Professional Java™ Native Interfaces with SWT/Jface
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
R&S®BBA100 Broadband Amplifier Open
R&S®BBA100 Broadband Amplifier Open Source Acknowledgment 5353.8300.00 – 01 /RL/1/EN 01.00 / Broadcasting 3575.4620.02 M: - T - PAD Open Source Acknowledgment R&S BBA100 Introduction Contents 1 Introduction ......................................................................................... 3 1.1 Disclaimer ..................................................................................................................... 3 1.2 How to obtain the source code .................................................................................. 3 2 Software packages ............................................................................. 4 3 Verbatim license texts ........................................................................ 7 3.1 Apache License 2.0 ..................................................................................................... 7 3.2 GNU Library General Public License, Version 2.0 (LGPL 2.0) ..............................10 3.3 Boost Software License ............................................................................................18 3.4 GNU General Public License, Version 2.0 (GPL 2.0) ..............................................18 3.5 GNU Lesser General Public License, Version 2.1 (LGPL 2.1) ...............................24 3.6 Mozilla Public License, Version 1.1 (MPL 1.1) ........................................................32 3.7 MIT ...............................................................................................................................40 3.8 JDOM License -
Swing: Components for Graphical User Interfaces
Swing: Components for Graphical User Interfaces Computer Science and Engineering College of Engineering The Ohio State University Lecture 22 GUI Computer Science and Engineering The Ohio State University GUI: A Hierarchy of Nested Widgets Computer Science and Engineering The Ohio State University Visual (Containment) Hierarchy Computer Science and Engineering The Ohio State University Top-level widgets: outermost window (a container) Frame, applet, dialog Intermediate widgets: allow nesting (a container) General purpose Panel, scroll pane, tabbed pane, tool bar Special purpose Layered pane Atomic widgets: nothing nested inside Basic controls Button, list, slider, text field Uneditable information displays Label, progress bar, tool tip Interactive displays of highly formatted information Color chooser, file chooser, tree For a visual (“look & feel”) of widgets see: http://java.sun.com/docs/books/tutorial/uiswing/components Vocabulary: Widgets usually referred to as “GUI components” or simply “components” History Computer Science and Engineering The Ohio State University Java 1.0: AWT (Abstract Window Toolkit) Platform-dependent implementations of widgets Java 1.2: Swing Most widgets written entirely in Java More portable Main Swing package: javax.swing Defines various GUI widgets Extensions of classes in AWT Many class names start with “J” Includes 16 nested subpackages javax.swing.event, javax.swing.table, javax.swing.text… Basic GUI widgets include JFrame, JDialog JPanel, JScrollPane, JTabbedPane, -
View of XML Technology
AN APPLICATION OF EXTENSlBLE MARKUP LANGUAGE FOR INTEGRATION OF KNOWLEDGE-BASED SYSTEM WITH JAVA APPLICATIONS A Thesis Presented to The Faculty of the Fritz J. and Dolores H. Russ College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirement for the Degree Master of Science BY Sachin Jain November, 2002 ACKNOWLEDGEMENTS It is a pleasure to thank the many people who made this thesis possible. My sincere gratitude to my thesis advisor, Dr. DuSan Sormaz, who helped and guided me towards implementing the ideas presented in this thesis. His dedication to research and his effort in the development of my thesis was an inspiration throughout this work. The thesis would not be successful without other members of my committee, Dr. David Koonce and Dr. Constantinos Vassiliadis. Special thanks to them for their substantial help and suggestions during the development of this thesis. I would like also to thank Dr. Dale Masel for his class on guidelines for how to write thesis. Thanlts to my fellow colleagues and members of the lMPlanner Group, Sridharan Thiruppalli, Jaikumar Arumugam and Prashant Borse for their excellent cooperation and suggestions. A lot of infom~ation~1sef~11 to the work was found via the World Wide Web; 1 thank those who made their material available on the Web and those who kindly responded back to my questions over the news-groups. Finally, it has been pleasure to pursue graduate studies at IMSE department at Ohio University, an unique place that has provided me with great exposures to intricacies underlying development, prograrn~ningand integration of different industrial systems; thus making this thesis posslbie. -
Programming Java for OS X
Programming Java for OS X hat’s so different about Java on a Mac? Pure Java applica- tions run on any operating system that supports Java. W Popular Java tools run on OS X. From the developer’s point of view, Java is Java, no matter where it runs. Users do not agree. To an OS X user, pure Java applications that ignore the feel and features of OS X are less desirable, meaning the customers will take their money elsewhere. Fewer sales translates into unhappy managers and all the awkwardness that follows. In this book, I show how to build GUIs that feel and behave like OS X users expect them to behave. I explain development tools and libraries found on the Mac. I explore bundling of Java applications for deployment on OS X. I also discuss interfacing Java with other languages commonly used on the Mac. This chapter is about the background and basics of Java develop- ment on OS X. I explain the history of Java development. I show you around Apple’s developer Web site. Finally, I go over the IDEs commonly used for Java development on the Mac. In This Chapter Reviewing Apple Java History Exploring the history of Apple embraced Java technologies long before the first version of Java on Apple computers OS X graced a blue and white Mac tower. Refugees from the old Installing developer tan Macs of the 1990s may vaguely remember using what was tools on OS X called the MRJ when their PC counterparts were busy using JVMs. Looking at the MRJ stands for Mac OS Runtime for Java. -
UML Ou Merise)
Présenté par : M. Bouderbala Promotion : 3ème Année LMD Informatique / Semestre N°5 Etablissement : Centre Universitaire de Relizane Année Universitaire : 2020/2021 Elaboré par M.Bouderbala / CUR 1 Elaboré par M.Bouderbala / CUR 2 Croquis, maquette et prototype et après …? Elaboré par M.Bouderbala / CUR 3 système interactif vs. système algorithmique Système algorithmique (fermé) : lit des entrées, calcule, produit un résultat il y a un état final Système interactif (ouvert) : évènements provenant de l’extérieur boucle infinie, non déterministe Elaboré par M.Bouderbala / CUR 4 Problème Nous avons appris à programmer des algorithmes (la partie “calcul”) La plupart des langages de programmation (C, C++, Java, Lisp, Scheme, Ada, Pascal, Fortran, Cobol, ...) sont conçus pour écrire des algorithmes, pas des systèmes interactifs Elaboré par M.Bouderbala / CUR 5 Les Bibliothèques graphique Un widget toolkit ( Boite d'outil de composant d'interface graphique) est une bibliothèque logicielle destinée à concevoir des interfaces graphiques. Fonctionnalités pour faciliter la programmation d’applications graphiques interactives (et gérer les entrées) Windows : MFC (Microsoft Foundation Class), Windows Forms (NET Framework) Mac OS X : Cocoa Unix/Linux : Motif Multiplateforme : Java AWT/Swing, QT, GTK Elaboré par M.Bouderbala / CUR 6 Bibliothèque graphique Une Bibliothèque graphique est une bibliothèque logicielle spécialisée dans les fonctions graphiques. Elle permet d'ajouter des fonctions graphiques à un programme. Ces fonctions sont classables en trois types qui sont apparus dans cet ordre chronologique et de complexité croissante : 1. Les bibliothèques de tracé d'éléments 2D 2. Les bibliothèques d'interface utilisateur 3. Les bibliothèques 3D Elaboré par M.Bouderbala / CUR 7 Les bibliothèques de tracé d'éléments 2D Ces bibliothèques sont également dites bas niveau. -
Visualization Program Development Using Java
JAERI-Data/Code 2002-003 Japan Atomic Energy Research Institute - (x 319-1195 ^J^*g|55lfi5*-/SWB*J|f^^W^3fFti)) T?1fi^C «k This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken T 319-1195, Japan. © Japan Atomic Energy Research Institute, 2002 JAERI- Data/Code 2002-003 Java \Z w-mm n ( 2002 %. 1 ^ 31 B Java *ffitt, -f >*- —tf—T -7x-x (GUI) •fi3.t>*> Java ff , Java #t : T619-0215 ^^^ 8-1 JAERI-Data/Code 2002-003 Visualization Program Development Using Java Akira SASAKI, Keiko SUTO and Hisashi YOKOTA* Advanced Photon Research Center Kansai Research Establishment Japan Atomic Energy Research Institute Kizu-cho, Souraku-gun, Kyoto-fu ( Received January 31, 2002 ) Method of visualization programs using Java for the PC with the graphical user interface (GUI) is discussed, and applied to the visualization and analysis of ID and 2D data from experiments and numerical simulations. Based on an investigation of programming techniques such as drawing graphics and event driven program, example codes are provided in which GUI is implemented using the Abstract Window Toolkit (AWT). The marked advantage of Java comes from the inclusion of library routines for graphics and networking as its language specification, which enables ordinary scientific programmers to make interactive visualization a part of their simulation codes. Moreover, the Java programs are machine independent at the source level. Object oriented programming (OOP) methods used in Java programming will be useful for developing large scientific codes which includes number of modules with better maintenance ability. -
The Glib/GTK+ Development Platform
The GLib/GTK+ Development Platform A Getting Started Guide Version 0.8 Sébastien Wilmet March 29, 2019 Contents 1 Introduction 3 1.1 License . 3 1.2 Financial Support . 3 1.3 Todo List for this Book and a Quick 2019 Update . 4 1.4 What is GLib and GTK+? . 4 1.5 The GNOME Desktop . 5 1.6 Prerequisites . 6 1.7 Why and When Using the C Language? . 7 1.7.1 Separate the Backend from the Frontend . 7 1.7.2 Other Aspects to Keep in Mind . 8 1.8 Learning Path . 9 1.9 The Development Environment . 10 1.10 Acknowledgments . 10 I GLib, the Core Library 11 2 GLib, the Core Library 12 2.1 Basics . 13 2.1.1 Type Definitions . 13 2.1.2 Frequently Used Macros . 13 2.1.3 Debugging Macros . 14 2.1.4 Memory . 16 2.1.5 String Handling . 18 2.2 Data Structures . 20 2.2.1 Lists . 20 2.2.2 Trees . 24 2.2.3 Hash Tables . 29 2.3 The Main Event Loop . 31 2.4 Other Features . 33 II Object-Oriented Programming in C 35 3 Semi-Object-Oriented Programming in C 37 3.1 Header Example . 37 3.1.1 Project Namespace . 37 3.1.2 Class Namespace . 39 3.1.3 Lowercase, Uppercase or CamelCase? . 39 3.1.4 Include Guard . 39 3.1.5 C++ Support . 39 1 3.1.6 #include . 39 3.1.7 Type Definition . 40 3.1.8 Object Constructor . 40 3.1.9 Object Destructor . -
Decwindows Motif Guide to Application Programming
DECwindows Motif Guide to Application Programming Order Number: AA–PGZEB–TE January 1994 This document describes the programming interface for widgets provided by Digital in the DECwindows Motif Version 1.2 Toolkit. This document also includes tutorial programming information for the DECwindows Motif Version 1.2 Toolkit. Revision/Update Information: This is a revised manual. Operating System: OpenVMS AXP Version 1.5 VMS Version 5.5–2 Software Version: DECwindows Motif Version 1.2 for OpenVMS AXP DECwindows Motif Version 1.2 for OpenVMS VAX Digital Equipment Corporation Maynard, Massachusetts January 1994 The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this document. The software described in this document is furnished under a license and may be used or copied only in accordance with the terms of such license. No responsibility is assumed for the use or reliability of software on equipment that is not supplied by Digital Equipment Corporation or its affiliated companies. Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013. © Digital Equipment Corporation 1994. All Rights Reserved. The postpaid Reader’s Comments forms at the end of this document request your critical evaluation to assist in preparing future documentation. The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader, DEC, DECpaint, DECterm, DECwindows, DECwrite, Digital, eXcursion, OpenVMS, VAX, VAX DOCUMENT, VMS, XUI, and the DIGITAL logo. -
A Successor to the X Window System
Y: A Successor to the X Window System Mark Thomas <[email protected]> Project Supervisor: D. R¨uckert <[email protected]> Second Marker: E. Lupu <[email protected]> June 18, 2003 ii Abstract UNIX desktop environments are a mess. The proliferation of incompatible and inconsistent user interface toolkits is now the primary factor in the failure of enterprises to adopt UNIX as a desktop solution. This report documents the creation of a comprehensive, elegant framework for a complete windowing system, including a standardised graphical user interface toolkit. ‘Y’ addresses many of the problems associated with current systems, whilst keeping and improving on their best features. An initial implementation, which supports simple applications like a terminal emulator, a clock and a calculator, is provided. iii iv Acknowledgements Thanks to Daniel R¨uckert for supervising the project and for his help and advice regarding it. Thanks to David McBride for his assistance with setting up my project machine and providing me with an ATI Radeon for it. Thanks to Philip Willoughby for his knowledge of the POSIX standard and help with the GNU Autotools and some of the more obscure libc functions. Thanks to Andrew Suffield for his help with the GNU Autotools and Arch. Thanks to Nick Maynard and Karl O’Keeffe for discussions on window system and GUI design. Thanks to Tim Southerwood for discussions about possible features of Y. Thanks to Duncan White for discussions about the virtues of X. All company and product names are trademarks and/or registered trademarks of their respective owners. -
Flextest Installation Guide
FlexTest Installation Guide Audience: Administrators profi.com AG Page 1/18 Copyright 2011-2014 profi.com AG. All rights reserved. Certain names of program products and company names used in this document might be registered trademarks or trademarks owned by other entities. Microsoft and Windows are registered trademarks of Microsoft Corporation. DotNetBar is a registered trademark of DevComponents LLC. All other trademarks or registered trademarks are property of their respective owners. profi.com AG Stresemannplatz 3 01309 Dresden phone: +49 351 44 00 80 fax: +49 351 44 00 818 eMail: [email protected] Internet: www.proficom.de Corporate structure Supervisory board chairman: Dipl.-Kfm. Friedrich Geise CEO: Dipl.-Ing. Heiko Worm Jurisdiction: Dresden Corporate ID Number: HRB 23 438 Tax Number: DE 218776955 Page 2/18 Contents 1 Introduction ............................................................................................................................ 4 2 Delivery Content ..................................................................................................................... 5 2.1 FlexTest Microsoft .Net Assemblies .................................................................................. 5 2.2 FlexTest license file ........................................................................................................... 5 2.3 FlexTest registry file .......................................................................................................... 6 2.4 Help ................................................................................................................................. -
Widget Toolkit – Getting Started
APPLICATION NOTE Atmel AVR1614: Widget Toolkit – Getting Started Atmel Microcontrollers Prerequisites • Required knowledge • Basic knowledge of microcontrollers and the C programming language • Software prerequisites • Atmel® Studio 6 • Atmel Software Framework 3.3.0 or later • Hardware prerequisites • mXT143E Xplained evaluation board • Xplained series MCU evaluation board • Programmer/debugger: • Atmel AVR® JTAGICE 3 • Atmel AVR Dragon™ • Atmel AVR JTAGICE mkll • Atmel AVR ONE! • Estimated completion time • 2 hours Introduction The aim of this document is to introduce the Window system and Widget toolkit (WTK) which is distributed with the Atmel Software Framework. This application note is organized as a training which will go through: • The basics of setting up graphical widgets on a screen to make a graphical user interface (GUI) • How to get feedback when a user has interacted with a widget • How to draw custom graphical elements on the screen 8300B−AVR−07/2012 Table of Contents 1. Introduction to the Window system and widget toolkit ......................... 3 1.1 Overview ........................................................................................................... 3 1.2 The Window system .......................................................................................... 4 1.3 Event handling .................................................................................................. 5 1.3.2 The draw event ................................................................................... 6 1.4 The Widget -
Abstract Window Toolkit Overview
In this chapter: • Components • Peers 1 • Layouts • Containers • And the Rest • Summary Abstract Window Toolkit Overview For years, programmers have had to go through the hassles of porting software from BSD-based UNIX to System V Release 4–based UNIX, from OpenWindows to Motif, from PC to UNIX to Macintosh (or some combination thereof), and between various other alternatives, too numerous to mention. Getting an applica- tion to work was only part of the problem; you also had to port it to all the plat- forms you supported, which often took more time than the development effort itself. In the UNIX world, standards like POSIX and X made it easier to move appli- cations between different UNIX platforms. But they only solved part of the prob- lem and didn’t provide any help with the PC world. Portability became even more important as the Internet grew. The goal was clear: wouldn’t it be great if you could just move applications between different operating environments without worr yingabout the software breaking because of a different operating system, win- dowing environment, or internal data representation? In the spring of 1995, Sun Microsystems announced Java, which claimed to solve this dilemma. What started out as a dancing penguin (or Star Trek communicator) named Duke on remote controls for interactive television has become a new paradigm for programming on the Internet. With Java, you can create a program on one platform and deliver the compilation output (byte-codes/class files) to ever yother supported environment without recompiling or worrying about the local windowing environment, word size, or byte order.