Fixed Wireless Access

Total Page:16

File Type:pdf, Size:1020Kb

Fixed Wireless Access International Telecommunication Union FIXED WIRELESS ACCESS Handbook on Land Mobile (including Wireless Access) Volume 1 2nd Edition Radiocommunication Bureau THE RADIOCOMMUNICATION SECTOR OF ITU The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio-frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Inquiries about radiocommunication matters Please contact: ITU Radiocommunication Bureau Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 5800 Fax: +41 22 730 5785 E-mail: [email protected] Placing orders for ITU publications Please note that orders cannot be taken over the telephone. They should be sent by fax or e-mail. ITU Sales and Marketing Division Place des Nations CH -1211 Geneva 20 Switzerland Telephone: +41 22 730 6141 English Telephone: +41 22 730 6142 French Telephone: +41 22 730 6143 Spanish Fax: +41 22 730 5194 Telex: 421 000 uit ch Telegram: ITU GENEVE E-mail: [email protected] The Electronic Bookshop of ITU: www.itu.int/publications ã ITU 2001 All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without written permission from ITU. International Telecommunication Union FIXED WIRELESS ACCESS Handbook on Land Mobile (including Wireless Access) Volume 1 2nd Edition Radiocommunication Bureau - iii - TABLE OF CONTENTS Page PREFACE ................................................................................................................................ xiii FOREWORD............................................................................................................................ xv PROLOGUE TO THE SECOND EDITION............................................................................ xvii CHAPTER 1 – INTRODUCTION ....................................................................................... 1 1.1 PURPOSE AND SCOPE............................................................................................ 1 1.2 BACKGROUND......................................................................................................... 1 1.2.1 Traditional telephony wireless access ......................................................................... 1 1.2.2 Broadband wireless access.......................................................................................... 2 1.2.3 Relationship between FWA and IMT-2000................................................................ 3 1.2.4 Wireless access to the Internet .................................................................................... 3 1.3 ORGANIZATION AND USE OF THE HANDBOOK.............................................. 3 CHAPTER 2 – ACCESS REQUIREMENTS...................................................................... 5 CHAPTER 3 – ADVANTAGES OF WIRELESS ACCESS .............................................. 7 CHAPTER 4 – TECHNOLOGY/EVOLUTION AND DESIGN CONSIDERATIONS . 11 4.1 FIXED WIRELESS ACCESS SYSTEMS DESIGN OBJECTIVES ......................... 11 4.2 FIXED WIRELESS ACCESS SYSTEMS ARCHITECTURE .................................. 11 4.3 SPECTRUM................................................................................................................ 12 4.3.1 Role of ITU Radio Regulations and national spectrum utilization policies................ 13 4.3.2 Summary of Recommendations in place..................................................................... 14 4.4 RADIO SYSTEM AND NETWORK DESIGN METHODOLOGY ......................... 17 4.5 TECHNOLOGY EVOLUTION.................................................................................. 19 4.5.1 Terminals..................................................................................................................... 19 4.5.2 Cell-site/base radio...................................................................................................... 20 4.5.3 Backhaul...................................................................................................................... 20 - iv - Page 4.5.4 Switch/network ........................................................................................................... 20 4.6 CLASSIFICATION OF FIXED WIRELESS ACCESS SYSTEMS .......................... 23 4.7 BROADBAND WIRELESS ACCESS....................................................................... 23 CHAPTER 5 – KEY FACTORS AFFECTING TECHNOLOGY CHOICES................. 27 5.1 INTRODUCTION....................................................................................................... 27 5.2 WIRELESS ACCESS TECHNOLOGY..................................................................... 28 5.3 TECHNOLOGY CHOICE.......................................................................................... 28 5.4 TECHNOLOGY MODELS ........................................................................................ 28 5.5 MARKET REQUIREMENTS .................................................................................... 30 5.6 TECHNOLOGY CRITERIA FOR WIRELESS ACCESS......................................... 31 5.7 ACCESS ..................................................................................................................... 32 5.8 NEW TECHNOLOGIES IN THE ACCESS NETWORK ......................................... 32 5.9 WIRELESS ACCESS SYSTEMS .............................................................................. 33 5.10 CONCLUSIONS......................................................................................................... 36 CHAPTER 6 – DEPLOYMENT PLANNING OF WIRELESS ACCESS SYSTEMS.... 37 6.1 GENERAL .................................................................................................................. 37 6.2 SERVICE NEEDS PLANNING................................................................................. 37 6.2.1 Functionality................................................................................................................ 37 6.2.2 Future service capabilities........................................................................................... 38 6.3 TELECOMMUNICATIONS NETWORK PLANNING............................................ 38 6.3.1 Traffic carrying needs ................................................................................................. 38 6.3.2 Operations and maintenance ....................................................................................... 39 6.3.3 "Backhaul"-Network connection and integration........................................................ 40 6.4 RADIO CHARACTERISTICS AND ENGINEERING ............................................. 40 6.4.1 Subscriber density....................................................................................................... 40 6.4.2 Coverage area.............................................................................................................. 41 6.4.3 Cell planning............................................................................................................... 41 - v - Page 6.4.4 Radio propagation aspects........................................................................................... 41 6.5 SUMMARY................................................................................................................ 42 CHAPTER 7 – OVERVIEW OF FIXED WIRELESS ACCESS SYSTEMS .................. 43 7.1 SYSTEMS BASED ON EXISTING RADIO INTERFACE STANDARDS ............. 43 7.1.1 D-AMPS/TDMA-based fixed wireless access systems .............................................. 43 7.1.2 CDMA-based wireless access systems........................................................................ 43 7.1.3 GSM-based wireless access systems........................................................................... 43 7.1.4 PHS- fixed wireless access.......................................................................................... 44 7.1.5 NMT-based wireless access systems........................................................................... 44 7.1.6 DECT-based wireless access systems ......................................................................... 44 7.1.7 AMPS-based wireless access systems......................................................................... 44 7.1.8 TACS-based wireless access systems ......................................................................... 44 7.2 SYSTEMS BASED ON PROPRIETARY RADIO INTERFACE TECHNOLOGIES ...................................................................................................... 44 7.2.1 Nortel Networks Internet fixed wireless access system .............................................. 44 7.2.2 SR Telecom SR500-s wireless access subsystem ....................................................... 45 7.2.3 TRT/Lucent Technologies IRT wireless access system.............................................. 45 7.3 BWA SYSTEMS........................................................................................................ 45 CHAPTER 8 – BROADBAND WIRELESS ACCESS....................................................... 47 8.1 ACCESS REQUIREMENTS.....................................................................................
Recommended publications
  • Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. by Richard Nunno, International Bureau, FCC
    Migration to 3G Technology Standards: Europe, Japan, South Korea, and the U.S. By Richard Nunno, International Bureau, FCC Revised July 21, 2003 For over a decade, the International Telecommunication Union (ITU) has been supporting the international effort to develop an advanced third-generation (3G) mobile telecommunications service that has a higher bandwidth than previous and existing mobile services and that subscribers can seamlessly use across international borders (known as global roaming). To that end, the ITU has identified spectrum and developed technical standards for International Mobile Telecommunications 2000 (IMT-2000), the official name for 3G services. The ITU’s World Administrative Radiocommunication Conference (WARC) in 1992 and World Radiocommunication Conference (WRC) in 2000 identified several bands of spectrum that could be used for 3G services. The mobile telecommunications industry has started delivering 3G services that provide broadband applications including voice, data, and video. As defined by the ITU, 3G signal transmission rates must be able to reach 2 megabits per second (Mbps) or higher for indoor (low mobility) wireless applications (more than 35 times faster than today’s 56 kilobits per second (kbps) dial-up PC modems). 3G rates may be slower (384 kbps) for pedestrian traffic, and 144 kbps for high mobility (vehicular) traffic.1 How each country is implementing 3G systems depends on a number of factors, such as the country’s 3G spectrum allocations, the standards it adopts for 3G (if it adopts any standards vs. letting the marketplace make the decision), and the country’s current mobile telephony system configuration. Because a great deal of information and analysis is already available on the spectrum-related issues surrounding 3G implementation, this report focuses only on the technology standards issues pertaining to 3G.
    [Show full text]
  • Study of Next Generations of Mobile Networks Dr
    ISSN 2321 3361 © 2020 IJESC Research Article Volume 10 Issue No.2 Study of Next Generations of Mobile Networks Dr. Tripti Khatana Associate Professor Roorkee College of Engineering, Roorkee, India Abstract: Mobile based technologies are most widely used products and shown a huge growth in terms of user base. Every individual around the every corner of the world rely on mobile technology. The thing which makes it more powerful is cellular communication. Cellular communications are not only restricted to voice calls but it has gone way beyond our imagination from generation to generation. There has been seen a number of improvements along with performance. It has a great impact on our daily lifestyle i.e. the way we work, interact, learn, explore etc. This paper provides an insight about generations of network from 0G to 4G. Also it will throw light on next possible generations - 5G, 6G and 7G. Although 5G is under development and it will be deployed by 2020, there are no such standards has been finalized for it. This paper will also focus on 0G to 4G architecture and standards along with the technology that will be used for the development. The next evolutions 6G and 7G are just concepts for now and research works are being carried out, but they are the future of mobile communication networks. Keywords: 0G, 1G, 2G, 3G, 4G, 5G, Architecture, Standards, Technology, Generations of Networks, Comparative Study of Generations, 6G, 7G, Future of Networks. 1. INTRODUCTION development leads to evolution of different generations in next four decades. Now-a-days different wireless and mobile In every century, people want a communication system to share technologies are present such as third generation mobile their views.
    [Show full text]
  • Understanding Fixed Wireless Access What Is Fixed Wireless Access?
    Network 20 Architecture 20 Understanding Fixed Wireless Access What Is Fixed Wireless Access? Alex Marcham NetworkArchitecture2020.com 1. Introduction The spread of network technology across the globe has brought huge changes to every society it touches. With smartphones and broadband internet connectivity, networks have enabled billions to keep in touch with friends and relatives, get access to vital resources and limitless entertainment, whilst expanding their economic opportunities. The network relies on the ability to add connections and bandwidth over time to support changing requirements. Otherwise, it’s easy to end up with a network built 5 years ago, for traditional traffic flows and demand, struggling to keep up with the rapidly changing landscape of applications seen today - a costly mistake for any network operator. Inside a building, it’s not too hard; run more cable through the conduits, connect the new device to the network. However, things get more complicated when networks go outside, whether an inter-building connection by an enterprise, or a service provider expanding their coverage, particularly to rural areas. No matter the size of the outdoor network, adding new connections and more bandwidth in a fast and flexible manner, whilst being economical, is not always easy. In many parts of the world, running your own cable above ground is prohibited or simply impractical. For Network Architecture 2020, and network operators, this is a pressing problem; we need to be able to effectively expand our networks wherever needed, whether small enterprise or giant service provider, in an economical manner. In some cases, copper or fibre cabling-based technologies are the right choice.
    [Show full text]
  • 3G Telecommunication Networks Kajali Bansal Assistant Professor Computer Science & Engineering Dept
    Volume 3, Issue 6, June 2013 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com 3G Telecommunication Networks Kajali Bansal Assistant Professor Computer Science & Engineering Dept. Chandigarh University (Punjab) India Abstract: 3G is the third generation of wireless technologies. This comes with enhancements over previous wireless technologies, as high-speed transmission, advanced multimedia access and. 3G is mostly used with mobile phones and handsets as a means to connect the phone to the Internet or other IP networks in order to make voice and video calls, download and upload data and to surf the net. 3G is the successor of 2G and 1G standards. The 3G networks handle the majority of all data transfers for cellular service providers. Keywords: 3G, 4G, 5G, Radio Access Network, Telecommunication, Cellular Network. I. Introduction 3G wireless technology is the convergence of various 2G wireless telecommunications systems into a single global system which includes both terrestrial and satellite components. 3G wireless technology has ability to unify existing cellular standards with CDMA, GSM, and TDMA. 3G has the following enhancements over 2.5G and previous networks: Higher data speed, Video-conferencing support, Enhanced audio and video streaming, Web and WAP browsing at higher speeds, IPTV (TV through the Internet) support transfer rate for 3G networks is between 128 and 144 kbps for devices that are moving fast and 384 kbps for slow ones. For fixed wireless LANs, the speed goes beyond 2mbps. II. Back Ground The first mobile telephone systems (car phone) were introduced in the late 1940s in the United States and in 1950s in Europe.
    [Show full text]
  • A Review Paper on 5G Wireless Technology
    IJSART - Volume 5 Issue 7 – JULY 2019 ISSN [ONLINE]: 2395-1052 A Review Paper on 5G Wireless Technology Mrs.S.Suganyadevi 1(Assistant Professor), Ms.S.Mohana Rubini2, Ms.S.Anusuya3 1, 2, 3 Dept of BCA 1, 2, 3 Sri Krishna Arts and Science College, Coimbatore Abstract- The objective of this paper is to study about 5G KHz. 2G networks allows for much greater penetration wireless technology. Existing research in mobile intensity.E.g. GPRS, CDMA [6]. communication is related to 5Gtechnology. In 5G technology, the mobile user has given utmost priority compared to others. 3G WIRELESS SYSTEM makes use of TDMA and CDMA. 5GTechnology stands for 5th Generation Mobile In 2005, 3G came into the use in computer networking Technology.5G technology is, to make use of mobile phones (WCDMA, WLAN and Bluetooth) and mobile devices area within very high bandwidth. The consumer never experienced (cell phone and GPS). The spectral efficiency of 3G the utmost valued technology as 5G.The 5G technologies technology is better than 2G technologies. Transmission include all types of advanced features which make 5G speeds from 125 kbps to 2 Mbps. Data are sent through technology most dominant technology in near future. technology called packet switching. High clarity in Voice calls. Access to Global Roaming[6]. Keywords- IoT5G, 5G Architecture, Evolution of 5G,WLAN, features, future scope, hardware and software of 5G. 4G WIRELESS SYSTEM should be able to provided very smooth global roaming with 4G Mobile Phone. 4G offers both I. INTRODUCTION cellular and multimedia services everywhere. Now with 4G the mobile TV provider redirects or provides the facility of TV 5G ("5th Generation") is the latest generation channel directly to the subscriber's phone where it can be of cellular mobile communications.
    [Show full text]
  • Site Acquisition Fact Sheet
    Fact Sheet: How will we design the fixed wireless network? Fixed wireless background Fixed wireless systems have a long history of being used for voice and data communications, generally supporting networks operated by phone companies, cable TV companies, utilities and railways. The name ‘fixed wireless’ explains the way signals are delivered to stationary, or ‘fixed’ antennas and facilities mounted on buildings, homes and other structures. Fixed wireless is different to current mobile wireless networks, which deliver varying speeds and reception depending on how many people are moving in and out of the area and whether they are using the network for low volume e-mail or high volume downloads or video services. The National Broadband Network’s (NBN) fixed wireless network uses advanced technology called LTE (commonly referred to as 4G). The network has been designed to reduce the impact of mobile wireless variables by setting a limit on the number of premises serviced by each fixed wireless facility. People’s usage of the network will still vary, but the set number of serviced premises in each area means that the bandwidth available to each household is designed to be consistent, even in peak times of use*. To be able to achieve this each NBN fixed wireless facility needs to be situated reasonably close to the homes and business which will receive NBN’s fixed wireless network. Each customer will have a small antenna installed on the outside of their home or business, in direct line of sight to the fixed wireless facility. This setup allows for greater consistency in the speed and quality of service that can be delivered to each premises*.
    [Show full text]
  • Ber Performance Study of Orthogonal Frequency
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository CHAPTER 1 INTRODUCTION This project studies the Bit Error Rate (BER) for Orthogonal Frequency Division Multiplexing under different channels condition. Digital multimedia applications as they are getting common lately create an ever increasing demand for broadband communications systems. Orthogonal Frequency Division Multiplexing (OFDM) has grown to be the most popular communications system in high speed communications in the last decade. In fact, it has been said by many industry leaders that OFDM technology is the future of wireless communications. The prosperous progress of mobile communications has built the main road of the history of wireless communication. The mobile wireless communications progressed from Personal Communication Services/Network (PCS/PCN) to Global System for Mobile Radio Channel (GSM) to General Packet Radio Service (GPRS) to Enhanced Data for Global Evolution (EDGE) to Universal Mobile Telecommunication Systems (UMTS) (better known as 3G) and will continue to evolve to 4G which is under active research. The evolution is depicted in the following figure. 2 Figure 1.1: Evolution of mobile wireless communications A step back into the history of wireless communications will reveal how this evolution was made possible. 1.1 History of Mobile Wireless Communications The history of mobile communication can be categorized into 3 periods: § the pioneer era § the pre-cellular
    [Show full text]
  • History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications
    History of Mobile Telephony MAS 490: Theory and Practice of Mobile Applications Professor John F. Clark Everything I know about mobile telephony, I learned from: Evolution is not a theory when it concerns cell phones Early History of Radiophones Nicola Tesla and Guglielmo Marconi were the founders of wireless technology Ship to shore radiotelegraphy employed wireless use of Morse Code Later, radiophones and radiotelephony transmitted speech In 1900 Reginald Fessenden invented early broadcasting, transatlantic two-way voice communication, and later television Tesla, Marconi, and Fessenden The Great Wireless Fiasco Early History of Radiophones In 1926 radiophones connected people traveling on trains in Europe A little later, they were introduced in planes, but this was too late for World War I Radiophones made a huge difference in WWII – planes, tanks, and field communication via backpack radios and walkie-talkies. Later, in the 1950s, radiophones made civil and commercial services possible Military Field Communications Civil Field Communications Civil Field Communications, pt. 2 Early History of Mobile Telephony The 60s and 70s saw a variety of commercial car services – the earliest weighed 90-100 pounds These services operated using high power transmissions The concept of low power transmission in hexagonal cells was introduced in 1947 The electronics were advanced enough by the 60s to pull it off, but there was no method for handoffs from one cell to the next High Power Mobile Phone Low Power Mobile Phone System Early History of Mobile Telephony That problem was solved with the first functioning cell system and first real cell phone call in 1973. The phone, which weighed about six pounds, was developed by Martin Cooper of Motorola Bell Labs and Motorola were the main competitors in the US.
    [Show full text]
  • Fixed Wireless Broadband Communications “What These Water Utilities Discovered Is That There Is a Vast Difference
    WATER UTILITIES CHOOSE Fixed Wireless Broadband Communications “What these water utilities discovered is that there is a vast difference between low-end commercial-grade equipment and purpose-built technology platforms specifically designed for low total cost of ownership.” Kent Brown, Director of Sales – National and Strategic Accounts, Cambium Networks This Application Paper refers to actual field results from two utilities in the southwestern United States: • A water utility serving a major city trusted with water supply, wastewater collection and treatment, and reuse of water resources serving 1.6 million people • A river authority conservation and reclamation district that manages water resources for a ten county district Both of these organizations have deployed wireless broadband connectivity solutions from Cambium Networks. Due to the nature of critical infrastructure security, please contact Cambium Networks for approved customer reference information. Challenges Communications technology has a measurable and dramatic effect on the efficiency and cost structure of all phases of water management: • Water supply and distribution • Hydro-electric generation • Water treatment • Storm water management Strategic Goals: Every water utility must maximize efficiency while being vigilant about compliance to water quality and safety standards. The communications infrastructure strategy must support these goals, and utilities must select the most appropriate communications technology to meet their needs. In most cases, fiber may be cost effective at the core or backbone of the network, but fiber or any wired technology can be economically unfeasible to connect a large number of field locations. Fixed wireless is a proven and legitimate solution that provides the reliability and throughput needed at a significant cost advantage.
    [Show full text]
  • Sparse Code Multiple Access for 6G Wireless Communication
    1 Sparse Code Multiple Access for 6G Wireless Communication Networks: Recent Advances and Future Directions Lisu Yu, Member, IEEE, Zilong Liu, Senior Member, IEEE, Miaowen Wen, Senior Member, IEEE, Donghong Cai, Member, IEEE, Shuping Dang, Member, IEEE, Yuhao Wang, Senior Member, IEEE, and Pei Xiao, Senior Member, IEEE Abstract As 5G networks rolling out in many different countries nowadays, the time has come to investigate how to upgrade and expand them towards 6G, where the latter is expected to realize the interconnection of everything as well as the development of a ubiquitous intelligent mobile world for intelligent life. To Copyright (c) 2021 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to [email protected]. L. Yu is with the School of Information Engineering, Nanchang University, Nanchang 330031, China, also with the State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China (e-mail: [email protected]). Z. Liu is with School of Computer Science and Electronics Engineering, University of Essex, Colchester CO4 3SQ, U.K. arXiv:2104.01402v1 [eess.SP] 3 Apr 2021 (e-mail: [email protected]). M. Wen is with the School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510640, China (e-mail: [email protected]). D. Cai is with the College of Cyber Security, Jinan University, Guangzhou 510632, China (e-mail: [email protected]). S. Dang is with Computer, Electrical and Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia (e-mail: [email protected]).
    [Show full text]
  • NBN Co Fixed Wireless Fact Sheet
    National Broadband Network Fixed Wireless Fact Sheet What is the National Broadband Network? The National Broadband Network (NBN) is designed to provide high speed broadband access to 100 per cent of Australian premises. The NBN is a nation-building program with the potential to lift Australia’s productivity and will provide a broadband network to serve Australia for decades to come. To reach everyone in our vast country, the NBN will be delivered via an optimal mix of fibre optic cabling, fixed wireless and satellite technologies. These fixed wireless and satellite technologies represent a significant improvement over services currently available to many Australians living in regional and remote communities. How does fixed wireless work? Australians who receive NBN’s fixed wireless will be among the first to experience the benefits of high speed broadband over the NBN. The fixed wireless network is expected to be completed by 2015, five years ahead of the expected completion of the fibre network, and it will serve around four per cent of the population or approximately 500,000 premises including farms, homes and businesses. People in fixed wireless areas are expected to be able to sign up with internet service providers to use the NBN from the middle of 2012. NBN’s fixed wireless network, which uses advanced technology commonly referred to as LTE or 4G, is engineered to deliver services to a fixed number of premises within each coverage area. This means that the bandwidth per household is designed to be more consistent than mobile wireless, even in peak times of use. Unlike a mobile wireless service where speeds can be affected by the number of people moving into and out of the area, the speed available in a fixed wireless network is designed Fixed Wireless Mobile Wireless to remain relatively steady.
    [Show full text]
  • Fixed Wireless Access Solutions
    Mass market broadband with fixed wireless access solutions An easy path to broadband speed and reliability that meets tomorrow’s user needs End-user bandwidth hunger continues to grow… how to keep up? Home user bandwidth demands are increasing. This is the result of the growing uptake of, for example, video streaming, cloud Wireless broadband is the fastest growing service of all applications, gaming and security cameras. In homes everywhere, access technologies, with subscribers growing globally several people may be doing different things on a single network at 20.7% at 20.7 percent per year. any time, especially with the ongoing proliferation of home working. Source: Point Topic, World Fixed Broadband Statistics, Q3 2019 The need for bandwidth will grow even further, driven by the internet of things, 4K/8K UltraHD TV, virtual and augmented reality, The 5G fixed wireless access market is estimated to grow… 46.8 to $46.4 billion, at 97.4 percent CAGR and smart buildings and grids. Consumers expect seamless and Billion Source: Markets & Markets, 2019 immediate interaction with applications, games and video streams as well as the immediacy of fast, uninterrupted downloads. 5G wireless broadband can substitute existing fiber-based In short, consumers need high-speed, low-latency, “always on” broadband products 5G Source: Ovum: 5G Wireless Home Broadband: A credible Alternative to Fixed connectivity that will effortlessly keep up with future developments. Broadband, 2018 What’s more, they want it to be easy to install, easy to use, and affordable. Fiber offers the required multi-gigabit bandwidth potential but requires major investment to run fiber to every home and premise.
    [Show full text]