Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly firom the orignal or copy submitted. Thus, some thesis and dissertation copies are in typewriter 6 c e , while others may be firom any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely afifect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing fi*om left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor MI 48106-1346 USA 313/76M700 800/521-0600 CONCEPTUAL PROGRAM EDITORS: DESIGN AND FORMAL SPECIFICATION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Paolo Bucci, M.S. ***** The Ohio State University 1997 Dissertation Committee: Approved by Dr. Timothy J. Long, Co-adviser r9~ Dr. Bruce W. Weide, Co-adviser Dr. Neelam Soundarajan Co-advisers Department of Computer and Information Science ÜMI Number: 9801653 UMI Microform 9801653 Copyright 1997, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 © Copyright by Paolo Bucci 1997 ABSTRACT When a programmer uses a program editor, his/her view of what programs are and how they are built is affected by the editor itself. This is a special case of a more general phenomenon; namely, that all artifacts have an impact on the way users think of them and of the activities they perform with them. Research in human-machine interaction has explored the ramifications of this insight with respect to how it affects the design of tools and their user interface. In this dissertation we investigate the implications of this work for the design of program editors. We note that existing program editors convey a low-level, often inconsistent and incomplete conceptual model of programs and program construction. This hides the high-level conceptual view of programs, imposes excessive responsibilities on the programmer, and tends to make the programming task harder and more error prone. We propose a new class of program editors that we call “conceptual editors”. These editors are based on a specific, precise, high-level conceptual model of programs and program construction, and the editor and its user interface can be designed and built to convey the model in a consistent fashion. A conceptual editor, by design, supports, promotes, and even enforces an “appropriate” conceptual view of software through this model. 11 To show the feasibility of this approach to program editors, we formally specify an editor for a small, but significant (in terms of key concepts) subset of a programming language. By example, this demonstrates a precise description of a conceptual model and of a corresponding editor’s capabilities. We also discuss how this design could be extended and generalized to an editor for a full-fledged programming language. Ill To my parents IV ACKNOWLEDGMENTS First, I would like to thank my advisers, Tim Long and Bruce Weide. They both have followed my work closely, and their guidance has been invaluable. Their support and confidence in me has always exceeded my expectations. I am very lucky to have been able to work with them during the past four years. I also thank Neelam Soundarajan for many valuable comments and constructive suggestions. I am grateful to past and current members of the Reusable Software Research Group at The Ohio State University, and especially Bill Ogden, for numerous discussions and helpful insights. Many friends have shared and shaped my life during the past nine years. Most of them have come and gone while I struggled to find my way out of this seemingly inescapable maze. They are the reason I can now look back on this long experience and believe it was worth the time and suffering. In more or less chronological order, I would like to thank Hal and Eva McMillan, Wayne Heym, Ming-Jye Sheu, Sanjay Gupta, Manas Mandai, David Gibson, Bharat Kumar, Sergey Zhupanov, Lena Grayfer, Zafar Ali, and, last but not least, Bhavana Nagendra. In spite of the distance that separates us and the lack of effort on my part, some old friends have simply refused to give up on me and our friendship. They are Fabio Besta, Paolo Rollino, and Filippo and Andrea Tampieri. I thank them from the bottom of my heart because they showed with their actions how much they care about me. For the past five years one thing more than anything has helped me survive the stress and pressure of graduate school and that is my almost daily aerobic workouts with the Buck-I-Robics program at The Ohio State University. I wish to thank the program coordinator, Liz Davis, and all past and current Buck-I-Robics instructors for helping me become fit and healthy both physically and mentally. Finally, and most importantly, I wish to thank my parents, Giovanni and Adele Bucci, my brother, Mario, and my sister, Valeria, for their unconditional love and unwavering support. VI VITA November 30,1962 ................................Bom - Ferrara, Italy. 1986 .........................................................Laurea in Scienze dell’Informazione, Université degli Studi, Milan, Italy. 1986 .........................................................Research Staff Member, CISE, Italy. 1987 - 1988 ............................................ Consultant, Eidos, Spa, Italy. 1988 .........................................................Consultant, Unicad, Spa, Italy. 1988 - 1989...............................................University Fellow, The Ohio State University. 1989 .........................................................M.S. Computer and Information Science, The Ohio State University. 1989 - present........................................... Graduate Teaching and Research Associate, The Ohio State University. PUBLICATIONS P. Bucci. “Conceptual Program Editors.” Proceedings o f the Eight Workshop on Software Reuse, March 1997. P. Bucci. “A Program Editor to Promote Reuse.” Proceedings of the Seventh Workshop on Software Reuse, September 1995. P. Bucci, I.E. Hollingsworth, J. Krone, and B.W. Weide. “Implementing Components in ^JESOINE." ACM SIGSOFT Software Engineering Notes, 19(4):40-52, October 1994. Vll FIELDS OF STUDY Major Field: Computer and Information Science Studies in: Software Engineering Prof. Bruce W. Weide Theory of Computation Prof. Timothy J. Long Computer Graphics Prof. Richard E. Parent V lll TABLE OF CONTENTS Page DEDICATION........................................................................................................................ iv ACKNOWLEDGMENTS....................................................................................................... v VITA........................................................................................................................................vii LIST OF nOURES ............................................................................................................... xii CHAPTERS: 1. INTRODUCTION......................................................................................................... 1 1.1 The Problem.......................................................................................................1 1.2 The Thesis...........................................................................................................2 1.3 The Proposed Approach ...................................................................................6 1.4 Formal Specification of a Type Declaration Conceptual Editor ....................8 1.5 Contributions ...................................................................................................10 1.6 Organization .....................................................................................................11 2. CONCEPTUAL EDITORS........................................................................................13 2.1 Introduction .......................................................................................................13 2.2 Conceptual Models of Programming ............................................................ 16 2.2.1 Component vs. File/Class .................................................................. 17 2.2.2 Conceptual Relationships vs. Inheritance .........................................20 2.2.3 Operation Abstract Description vs. Function Prototype ................ 22 2.2.4 Abstract Parameter Mode vs. Parameter Passing Mechanism . 22 2.2.5 Chain_Position_Template vs. Pointers ...........................................
Recommended publications
  • The Evolution of Lisp
    1 The Evolution of Lisp Guy L. Steele Jr. Richard P. Gabriel Thinking Machines Corporation Lucid, Inc. 245 First Street 707 Laurel Street Cambridge, Massachusetts 02142 Menlo Park, California 94025 Phone: (617) 234-2860 Phone: (415) 329-8400 FAX: (617) 243-4444 FAX: (415) 329-8480 E-mail: [email protected] E-mail: [email protected] Abstract Lisp is the world’s greatest programming language—or so its proponents think. The structure of Lisp makes it easy to extend the language or even to implement entirely new dialects without starting from scratch. Overall, the evolution of Lisp has been guided more by institutional rivalry, one-upsmanship, and the glee born of technical cleverness that is characteristic of the “hacker culture” than by sober assessments of technical requirements. Nevertheless this process has eventually produced both an industrial- strength programming language, messy but powerful, and a technically pure dialect, small but powerful, that is suitable for use by programming-language theoreticians. We pick up where McCarthy’s paper in the first HOPL conference left off. We trace the development chronologically from the era of the PDP-6, through the heyday of Interlisp and MacLisp, past the ascension and decline of special purpose Lisp machines, to the present era of standardization activities. We then examine the technical evolution of a few representative language features, including both some notable successes and some notable failures, that illuminate design issues that distinguish Lisp from other programming languages. We also discuss the use of Lisp as a laboratory for designing other programming languages. We conclude with some reflections on the forces that have driven the evolution of Lisp.
    [Show full text]
  • An Overview of the Mjølner BETA System∗
    An overview of the Mjølner BETA System∗ Lars Bak,†Jørgen Lindskov Knudsen,‡ Ole Lehrmann Madsen†‡, Claus Nørgaard†, Elmer Sandvad† April 1991 ∗Presented at: Conference on Software Engineering Environments, 25-27 March 1991, Aberystwyth, Wales, Great Britain. †Mjølner Informatics ApS, Sience Park Aarhus, Gustav Wiedsvej 10, DK-8000 Arhus˚ C, Denmark, Phone: +45 86 20 20 00, Fax: +45 86 20 12 22, E-mail: [email protected], [email protected], [email protected] ‡Computer Science Department, Aarhus University, Ny Munkegade 116, DK-8000 Arhus˚ C, Denmark, Phone: +45 86 12 71 88, Fax: + 45 86 13 57 25, E-mail: jlknud- [email protected], [email protected] 1 Abstract The Mjøner BETA System is an integrated and interactive program- ming environment with support for industrial object oriented programming. The Mjølner BETA System is a result of the Scandinavian research project Mjølner. The integration of the various tools in the Mjølner BETA System is es- tablished by insisting that all tools in the system utilizes one single represen- tation of the program. This representation is abstract syntax trees (ASTs). All manipulations of the ASTs by the various tools are done, utilizing the metaprogramming system, which defines an interface to the AST, and ways to manipulate the AST. The Mjølner BETA System includes an implementation of the BETA programming language. In addition it includes a set of grammar-based tools, which can be used for any formal language that is defined by a context- free grammar. The grammar-based tools include a hyper structure editor, a metaprogramming system, and a fragment system.
    [Show full text]
  • Venue Medley for the Novice
    Venue Medley for the Novice Release 2.0 February, 1992 Address comments to: Venue User Documentation 1549 Industrial Road San Carlos, CA 94070 415-508-9672 Medley for the Novice Release 2.0 February 1992 Copyright 1992 by Venue. All rights reserved. Medley is a trademark of Venue. Xerox is a registered trademark and InterPress is a trademark of Xerox Corporation. UNIX is a registered trademark of UNIX System Laboratories. PostScript is a registered trademark of Adobe Systems Inc. Copyright protection includes material generated from the software programs displayed on the screen, such as icons, screen display looks, and the like. The information in this document is subject to change without notice and should not be construed as a commitment by Venue. While every effort has been made to ensure the accuracy of this document, Venue assumes no responsibility for any errors that may appear. Text was written and produced with Venue text formatting tools; Xerox printers were used to produce text masters. The typeface is Classic. PREFACE It was dawn and the local told him it was down the road a piece, left at the first fishing bridge in the country, right at the appletree stump, and onto the dirt road just before the hill. At midnight he knew he was lost. -Anonymous Welcome to the Medley Lisp Development Environment, a collection of powerful tools for assisting you in programming in Lisp, developing sophisticated user interfaces, and creating prototypes of your ideas in a quick and easy manner. Unfortunately, along with the power comes mind-numbing complexity. The Medley documentation set describes all the tools in detail, but it would be unreasonable for us to expect a new user to wade through all of it, so this primer is intended as an introduction, to give you a taste of some of the features.
    [Show full text]
  • ADVANCES in STRUCTURE EDITORS Do They Really Pay Off?
    ADVANCES IN STRUCTURE EDITORS Do They Really Pay Off? Andreas Gomolka and Bernhard G. Humm Hochschule Darmstadt, University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany Keywords: Programming, Structure editor, Evaluation, Lisp, Eclipse. Abstract: Structure editors emphasise a high-fidelity representation of the underlying tree structure of a program, often using a clearly identifiable 1-to-1 mapping between syntax tree elements and on-screen artefacts. This paper presents layout and behaviour principles for structure editors and a new structure editor for Lisp. The evaluation of the editor’s usability reveals an interesting mismatch. Whereas by far most participants of a questionnaire intuitively favour the structure editor to the textual editor, objective improvements are measurable, yet not significant. 1 INTRODUCTION The remainder of the paper is structured as follows: Section 2 describes layout and behaviour Structure editors have fascinated designers of principles for structure editors. In Section 3, we development environments for decades (Hansen, present a new structure editor for Lisp via samples 1971, Borras et al., 1988, Ballance et al., 1992, Ko and screenshots and give some insights into its and Myers, 2006). The idea is simple and implementation. Section 4 describes how we convincing. The elements of the syntax tree of a evaluated the usability of the editor and in Section 5 program are mapped to on-screen artefacts and can we position our work in relation to other approaches. be edited directly. Section 6 concludes the paper with a critical The basis for this is the awareness that programs discussion. are more than just text (cf. Teitelbaum and Reps, 1981).
    [Show full text]
  • Tiny Structure Editors for Low, Low Prices! (Generating Guis from Tostring Functions)
    Tiny Structure Editors for Low, Low Prices! (Generating GUIs from toString Functions) Brian Hempel Ravi Chugh University of Chicago University of Chicago brianhempel@ uchicago.edu rchugh@ uchicago.edu Abstract—Writing toString functions to display custom data values is straightforward, but building custom interfaces to manipulate such values is more difficult. Though tolerable in many scenarios, this difficulty is acute in emerging value-centric IDEs—such as those that provide programming by examples Fig. 1. Selection regions and UI elements generated by tracing the execution of the toString function for an interval data type. (PBE) or bidirectional transformation (BX) modalities, in which users manipulate output values to specify programs. We present an approach that automatically generates custom GUIs from ordinary toString functions. By tracing the execution To do so, TSE instruments the execution of the toString of the toString function on an input value, our technique function applied to a value, and then overlays UI widgets on overlays a tiny structure editor upon the output string: UI widgets top of appropriate locations in the output string (Figure 1). for selecting, adding, removing, and modifying elements of the To determine these locations, TSE employs two key technical original value are displayed atop appropriate substrings. ideas: (a) a modified string concatenation operation that pre- We implement our technique—in a tool called TSE—for a serves information about substring locations and (b) runtime simple functional language with custom algebraic data types dependency tracing (based on Transparent ML [3]) to relate (ADTs), and evaluate the tiny structure editors produced by TSE those substrings to parts of the input value.
    [Show full text]
  • Alembicue: a Projectional Editor & IDE for Container Application Architecture
    Computer Science 18COC251 B627091 Alembicue: A projectional editor & IDE for container application architecture George Garside Supervisor: Dr. Daniel Reidenbach Loughborough University Summer 2019 Abstract The lack of a competent integrated development environment for Docker is a detriment to the field of containerisation and cloud computing. This project documents the development of Alembicue, a projectional and productive Docker IDE, implementing a more formally specified language definition, representative of what is necessary to create imagesfor use with a containerisation platform. Alembicue guarantees syntactic correctness with a projectional editor mutating an abstract syntax tree, incorporating contextual intentions and quick fixes to suggest and automatically apply standards and best practices. Alembicue’s launch has been a success, being received well by the community with tens of thousands of interested visitors to the project page, and elated testimonials from those having used the application and the innovative concepts portrayed within. Acknowledgements I would like to thank my supervisor, Dr. Daniel Reidenbach, for his consistent support and valuable feedback on my work. I would also like to thank my family and friends for their support in my studies. ii alembicate, v. 1627. transitive. Chiefly figurative: to produce, refine, or transform (an idea, emotion, etc.) as if in an alembic. Cf. alembicated adj. cue, n.2 1553. 1c. A stimulus or signal to perception, articulation, or other physiological response. Oxford English Dictionary (1989). alembicue, n. 2019. Chiefly emblematic: the juncture of the production of imagery and the container articulation process founded on the aforesaid. With apologies to linguists. iii Contents I Foundation 1 1 Introduction 2 1.1 Overview .
    [Show full text]
  • Reportrapport
    Centrum voor Wiskunde en Informatica REPORTRAPPORT The ABC structure editor. Structure-based editing for the ABC programming environment L.G.L.T. Meertens, S. Pemberton, G. van Rossum Computer Science/Department of Algorithmics and Architecture CS-R9256 1992 The ABC Structure Editor Structure-based Editing for the ABC Programming Environment Lambert Meertens, Steven Pemberton and Guido van Rossum CWI P.O. Box 4079, 1009 AB Amsterdam, The Netherlands Email: [email protected], [email protected], [email protected] Abstract ABC is an interactive programming language where both ease of learning and ease of use stood high amongst its principle design aims. The language is embedded in a dedicated environment that includes a structure-based editor. To fit in with the design aims, the editor had to be easy to learn, demanding a small command set, and easy to use, demanding a powerful command set and strong support for the user in composing programs, without enforcing a computer- science understanding of issues of syntax and the like. Some novel design rules have led to an interesting editor, where the user may enter and edit text either structurally or non-structurally, without having to use different “modes”. 1991 Mathematics Subject Classification: 68N15, 68Q50. 1991 CR Categories: D19, D.2.2, D.2.6, H.1.2, H.5.2. Keywords and Phrases: programming environments, human factors, user interfaces, editing, structure editing. 2 The ABC Structure Editor 1 Introduction This article concerns a dedicated structure editor that forms part of the ABC programming environment. Several novel ideas have been applied in its design.
    [Show full text]
  • Structure Editors – Old Hat Or Future Vision?
    Structure Editors – Old Hat or Future Vision? Andreas Gomolka, Bernhard Humm Hochschule Darmstadt – University of Applied Sciences, Haardtring 100, 64295 Darmstadt, Germany [email protected], [email protected] Abstract. Structure editors emphasise a natural representation of the underlying tree structure of a program, often using a clearly identifiable 1-to-1 mapping between syntax tree elements and on-screen artefacts. This paper presents layout and behaviour principles for structure editors and a new structure editor for Lisp. The evaluation of the editor‟s usability reveals an interesting mismatch. Whereas by far most participants of a questionnaire intuitively favour the structure editor to the textual editor, objective improvements are measurable, yet not significant. Keywords: Programming, structure editor, evaluation, Lisp, Eclipse 1 Introduction Structure editors have fascinated designers of development environments for decades [1, 2, 3, 4]. The idea is simple and convincing. The elements of the syntax tree of a program are mapped to on-screen artefacts and can be edited directly. The basis for this is the awareness that programs are more than just text [5]. A programmer designing a piece of code thinks in structures: classes, methods, blocks, loops, conditions, etc. Using a textual program editor he or she has to codify those syntactically using parentheses such as „{...}‟, „(...)‟, „[...]‟ or using keywords such as „begin ... end‟. The compiler then parses the syntactic elements and re-creates the structures in the form of an abstract or concrete syntax tree – the same structures which the programmer originally had in mind. This just seems inefficient and not intuitive. Structure editors fill this gap: What the programmer thinks is what he or she sees in the editor.
    [Show full text]
  • An Interactive Programming System for Pascal
    BIT 20 (1980), 163- 174 AN INTERACTIVE PROGRAMMING SYSTEM FOR PASCAL JERKER WILANDER Abstract. Interactive program development tools are being increasingly recognized as helpful in the construction of programs. This paper describes an integrated incremental program development system for Pascal called Pathcal. Pathcal contains facilities for creation, editing, debugging and testing of procedures and programs. The system facilities are all Pascal procedures or variables and because of this allows the programmer to program the system in itself. Keywords: Incremental programming, programming systems, debugging, Pascal. Introduction. Program development is today commonly supported by an interactive time- sharing system. A more advanced type of interactive program development tool is an incremental system- The basic programming cycle in an incremental system is not the execution of a program but rather a statement or a declaration. This property together with the ever present "database" of values and declarations constitutes an incremental system. The incremental system is the foundation of the next generation of programming support, the "programming environment". A programming environment contains all the tools in one integrated system and it should support the terminal by e.g. allowing editingof incorrect statements. It should provide the facilities that the operating system monitor usually provides, to allow programmability of all facilities. In a sense the programming environment could be viewed as a programming language oriented monitor which is incrementally extensible. The most important example of this kind of system is INTERLISP [13, but APL [2] has also gone a long way in this direction. For a more conventional looking language, EL1, the ECL system [3,4] could be mentioned.
    [Show full text]
  • 9. Medley Forgiveness: DWIM
    AN Venue An Introduction to Medley Release 2.0 February, 1992 Address comments to: Venue User Documentation 1549 Industrial Road San Carlos, CA 94070 415-508-9672 An Introduction to Medley Release 2.0 February 1992 Copyright 01992 by Venue. All rights reserved. Medley is a trademark of Venue. Xerox4D is a registered trademark and InterPress is a trademark of Xerox Corporation. UNIX4D is a registered trademark of UNIX System Laboratories. PostScript is a registered trademark of Adobe Systems Inc. Copyright protection includes material generated from the software programs displayed on the screen, such as icons, scr.een display looks, and the like. The information in this document is subject to change without notice and should not be construed as a commitment by Venue. While every effort has been made to ensure the accuracy ofilis document, Venue assumes no responsibility for any errors that may appear. Text was written and produced with Venue text formatting tools; Xerox printers were used to produce text masters. The typeface is Classic. TABLE of CONTENTS Preface .................................................................................................................................................... vii 1. Brief Glossary ......................................................................................................................... 1-1 2. Typing and Typing Shortcuts Programmer's Assistant. ............................................................................................................ 2-1 If You Make a Mistake
    [Show full text]
  • Declarative Specification of Template-Based Textual Editors
    Declarative Specification of Template-Based Textual Editors Tobi Vollebregt Lennart C. L. Kats Eelco Visser [email protected] [email protected] [email protected] Software Engineering Research Group Delft University of Technology The Netherlands ABSTRACT bench [19]. Structure editors can be used for general-purpose lan- Syntax discoverability has been a crucial advantage of structure ed- guages or for domain-specific languages (DSLs). A modern exam- itors for new users of a language. Despite this advantage, structure ple of the former is the structure editor in MPS [23], for extensible editors have not been widely adopted. Based on immediate pars- languages based on Java. An example of the latter category is the ing and analyses, modern textual code editors are also increasingly DSL for modeling tax-benefit rules developed by IT services com- syntax-aware: structure and textual editors are converging into a pany Capgemini using the Cheetah system. Cheetah’s facilities for new editing paradigm that combines text and templates. Current discoverability and the use of templates are particularly effective text-based language workbenches require redundant specification to aid a small audience of domain expert programmers manage the of the ingredients for a template-based editor, which is detrimental verbose syntax based on legal texts. to the quality of syntactic completion, as consistency and complete- Despite their good support for discoverability, structure editors ness of the definition cannot be guaranteed. have not been widely adopted. Pure structure editors tend to in- In this paper we describe the design and implementation of a troduce an increased learning curve for basic editing operations.
    [Show full text]
  • System Software and Compiler Design
    DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING Lecture Notes Course: System Software & Compiler Design Course Code:6CS01 Faculty: Dr. Shreenath KN SIDDAGANGA INSTITUTE OF TECHNOLOGY TUMKUR-3 An Autonomous Institution, Affiliated to VTU, Belagavi & Recognised by AICTE and Accredited by NBA, New Delhi UNIT I- LEXICAL ANALYSIS INRODUCTION TO COMPILING Translator: It is a program that translates one language to another. source code Translator target code Types of Translator: 1.Interpreter 2.Compiler 3.Assembler 1.Interpreter: It is one of the translators that translate high level language to low level language. high level language Interpreter low level language During execution, it checks line by line for errors. Example: Basic, Lower version of Pascal. 2.Assembler: It translates assembly level language to machine code. assembly language machine code Assembler Example: Microprocessor 8085, 8086. 3.Compiler: It is a program that translates one language(source code) to another language (target code). source code target code Compiler It executes the whole program and then displays the errors. Example: C, C++, COBOL, higher version of Pascal. Difference between compiler and interpreter: Compiler Interpreter It is a translator that translates high level to It is a translator that translates high level to low low level language level language It displays the errors after the whole program is It checks line by line for errors. executed. Examples: Basic, lower version of Pascal. Examples: C, C++, Cobol, higher version of Pascal. PARTS OF COMPILATION There are 2 parts to compilation: 1. Analysis 2. Synthesis Analysis part breaks down the source program into constituent pieces and creates an intermediate representation of the source program.
    [Show full text]