<<

05-02-2013

Astrodynamics

1 05-02-2013

2 05-02-2013

Orbit Perturbations • Secular variations – langsomt, lineært • Short-period variations • Long-period variations

Element

Short Period Long Period

Orbit Time

Third-Body Perturbations

Right ascension of the ascending node

  0.00338 ( cos i ) / n

  0.00154 ( cos i ) / n

Argument of perigee 2 Moon  0.00169 ( 4 - 5 sin i ) / n 2 Sun  0.00077 ( 4 - 5 sin i ) / n

3 05-02-2013

Perturbations Because of a Non-spherical

Right ascension of the ascending node

  -2.064741014 a-7/2 ( cos i ) (1- e2 )2 J2 cos(90) = 0,0 Argument of perigee   1.032371014 a-7/2 ( 4 -5 sin 2 i ) (1- e2 )2 J2 sin²(63,43495) = 0,8

4 05-02-2013

Perturbations From Atmospheric Drag

Perturbations from Solar Radiation

6 aR  4.510 (1 r)A/m

r: Reflection factor (1: specular reflection, 0: absorption) A: cross-section (exposed to the Sun) – m² m: Satellite mass –kg a: m/s²

Perturbations From Atmospheric Drag

5 05-02-2013

Perturbations From Atmospheric Drag

Perturbations From Atmospheric Drag

6 05-02-2013

Perturbations From Atmospheric Drag

Ørsted

H = 700 km P = 100 min

T = 30-40 years

7 05-02-2013

http://www.heavens-above.com/

Astrodynamics II

• Orbit Maneuvering • Launch Windows • Orbit Maintenance • Earth Coverage

8 05-02-2013

a Den halve storakse e Ekscentriciteten i Inklinationen  Den opstigende knudes længde (i forhold til forårspunktet  Perifokus’ vinkelafstand fra den opstigende knude T Perifokustiden

Low Earth orbit (LEO)

Mir: 350km altitude, near circular a: 6730 km, e: 0.00 P: 91 minutes n: 15.725 omløb/døgn i: 51.6° Baikonur Launch site

Change in right ascension of the ascending node:

-5.1 deg/day

9 05-02-2013

10 05-02-2013

Landsat 7 orbit (LEO)

Landsat 7 is an Earth resources which images the Earth's surface in visible and infrared light. Near of 700km altitude a: 7080 km P: 98 min. i: 98.8°

Change in right ascension of the ascending node:

+1 deg/day

Perturbations Because of a Non-spherical Earth

Right ascension of the ascending node

  -2.064741014 a-7/2 ( cos i ) (1- e2 )2 J2

Argument of perigee   1.032371014 a-7/2 ( 4 -5 sin 2 i ) (1- e2 )2 J2

11 05-02-2013

12 05-02-2013

13 05-02-2013

14 05-02-2013

15 05-02-2013

Geosynchronous (GEO)

A geosynchronous orbit is an orbit which has an close to that of the rotation. A is a special case of the geosynchronous orbit where inclination = 0° and the period is equal to the rotation period of the earth (approx 1436 minutes).

a: 42160 km e: 0 i: 0 P: 1436 min

16 05-02-2013

TDRS (USA)

17 05-02-2013

Geosynchronous Transfer Orbits (GTO)

This is a 600 x 35,700km 28° inclination a = 24530 km i = 28 e=0.71

Change in right ascension of the ascending node:

-0.31 deg/day

Change in argument of perigee:

+0.53 deg/day

18 05-02-2013

Molniya orbits

This is a 400 x 40,000km 63.4° inclination a = 26600 km i = 63.4 e=0.75 P=11.967 hrs.

Change in right ascension of the ascending node:

-0.030 deg/day

Change in argument of perigee:

0.000 deg/day

19 05-02-2013

Mid Earth Orbit (MEO or GPS)

Circular orbit 60.0° inclination a = 26600 km i = 60 e=0.00 P=11.967 hrs

Change in right ascension of the ascending node:

-0.033 deg/day

Change in argument of perigee:

+0.008 deg/day

20 05-02-2013

21 05-02-2013

Highly Eccentric Orbits (HEO)

A number of scientific , particularly orbiting observatories, use highly eccentric orbits with apogee's of over 100,000km. The reason for using these orbits is generally to permit continues observations of celestial objects without the earth blocking the view every 30 to 40 minutes. The orbit of the Chandra X-ray observatory is a 9600 x 139000km, 28.4° inclination orbit of 3809 minute period (63.5h orbit). a = 80700 km i = 28.4 e=0.80 P=63.5 hrs

Change in right ascension of the ascending node:

-0.009 deg/day

Change in argument of perigee:

+0.015 deg/day

22 05-02-2013

Orbit Transfer

Coplanar transfer

Modify the velocity vector

  V 2 / 2   / r   / 2a

23 05-02-2013

r r

  V 2 / 2   / r   / 2a

r r r

  V 2 / 2   / r   / 2a

24 05-02-2013

r r r

  V 2 / 2   / r   / 2a

25