single crystal tourmalines of gem quality have been determined between 100 K and 903 K. The main influence of Li and Fe on elastic, piezoelectric and dielectric properties of tourmalines was studied. -
Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: a Review
resources Review Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review Laurence Kavanagh * , Jerome Keohane, Guiomar Garcia Cabellos, Andrew Lloyd and John Cleary EnviroCORE, Department of Science and Health, Institute of Technology Carlow, Kilkenny, Road, Co., R93-V960 Carlow, Ireland; [email protected] (J.K.); [email protected] (G.G.C.); [email protected] (A.L.); [email protected] (J.C.) * Correspondence: [email protected] Received: 28 July 2018; Accepted: 11 September 2018; Published: 17 September 2018 Abstract: Lithium is a key component in green energy storage technologies and is rapidly becoming a metal of crucial importance to the European Union. The different industrial uses of lithium are discussed in this review along with a compilation of the locations of the main geological sources of lithium. An emphasis is placed on lithium’s use in lithium ion batteries and their use in the electric vehicle industry. The electric vehicle market is driving new demand for lithium resources. The expected scale-up in this sector will put pressure on current lithium supplies. The European Union has a burgeoning demand for lithium and is the second largest consumer of lithium resources. Currently, only 1–2% of worldwide lithium is produced in the European Union (Portugal). There are several lithium mineralisations scattered across Europe, the majority of which are currently undergoing mining feasibility studies. The increasing cost of lithium is driving a new global mining boom and should see many of Europe’s mineralisation’s becoming economic. The information given in this paper is a source of contextual information that can be used to support the European Union’s drive towards a low carbon economy and to develop the field of research. -
Anl-7807 Anl-7807 Survey of Thermonuclear-Reactor
ANL-7807 ANL-7807 SURVEY OF THERMONUCLEAR-REACTOR PARAMETERS P. J. Persiani, W. C. Lipinski, and A. J. Hatcli U of C-AUA-USAECB ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS Prepared for the U.S. ATOMIC ENERGY COMMISSION under Contract W-31-109-Eng-38 The faciliUes of Argonne National Laboratory are owned by the "-'f •> S'^^f °°^^%'" ment. Under the terms of a contract (W-31-109-Eng-38) between the U. S. ""^^^^J^^'J/ Commission, Argonne Universities Association and The University of Chicago, the ""'J'"=">' employs the staff and operates the Laboratory in accordance with policies and programs formu- lated, approved and reviewed by the Association. MEMBERS OF ARGONNE UNIVERSITIES ASSOCIATION The Ohio State University The University of Arizona Kansas State University Carnegie-Mellon University The University of Kansas Ohio University Case Western Reserve University Loyola University The Pennsylvania State University The University of Chicago Marquette University Purdue University University o£ Cincinnati Michigan State University Saint Louis University Illinois Institute of Technology The University of Michigan Southern Illinois University University of Illinois University of Minnesota The University of Texas at Austin Indiana University University of Missouri Washington University Iowa State University Northwestern University Wayne State University The University of Iowa University of Notre Dame The University of Wisconsin NOTICE This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontrac tors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights. -
(12) United States Patent (10) Patent No.: US 7,741,615 B2 Putterman Et Al
USOO7741615B2 (12) United States Patent (10) Patent No.: US 7,741,615 B2 Putterman et al. (45) Date of Patent: Jun. 22, 2010 (54) HIGHENERGY CRYSTAL GENERATORS (56) References Cited AND THERAPPLICATIONS (75) Inventors: Seth Putterman, Los Angeles, CA (US); U.S. PATENT DOCUMENTS James K. Gimzewski, Los Angeles, CA 3,258.402 A 6, 1966 Farnsworth (US); Brian B. Naranjo, Los Angeles, 3,386,883. A 6, 1968 Farnsworth CA (US) 3,840,748 A * 10, 1974 Braunlich ................... 378,122 (73) Assignee: The Regents of the University of 5,293.410 A * 3/1994 Chen et al. .................. 376/108 California, Oakland, CA (US) 5,723.954. A 3/1998 Sampayan (*) Notice: Subject to any disclaimer, the term of this 6.479,924 B1 1 1/2002 Yoo patent is extended or adjusted under 35 7.361,821 B2 4/2008 Chan et al. .................. 435/183 U.S.C. 154(b) by 384 days. (Continued) (21) Appl. No.: 111596,586 OTHER PUBLICATIONS (22) PCT Fled: Apr. 22, 2005 Geuther, J.A., Danon, Y. “Electron and positive ion accelreation with (86) PCT NO.: PCT/US2OOS/O14003 pyroelectric crystals” Journal of Applied Physics vol. 97,074 109 (2005).* S371 (c)(1), (2), (4) Date: Feb. 19, 2008 (Continued) Primary Examiner Jack I Berman (87) PCT Pub. No.: WO2O06/06OO3O Assistant Examiner Meenakshi S Sahu (74) Attorney, Agent, or Firm Venable LLP. Henry J. Daley PCT Pub. Date: Jun. 8, 2006 (65) Prior Publication Data (57) ABSTRACT US 2008/O251735A1 Oct. 16, 2008 Ferroelectric, pyroelectric and piezoelectric crystals are used to generate spatially localized high energy (up to and exceed Related U.S. -
Effect of Quaslconflned Particles and I= 2 Stellarator Fields on the Negative Mass Lnstablllty in a Modified Betatron G
TABLE II. Coefficients a and b + r of log(ac,) vs log[2/( p 1/p0 +Pel ACKNOWLEDGMENTS p,)J. We thank Jeanette Nelson for a careful reading of the log(ac1 ) =a+ b log(2/( pc/p1 + p 1/p0 ) l when a = 10 manuscript and G. Pollarolo for useful discussions about the NAG FORTRAN LIBRARY. The numerical computations were 0.1 <Pi <Po< 10 carried out on the Vax 11/780 ofINFN Sezione di Torino. M = 100 M=30 M =IO a; b; r 0.44; 0.06; 0.99 0.33; 0.06; 0.98 0.42; 0.04; 0.98 1 where r0 is the Lorentz factor and spans between 1 and 10. A. E. Gill, Phys. Fluids 8, 1428 (1965). The presence of a shear in cylindrical symmetry has not 2 A. Ferrari, B. Trusooni, and L. Zaninetti, Mon. Not. R. Astron. Soc. 196, yet been considered and will presumably produce a cutoff in !OSI (1981). 3H. Cohn, Astrophys. J. 269, 500 (1983). the instabilities where a> 21'Id, with d (in jet radius units) 4 D. G. Payne and H. Cohn, Astrophys. J. 287, 29S (1984). the length characterizing the thickness of the shear. ' A. M. Anile, J.C. Miller, and S. Motta, Phys. Fluids 26, 14SO (1983). Effect of quaslconflned particles and I= 2 stellarator fields on the negative mass lnstablllty in a modified betatron G. Roberts and N. Rostoker Department ofPhy sics, University ofCalifomia, Irvine. California 92717 (Received 5 February 1985; accepted 10 October 1985) A sufficient stability condition for the negative mass instability is derived. -
Using Static Charge on Pyroelectric Crystals to Produce Self–Focusing Electron and Ion Beams and Transport Through Tubes
1 Using Static Charge on Pyroelectric Crystals to Produce Self–Focusing Electron and Ion Beams and Transport Through Tubes James D. Brownridge1 and Stephen M. Shafroth2 1Department of Physics, Applied Physics and Astronomy State University of New York at Binghamton Binghamton, New York 13902-6000, USA e-mail: [email protected] 2Department of Physics and Astronomy Department of Physics, Applied Physics and Astronomy University of North Carolina at Chapel Hill Chapel Hill, North Carolina 27599-3255, USA e-mail: [email protected] Abstract- Static charge in and on the surface of pyroelectric crystals of LiNbO3 and LiTaO3 in a dilute gas has been shown to ionize gas molecules via electron tunneling. The released electrons and positive ions are focused and accelerated according to the sign of the static uncompensated charge. The uncompensated charge is produced when the temperature of the crystal is changed from any initial temperature between about 500K and about 15K. It may be either polarization charge that is inside the crystal surface or compensation charge that is on the surface. The direction of temperature change and the polarity of the base of the crystal determine whether electrons or positive ions are accelerated toward or away from the crystal. The ionization, focusing and acceleration may continue for more than 15 days following a single change in temperature from ~20 oC to ~160 oC to ~20 oC. I. INTRODUCTION Twenty-three centuries ago the Greek philosopher, Theophrastus, described what is now call the "pryoelectric effect". He described how the mineral tourmaline had the power to attract objects such as straw, wood, copper and iron [1]. -
Publ. Astron. Obs. Belgrade No. 99 (2020), 256 - 257 Invited Lecture
Publ. Astron. Obs. Belgrade No. 99 (2020), 256 - 257 Invited Lecture CHALLENGES AND PROGRESS ON THE PATH TOWARDS FUSION ELECTRICITY A. J. H. DONNÉ EUROfusion, Garching, Germany E-mail [email protected] Abstract. The European Roadmap to the Realisation of Fusion Energy1 breaks the quest for fusion energy into eight missions: 1. Plasma regimes of operation: Demonstrate plasma scenarios (based on the tokamak configuration) that increase the success margin of ITER and satisfy the requirements of DEMO. 2. Heat-exhaust systems: Demonstrate an integrated approach that can handle the large power leaving ITER and DEMO plasmas. 3. Neutron tolerant materials: Develop materials that withstand the large 14MeV neutron flux for long periods while retaining adequate physical properties. 4. Tritium self-sufficiency: Find an effective technological solution for the breeding blanket that also drives the generators. 5. Implementation of the intrinsic safety features of fusion: Ensure safety is integral to the design of DEMO using the experience gained with ITER. 6. Integrated DEMO design and system development: Bring together the plasma and all the systems coherently, resolving issues by targeted R&D activities 7. Competitive cost of electricity: Ensure the economic potential of fusion by minimising the DEMO capital and lifetime costs and developing long-term technologies to further reduce power plant costs. 8. Stellarator: Bring the stellarator line to maturity to determine the feasibility of a stellarator power plant. Now we are approaching the end of the 8th European Framework Programme (2014- 2020), it is a good moment to look back at the achievements since the establishment of EUROfusion in 2014, while at the same time have a peek into the future, to see which challenges lay ahead of us as well as the strategy to tackle them.