Intraspecific Variation in Space Use of Coastal Goanna and Quantifying the Impact of Varanid Predation on Sea Turtle Nests at Deepwater National Park

Total Page:16

File Type:pdf, Size:1020Kb

Intraspecific Variation in Space Use of Coastal Goanna and Quantifying the Impact of Varanid Predation on Sea Turtle Nests at Deepwater National Park Intraspecific variation in space use of coastal goanna and quantifying the impact of varanid predation on sea turtle nests at Deepwater National Park Juan Lei BSc (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Biological Sciences Abstract Sea turtles lay their eggs along beaches and embryos take about two month to incubate without any parental care. During this time a wide range of predators may prey on sea turtle eggs and have a significant effect on sea turtle hatchling recruitment and long-term population viability. The loggerhead sea turtle (Caretta caretta) is listed as endangered on the IUCN Red List. Goannas (Varanus varius and V. panoptes) have become the most common predator of loggerhead sea turtle nests at the Wreck rock rookery adjacent to Deepwater National Park in south east Queensland after a control program for feral foxes was instigated. Previous studies have reported goanna activity on sea turtle nesting beaches, but none have investigated the general biology of goannas in these areas, or designed an effective way to protect turtle nests from goanna predation. This thesis assessed activity patterns, spatial ecology, and in particular the sea turtle nest predation activities of goannas, along Wreck Rock Beach and in the adjacent Deepwater National Park, by a combination of monitoring passive soil plots, turtle nest monitoring, camera traps, and Global Position System (GPS) tracking. In addition, different turtle nest protection methods were trialed in order to find an effective and economical way to protect sea turtle nests from goanna predation. Chapter 1 is a general introduction to the study species and study site, sets up the background for the study and indicates the knowledge gaps that my research aimed to fill. Chapter 2 focused on identifying the major sea turtle nest predators at Wreck Rock beach. Although fox tracks were frequently identified on tracking plots located on dunes, no tracks were identified on nests, and no images of foxes recorded from camera traps located at nests. Yellow-spotted goannas were the most frequent visitors and predators of sea turtle nests at Wreck Rock beach suggesting they are the main cause of nest predation. Lace monitors only predated turtle nests after they had been previously opened by yellow-spotted goannas. Intriguingly, the nest predation rate and activity of goannas on the nesting dune varied by a factor of two over the two seasons that I studied, but I could find no obvious reason for this difference. Chapter 3 investigated how goannas might find sea turtle nests. Contrary to expectation, nest discovery by goannas was independent of nest age, however, the nest visitation rate of goannas increased significantly after a nest had been opened by a goanna or after hatchlings had emerged from the nest. There was no apparent connection between ghost crab burrows into a sea turtle nest and the likelihood of that nest being predated by a goanna. 1 Chapter 4 examined four possible methods of sea turtle nest protection against goanna predation, metal cages, plastic mesh, chili powder and red flags. Plastic mesh, when applied correctly, was found to be a relatively inexpensive and effective way to prevent goanna nest predation at sea turtle nesting beaches, while metal cages were also effective but more expensive and laborious to install. Chili powder and red flags were ineffective at deterring goanna predation. Chapter 5 explored the intraspecific variation in space use of yellow-spotted goannas at my study site. Male yellow-spotted goannas had larger home ranges, spent a greater proportion of their time in the beach-front dune area where sea turtles nest, and their home range overlap with more sea turtle nests compared to females. Examination of space use patterns indicates that it is the larger male yellow-spotted goannas that are the main predators of sea turtle nests at the Wreck Rock Beach sea turtle nesting aggregation. Chapter 6 explored the intraspecific variation in space use of lace monitors in at my study site. Both adult males and females occupied relatively large home ranges and individual home ranges overlapped each other to a large extent. The utilisation of turtle nesting beach by lace monitor varied between individuals, and sea turtle nest predation was performed by relatively few individuals who occasionally visited turtle nesting areas and they only raided nests after the nest had been previously opened by yellow-spotted goannas. For these reasons, lace monitors do not represent a major threat to the sea turtle nests at Wreck Rock beach. Chapter 7 explored the possible intraspecific and interspecific interactions of yellow-spotted goannas and lace monitors by quantifying how often goannas came close enough to each other that one-on-one interactions could occur. Yellow-spotted goannas spent a greater proportion of their time in the dune habitat where sea turtles nest, while lace monitors spent most of their time in the woodland habitat behind the beach-front dunes and as a consequence encountered fewer sea turtle nests compared to yellow-spotted goannas. Yellow-spotted goannas and lace monitors rarely came closer than 15 m of each other both intraspecifically and interspecifically, even though their home ranges overlapped, so the frequency of one-on-one interactions is likely to be low. Chapter 8 summaries the major findings of my study and suggests possible future studies to further our understanding of monitor lizard biology and their interactions with sea turtle nests. 2 Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, financial support and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my higher degree by research candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the policy and procedures of The University of Queensland, the thesis be made available for research and study in accordance with the Copyright Act 1968 unless a period of embargo has been approved by the Dean of the Graduate School. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis and have sought permission from co-authors for any jointly authored works included in the thesis. 3 Publications during candidature Lei, J. and Booth, D. T. (2017). Who are the important sea turtle nest predators at Wreck Rock beach? PeerJ. DOI 10.7717/peerj.3515. Lei, J., Dwyer D. R. and Booth, D. T. (2017). Intraspecific variation in space use of yellow-spotted goannas in coastal habitat. Australian Journal of Zoology. http://dx.doi.org/10.1071/ZO17006. Lei, J. and Booth, D. T. (2017). How best to protect the nests of the endangered loggerhead turtle Caretta caretta from monitor lizard predation? Chelonian Conservation and Biology. Chelonian Conservation and Biology, 2017, 16(2): 000–000 doi:10.2744/CCB-1251.1. Lei, J. and Booth, D. T. (2017). How do goannas find sea turtle nests? Austral Ecology. 10.1111/aec.12568 4 Publications included in this thesis Lei, J. and Booth, D. T. (2017). Who are the important sea turtle nest predators at Wreck Rock beach? Published in PeerJ. DOI 10.7717/peerj.3515. Incorporated as Chapter 2. Contributor Statement of contribution Author Juan Lei (Candidate) Conception and design (70%) Analysis and interpretation (90%) Drafting and production (75%) Author David Booth Conception and design (30%) Analysis and interpretation (10 %) Drafting and production (25%) Lei, J. and Booth, D. T. (2017). How do goannas find sea turtle nests? Accepted for publication. Incorporated as Chapter 3. Contributor Statement of contribution Author Juan Lei (Candidate) Conception and design (70%) Analysis and interpretation (90%) Drafting and production (75%) Author David Booth Conception and design (30%) Analysis and interpretation (10 %) Drafting and production (25%) 5 Lei, J. and Booth, D. T. (2017). How best to protect the nests of the endangered loggerhead turtle Caretta caretta from monitor lizard predation? Chelonian Conservation and Biology. Chelonian Conservation and Biology, 2017, 16(2): 000–000 doi:10.2744/CCB-1251.1. Incorporated as Chapter 4. Contributor Statement of contribution Author Juan Lei (Candidate) Conception and design (70%) Analysis and interpretation (90%) Drafting and production (75%) Author David Booth Conception and design (30%) Analysis and interpretation (10 %) Drafting and production (25%) Lei, J., Dwyer D. R. and Booth, D. T. (2017). Intraspecific variation in space use of yellow-spotted goannas in coastal habitat. Published in Australian Journal of Zoology. http://dx.doi.org/10.1071/ZO17006. Incorporated as Chapter 5. Contributor Statement of contribution Author Juan Lei (Candidate) Conception and design (70%) Analysis and interpretation (90%) Drafting and production (70%) Author David Booth Conception and design (30%) Analysis and interpretation (10 %) Drafting and production (20%) Author Ross Dwyer Conception and design (0%) Analysis and interpretation (0%) Drafting and production (10%) 6 Contributions by others to the thesis Advice for experimental design and field set-up was provided by Dr David Booth (Chapters 2-7).
Recommended publications
  • BIAWAK Quarterly Journal of Varanid Biology and Husbandry
    BIAWAK Quarterly Journal of Varanid Biology and Husbandry Volume 4 Number 2 ISSN: 1936-296X On the Cover: Varanus obor Varanus obor is the most recent species of monitor lizard to be described from Indonesia. Discovered by Weijola and Sweet (2010. A new melanistic species of monitor [Reptilia: Squa- mata: Varanidae] from Sanana Island, Indone- sia. Zootaxa 2434: 17-32.), V. obor also repre- sents the most recently described member of the V. indicus complex. Data and observations on its natural history and ecology are included within the species description. The specimens depicted on the cover and inset of this issue were photographed by Valter Wei- jola on Sanana Island, Maluku, Indonesia on 28 March and 3 April 2009. The specimen depicted on the cover and to the left was observed around 1600 h in a coastal Sago area of northeastern Sanana. The specimen depicted below was first observed foraging in coastal vegetation, but as- cended a coconut palm when it noticed the ob- server. BIAWAK Quarterly Journal of Varanid Biology and Husbandry Editor Editorial Review ROBERT W. MENDYK MICHAEL J. BALSAI Center for Science Teaching and Learning Department of Biology, Temple University 1 Tanglewood Road Philadelphia, PA 19122, US Rockville Centre, NY 11570, US [email protected] [email protected] BERND EIDENMÜLLER Griesheimer Ufer 53 Associate Editors 65933 Frankfurt, DE [email protected] DANIEL BENNETT School of Biology, Leeds University MICHAEL FOST Leeds LS2 9JT, UK Department of Math and Statistics [email protected] Georgia State University Atlanta, GA 30303, US MICHAEL Cota [email protected] Thailand Natural History Museum, National Science Museum, RUston W.
    [Show full text]
  • Dietary Behavior of the Mangrove Monitor Lizard (Varanus Indicus)
    DIETARY BEHAVIOR OF THE MANGROVE MONITOR LIZARD (VARANUS INDICUS) ON COCOS ISLAND, GUAM, AND STRATEGIES FOR VARANUS INDICUS ERADICATION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI’I AT HILO IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL CONSERVATION BIOLOGY AND ENVIRONMENTAL SCIENCE MAY 2016 By Seamus P. Ehrhard Thesis Committee: William Mautz, Chairperson Donald Price Patrick Hart Acknowledgements I would like to thank Guam’s Department of Agriculture, the Division of Aquatic and Wildlife Resources, and wildlife biologist, Diane Vice, for financial assistance, research materials, and for offering me additional staffing, which greatly aided my fieldwork on Guam. Additionally, I would like to thank Dr. William Mautz for his consistent help and effort, which exceeded all expectations of an advisor, and without which I surely would have not completed my research or been inspired to follow my passion of herpetology to the near ends of the earth. 2 Abstract The mangrove monitor lizard (Varanus indicus), a large invasive predator, can be found on all areas of the 38.6 ha Cocos Island at an estimated density, in October 2011, of 6 V. Indicus per hectare on the island. Plans for the release of the endangered Guam rail (Gallirallus owstoni) on Cocos Island required the culling of V. Indicus, because the lizards are known to consume birds and bird eggs. Cocos Island has 7 different habitats; resort/horticulture, Casuarina forest, mixed strand forest, Pemphis scrub, Scaevola scrub, sand/open area, and wetlands. I removed as many V. Indicus as possible from the three principal habitats; Casuarina forest, mixed scrub forest, and a garbage dump (resort/horticulture) using six different trapping methods.
    [Show full text]
  • Life-Saving Lesson: Goannas Taught to Spurn the Taste of Toad
    www.ecosmagazine.com Published: 2 July 2014 Life-saving lesson: goannas taught to spurn the taste of toad Researchers are investigating whether goannas can be taught to avoid eating cane toads – in an approach similar to previous studies involving native marsupials – in the remote east Kimberley, close to the invasion front of cane toads. Credit: Thinkstock The study team comprises researchers from the University of Sydney and the WA Department of Parks and Wildlife, and the Balanggarra Rangers with support from the Kimberley Land Council. Three of the five species of goannas found in the region are thought to be heavily impacted by toads. The team studied two of these species, the yellow spotted monitor (Varanus panoptes) and the sand goanna (Varanus gouldii), to learn more about their ecology. The goannas are regularly radio-tracked and offered small non-lethal cane toads. The team found goannas that previously ate the small toads tended not eat them in subsequent trials. This taste aversion training could prevent goannas from eating larger toads that could kill them when the main toad front arrives during the wet season later this year. Cane toads entered the Kimberley region from the Northern Territory in 2009 and are moving at around 50 kilometres per year. Earlier research has shown that the speed of their progress has increased as the species evolves. The invasion front is larger than previously thought, with faster, bigger toads evolving to have longer legs and moving up to eight months in front of the main pack. The research is partly supported by the Australian Government’s National Environmental Research Program (NERP) The research is partly supported by the Australian Government’s National Environmental Research Program (NERP) Northern Australia Hub.
    [Show full text]
  • Observations on Varanus S. Salvator in North Sulawesi
    ARTICLES Biawak 1(2): 59-66 © 2007. International Varanid Interest Group Observations on Varanus s. salvator in North Sulawesi HAROLD F. DE LISLE P.O. Box 1975 Twentynine Palms, CA 92277, US [email protected] Abstract: Asian Water Monitors (Varanus s. salvator) are widespread on the main island of Sulawesi, Indonesia, but rather rare in the province of North Sulawesi because of human predation. This study documents observations on the daily behavior of a small coastal population over a two week period. Observations of aquatic behavior led to discussion of the possibility that this population is able to catch live fish in a particular coastal lagoon. Introduction The Asian Water Monitor (Varanus salvator salvator) is perhaps the most wide-spread of all varanids. It is found from Sri Lanka, northern India, Bangladesh, Burma, Vietnam and Hainan (China) through Malaysia east to the Indonesian islands of Sulawesi and Wetar (De Lisle, 1996). Its ability to colonize the remote islands of Malaysia and Indonesia might be due to its adaptability towards freshwater and saltwater (Traeholt, 1994a), and also its large size is an advantage, giving both the energy reserves and power to survive an extended sea voyage and a greater potential to actually achieve a landfall. Backwash from tsunamis could start this process frequently enough. Figures 1A and B. Remnant primary forest on North Sulawesi Biawak 2007 Vol. 1 No. 2 60 Figure 2. Coastal stream, North Sulawesi Figure 3. Coast of the Moluccan Sea In March 2001, a month was spent in North Sulawesi Province, Indonesia (island of Sulawesi) to observe the northeastern-most populations of the Asian Water Monitor (V.
    [Show full text]
  • Iguanid and Varanid CAMP 1992.Pdf
    CONSERVATION ASSESSMENT AND MANAGEMENT PLAN FOR IGUANIDAE AND VARANIDAE WORKING DOCUMENT December 1994 Report from the workshop held 1-3 September 1992 Edited by Rick Hudson, Allison Alberts, Susie Ellis, Onnie Byers Compiled by the Workshop Participants A Collaborative Workshop AZA Lizard Taxon Advisory Group IUCN/SSC Conservation Breeding Specialist Group SPECIES SURVIVAL COMMISSION A Publication of the IUCN/SSC Conservation Breeding Specialist Group 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124 USA A contribution of the IUCN/SSC Conservation Breeding Specialist Group, and the AZA Lizard Taxon Advisory Group. Cover Photo: Provided by Steve Reichling Hudson, R. A. Alberts, S. Ellis, 0. Byers. 1994. Conservation Assessment and Management Plan for lguanidae and Varanidae. IUCN/SSC Conservation Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Conservation Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Banlc Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No. 1100 1210 1736. The work of the Conservation Breeding Specialist Group is made possible by generous contributions from the following members of the CBSG Institutional Conservation Council Conservators ($10,000 and above) Australasian Species Management Program Gladys Porter Zoo Arizona-Sonora Desert Museum Sponsors ($50-$249) Chicago Zoological
    [Show full text]
  • Flatback Turtles Along the Stunning Coastline of Western Australia
    PPRROOJJEECCTT RREEPPOORRTT Expedition dates: 8 – 22 November 2010 Report published: October 2011 Beach combing for conservation: monitoring flatback turtles along the stunning coastline of Western Australia. 0 BEST BEST FOR TOP BEST WILDLIFE BEST IN ENVIRONMENT TOP HOLIDAY © Biosphere Expeditions VOLUNTEERING GREEN-MINDED RESPONSIBLE www.biosphereVOLUNTEERING-expeditions.orgSUSTAINABLE AWARD FOR NATURE ORGANISATION TRAVELLERS HOLIDAY HOLIDAY TRAVEL Germany Germany UK UK UK UK USA EXPEDITION REPORT Beach combing for conservation: monitoring flatback turtles along the stunning coastline of Western Australia. Expedition dates: 8 - 22 November 2010 Report published: October 2011 Authors: Glenn McFarlane Conservation Volunteers Australia Matthias Hammer (editor) Biosphere Expeditions This report is an adaptation of “Report of 2010 nesting activity for the flatback turtle (Natator depressus) at Eco Beach Wilderness Retreat, Western Australia” by Glenn McFarlane, ISBN: 978-0-9807857-3-9, © Conservation Volunteers. Glenn McFarlane’s report is reproduced with minor adaptations in the abstract and chapter 2; the remainder is Biosphere Expeditions’ work. All photographs in this report are Glenn McFarlane’s copyright unless otherwise stated. 1 © Biosphere Expeditions www.biosphere-expeditions.org Abstract The nesting population of Australian flatback (Natator depressus) sea turtles at Eco Beach, Western Australia, continues to be the focus of this annual programme, which resumes gathering valuable data on the species, dynamic changes to the nesting environment and a strong base for environmental teaching and training of all programme participants. Whilst the Eco Beach population is not as high in density as other Western Australian nesting populations at Cape Domett, Barrow Island or the Pilbara region, it remains significant for the following reasons: The 12 km nesting beach and survey area is free from human development, which can impact on nesting turtles and hatchlings.
    [Show full text]
  • Incidence of Fish Hook Ingestion by Komodo Dragons
    Biawak. 2008. 2(3): 121-123 © 2008 by International Varanid Interest Group Incidence of Fish Hook Ingestion by Komodo dragons TIM JESSOP1,2, JERI IMANSYAH2, DENI PURWANDANA2, ACHMAD ARIEFIANDY2 and DEVI S. OPAT3 1Department of Wildlife Conservation and Research, Zoos Victoria, PO Box 74 Parkville VIC 3052, Australia 2 Komodo Dragon Species Survival Program Indonesia, Denpasar, Bali, Indonesia 3 Komodo National Park, Labuan Bajo, Flores, NTT, Indonesia Correspondence to Tim Jessop e-mail: tjessop@ zoo.org.au The Komodo dragon (Varanus komodoensis), a large robust monitor lizard, persists on the 5 islands in Eastern Indonesia (Ciofi and de Boer 2004). The waters surrounding these islands are intensively utilized for marine resources and in particular line and net fishing are prolific. For other reptiles, particularly freshwater and marine turtles, incidental injury and mortality through ingestion of fishing hooks during routine foraging activities are not uncommon (Polovina et al. 2000). However, similar incidents of reptile by-catch in terrestrial species is poorly documented, even though many large lizards such as monitors are semi-aquatic, or cohabit and forage within coastal areas in which intense fishing activities persist. Here we report two incidents of ingestion of fishing hooks by Komodo dragons during routine monitoring of island populations between 2002 and 2006. Annual mark-recapture studies were conducted at 10 sites across 4 islands within Komodo National Park between 2002 and 2006 and resulted in 827 individual dragons captures. From this sample, 2 cases of fishhook ingestion were reported. The first case, comprised a small monitor (Animal ID: 00063A9978, 69.35 cm SVL, 7 kg) captured at Loh Buaya (8° 39’ 21.7” S; 119° 43’ 06.2” E) on Rinca Island and appeared to have occurred recently as the line protruding from its mouth was still relatively long and the nylon in good condition (Figure 1).
    [Show full text]
  • The Australian Flatback by M. A. Cohen
    September | October 2016 the Tortuga Gazette Volume 52, Number 5 California Turtle & Tortoise Club founded in 1964 and dedicated to Turtle & Tortoise Preservation, Conservation and Education Nesting female Australian flatback turtle, Natator depressus, photographed in habitat in Bowen, Queensland, Australia. Photo © 2009 by Stephen Zozaya. Reprinted with permission from the photographer. Flatback Sea Turtle, Natator depressus The Australian Flatback by M. A. Cohen he Australian flatback is a mem- covers the carapace of the flatback tur- museum specimens that went undiscov- ber of the Cheloniidae, the tle. Ordinarily, keratinized scutes cover ered for decades. superfamily of sea turtles, which the carapace of sea turtles species. In the 1980s, Rainer Zangerl and Colin Tis collectively the most endangered fam- The species was first described by Limpus concluded, through indepen- ily of turtles on the planet. Least studied American ichthyologist/herpetologist dent studies, that the Australian flatback of the seven living sea turtle species, the Samuel W. Garman (1843-1927) in 1880. was a unique species and not a relative Australian flatback turtle, Natator depres- Originally Garman assigned the Aus- of C. mydas (Spotila, 2004). sus, is unusual in several respects. tralian flatback to the genus Chelonia, The flatback was officially described It is the only sea turtle that is endemic, thinking it was a type of green turtle, and as a separate species in 1988 (Flatback, i.e., restricted to a certain area (Flatback, he gave it the name C. depressa. n.d.). Consequently, it was assigned to n.d.). The Australian flatback is the only Historically, there have been differ- the genus Natator, the name which was sea turtle that does not migrate extensive ences of opinion about how to classify first given it by McCulloch in 1908.
    [Show full text]
  • Varanus Macraei
    BIAWAK Journal of Varanid Biology and Husbandry Volume 13 Number 2 ISSN: 1936-296X On the Cover: Varanus macraei The Blue tree monitors, Varanus mac- raei depicted on the cover and inset of this issue were hatched on 14 No- vember 2019 at Bristol Zoo Gardens (BZG) and are the first of their spe- cies to hatch at a UK zoological in- stitution. Two live offspring from an original clutch of four eggs hatched after 151 days of incubation at a tem- perature of 30.5 °C. The juveniles will remain on dis- play at BZG until they are eventually transferred to other accredited Euro- pean Association of Zoos & Aquari- ums (EAZA) institutions as part of the zoo breeding programme. Text and photographs by Adam Davis. BIAWAK Journal of Varanid Biology and Husbandry Editor Editorial Review ROBERT W. MENDYK BERND EIDENMÜLLER Department of Herpetology Frankfurt, DE Smithsonian National Zoological Park [email protected] 3001 Connecticut Avenue NW Washington, DC 20008, US RUston W. Hartdegen [email protected] Department of Herpetology Dallas Zoo, US Department of Herpetology [email protected] Audubon Zoo 6500 Magazine Street TIM JESSOP New Orleans, LA 70118, US Department of Zoology [email protected] University of Melbourne, AU [email protected] Associate Editors DAVID S. KIRSHNER Sydney Zoo, AU DANIEL BENNETT [email protected] PO Box 42793 Larnaca 6503, CY JEFFREY M. LEMM [email protected] San Diego Zoo Institute for Conservation Research Zoological Society of San Diego, US MICHAEL Cota [email protected] Natural History Museum National Science Museum, Thailand LAURENCE PAUL Technopolis, Khlong 5, Khlong Luang San Antonio, TX, US Pathum Thani 12120, TH [email protected] [email protected] SAMUEL S.
    [Show full text]
  • Scaling Up: the Contemporary Reptile Pet Market in Japan
    S H O R T R E P O R T SCALING UP: THE CONTEMPORARY REPTILE PET MARKET IN JAPAN CHINESE WATER DRAGON / © J. JANSSEN J. © / DRAGON WATER CHINESE 64 TRAFFIC Bulletin 9RO1R SS H H O O R R T T R R E E P P O O R R T T 5HSRUWE\.HLNR:DNDR -RUGL-DQVVHQDQG 6HUHQH&KQJ TRAFFIC Bulletin9RO1R S H O R T R E P O R T ,ඇඍඋඈൽඎർඍංඈඇ 0ൾඍඁඈൽඌ he reptile pet industry has been scrutinised by • Market survey the international conservation community for In order to investigate the reptiles for sale in pet shops its role in the trade of a wide range of species, and expos in Japan, TRAFFIC investigators carried many of which are threatened by collection out surveys of eight outlets in Tokyo, six in Kanagawa for trade (Herrel and van der Meijden, 2014; Prefecture, and two in Osaka Prefecture in February TAuliya et al., ,QWHUPVRIPRQHWDU\YDOXH-DSDQ 2017. The Reptiles Fever—an exotic pet trade expo and was the fourth largest importer of live reptiles in 2016 the largest in the Kansai area, with about 40 trading stalls, &RPWUDGH ,QWKDW\HDU-DSDQLPSRUWHG was also surveyed. All reptile species were recorded to live reptiles and exported 8,702 live reptiles (Ministry of species or subspecies level where possible, as well as )LQDQFH 9LVLWRUVWRUHSWLOHH[SRVKDYHLQFUHDVHG information on the number of animals, price, origin, and over time, with over 20,000 people attending the Tokyo VRXUFH FDSWLYHEUHGRUZLOGFDXJKW ZKHUHSRVVLEOH1R Reptiles World 2016 Show, up from 8,343 in 2011 animals were purchased as part of the survey.
    [Show full text]
  • Wet Tropics Lizards No
    Tropical Topics A n i n t e r p r e t i v e n e w s l e t t e r f o r t h e t o u r i s m i n d u s t r y Wet tropics lizards No. 33 January 1996 Lizards tell a tale of history Notes from the A prickly forest skink from Cardwell and a prickly forest skink from Cooktown look the same but recent studies of their genetic make-up have Editor revealed hidden differences which tell a tale of history. While mammals and snakes are a The wet tropics contain the remnants Studies of birds, skinks, frogs, geckos fairly rare sight in the rainforests, of tropical rainforests which once and snails as well as some mammals lizards are one of the few types of covered much of Australia. As the revealed genetic breaks at exactly the animal we can be almost certain to climate became drier only the same location. It is thought that a dry see. mountainous regions of the north-east corridor cut through the wet tropics at coast remained constantly moist and this point for hundreds of thousands The wet tropics rainforests have an became the last refuges of Australia’s of years, preventing rainforest animals extraordinarily high number of lizard ancient tropical rainforests. on either side from mixing with each species — at least 14 — which are other at all. This affected not just found nowhere else. Some only However, the area currently occupied individual species but whole occur in very restricted areas such by rainforest has fluctuated.
    [Show full text]
  • BIAWAK Quarterly Journal of Varanid Biology and Husbandry
    BIAWAK Quarterly Journal of Varanid Biology and Husbandry Volume 5 Number 3 ISSN: 1936-296X On the Cover: Varanus komodoensis The Varanus komodoensis depicted on the cover and inset of this issue was photographed by Jeremy Holden on Rinca Island in late July 2011 during the making of a film for National Geographic Channel on Homo floresiensis and Komodo dragons. Unlike the mainland Flores population, the dragons on Rinca, although still dangerous on occasion, are now accepting of humans and can be approached to within meters. The photograph on the cover and to the left shows one of the Komodo National Park rangers luring a dragon with a dead fish. A number of dragons visit the park head quarters, occasionally menacing kitchen staff and even attacking rangers - a notorious incident in 2009 saw a dragon climb in to the park ticket booth and bite a ranger on the arm as he struggled to escape through the window. These animals are often co-opted into appearing in TV documentaries, as was the case with the dragon in these photographs. Jeremy Holden is a 45-year-old photographer, naturalist and explorer. For the past 25 years he has been traveling the world in search of wild places and mysterious creatures. In 1994 he began working with the British conservation organization Fauna & Flora International to help document and preserve some of Southeast Asia’s most threatened ecosystems. During his field research he developed camera trapping techniques which he has used all over Asia to document rare and cryptic animals, especially those in tropical rainforests.
    [Show full text]