2020 IEEE Aerospace Conference (AERO 2020)

Total Page:16

File Type:pdf, Size:1020Kb

2020 IEEE Aerospace Conference (AERO 2020) 2020 IEEE Aerospace Conference (AERO 2020) Big Sky, Montana, USA 7 – 14 March 2020 Pages 1-692 IEEE Catalog Number: CFP20AAC-POD ISBN: 978-1-7281-2735-4 1/7 Copyright © 2020 by the Institute of Electrical and Electronics Engineers, Inc. All Rights Reserved Copyright and Reprint Permissions: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved. *** This is a print representation of what appears in the IEEE Digital Library. Some format issues inherent in the e-media version may also appear in this print version. IEEE Catalog Number: CFP20AAC-POD ISBN (Print-On-Demand): 978-1-7281-2735-4 ISBN (Online): 978-1-7281-2734-7 ISSN: 1095-323X Additional Copies of This Publication Are Available From: Curran Associates, Inc 57 Morehouse Lane Red Hook, NY 12571 USA Phone: (845) 758-0400 Fax: (845) 758-2633 E-mail: [email protected] Web: www.proceedings.com TABLE OF CONTENTS Shapeshifter: A Multi-Agent, Multi-Modal Robotic Platform for Exploration of Titan ...................................... 1 Andrea Tagliabue, Stephanie Schneider, Marco Pavone, Ali-Akbar Agha-Mohammadi Design of a GaN HEMT High Efficiency High Power Frequency Tripler Using a Class-F Technique ........................................................................................................................................................... 14 Fei Wang, Christopher J. Clark, Donovan C. Le Practical Issues and Guidelines in Handling Erroneous Secondary Radar Measurements in Multi Target Tracking .................................................................................................................................................. 20 Gogulamudi Sampath Kumar, Viji Paul Panakkal Variable Topology “Tree-Like” Continuum Robots for Remote Inspection and Cleaning ................................ 33 Michael C. Lastinger, Allyanna Rice, Apoorva Kapadia, Ian D. Walker Output Stabilization of Military UAV in the Unobservable Case ...................................................................... 43 Alain Ajami, Marwan Brouche, Jean-Paul Gauthier, Ludovic Sachelli A Reinforcement Learning Framework for Space Missions in Unknown Environments .................................. 49 Peyman Tavallali, Sisir Karumanchi, Joseph Bowkett, William Reid, Brett Kennedy Planned Deployment of the NISAR Engineering Payload Mission Testbed ...................................................... 57 Oleg Sindiy, Antonette Feldman, Nicholas Zhao Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) Mission Integration and Testing .................................... 65 Susanna Petro, Karen Pham, George Hilton Building Cellular Connectivity on Mars: A Feasibility Study ............................................................................ 85 Stefano Bonafini, Claudio Sacchi NASA Risk Management Metrics — Evaluating the Effectiveness of the Risk Management Process ............. 97 John Van Sant, Gerald A. Klein, Robin L. Dillon Unintended Side Effects in Complex Systems: Managing Project Risks and Wildfires .................................. 105 Robin L. Dillon, Gerald A. Klein, Edward W. Rogers The Integration and Test of the TROPICS Flight Segment .............................................................................. 113 Andrew Cunningham Impact of Electro-Optical Noises and Quality Hindrances in Satellite Imagery .............................................. 128 Seif Azghandi, Kenneth M. Hopkinson Initial Orbit Determination Using Simplex Fusion ........................................................................................... 137 Patrick M. Handley, Susan P. Hagerty Global-scale Observations of the Limb and Disk (GOLD): Far-UV Imaging Spectrograph Background at Geostationary Orbit .................................................................................................................. 143 Katelynn Greer Preparation and Execution of the InSight Instrument Deployment Phase ........................................................ 149 Travis Imken, Khaled Ali, Phillip Bailey, Pranay Mishra, James Penrod, Marleen Martinez Sundgaard, Cristina Sorice, Margaret Williams Driving Curiosity: Mars Rover Mobility Trends During the First Seven Years ............................................... 162 Arturo Rankin, Mark Maimone, Jeffrey Biesiadecki, Nikunj Patel, Dan Levine, Olivier Toupet Efficient Trade Space Exploration ................................................................................................................... 181 Alfred Nash Miniaturized and Reconfigurable RF Electronics Architecture for SmallSat Applications ............................. 187 Fernando Aguirre A Markovian Queueing Model of Multiple Access Communications in Space ............................................... 194 Jay L. Gao Concept for a Distributed, Modular, In-space Robotically Assembled, RF Communication Payload in GEO .............................................................................................................................................................. 204 Spencer Backus, William Walsh, Timothy P Setterfield, Brittany Wylie, Jeffrey St. Hilaire, Brendan Chamberlain Simon, Rudranarayan Mukherjee Virtual Baseband Unit Splitting Exploiting Small Satellite Platforms ............................................................. 221 Stefano Bonafini, Riccardo Bassoli, Fabrizio Granelli, Frank H. P. Fitzek, Claudio Sacchi A Gecko-Like/Electrostatic Gripper for Free-Flying Perching Robots ............................................................ 235 Koki Tanaka, Matthew Spenko The Earth Surface Mineral Dust Source Investigation: An Earth Science Imaging Spectroscopy Mission ............................................................................................................................................................. 242 Robert O. Green, Natalie Mahowald, Charlene Ung, David R. Thompson, Lori Bator, Matthew Bennet, Michael Bernas, Natalie Blackway, Christine Bradley, Jeff Cha, Pamela Clark, Roger Clark, Deborah Cloud, Ernesto Diaz, Eyal Ben Dor, Riley Duren, Michael Eastwood, Bethany L. Ehlmann, Lisa Fuentes, Paul Ginoux, Johannes Gross, Yutao He, Olga Kalashnikova, William Kert, Didier Keymeulen, Matt Klimesh, Daniel Ku, Helenann Kwong- Fu, Elliott Liggett, Longlie Li, Sarah Lundeen, Maciej D. Makowski, Alan Mazer, Ron Miller, Pantazis Mouroulis, Bogdan Oaida, Greg S. Okin, Alberto Ortega, Amalaye Oyake, Hung Nguyen, Theresa Pace, Thomas H. Painter, Jack Pempejian, Carlos Perez Garcia-Pando, Thang Pham, Benjamin Phillips, Randy Pollock, Richard Purcell, Vincent Realmuto, Josh Schoolcraft, Amit Sen, Simon Shin, Lucas Shaw, Manny Soriano, Gregg Swayze, Erik Thingvold, Afsheen Vaid, Jason Zan Mars Ascent Vehicle Hybrid Propulsion Configuration ................................................................................... 257 Darius Yaghoubi, Andrew Schnell Mars Ascent Vehicle Solid Propulsion Configuration...................................................................................... 268 Darius Yaghoubi, Andrew Schnell A Case Study Using CBR-Insight to Visualize Source Code Quality .............................................................. 279 Jeremy Ludwig, Devin Cline, Aaron Novstrup A real-time Doppler compensating physical/data link layer protocol for satellite communications ................ 291 Edwin G. W. Peters, Kathryn Day, Craig R. Benson Design and analysis of the feet and it's configuration used for the Heat Flow Property Package Instrument (HP3) on-board the Mars Mission InSight ..................................................................................... 302 Siebo Reershemius Empirical Performance Analysis of MMRTG Power Production and Decay .................................................. 308 Christofer E. Whiting Battery Health Quantification for TDRS Spacecraft by Using Signature Discriminability Measurement .................................................................................................................................................... 317 Kenneth Y. Ma, Manuel Montoro, Tom Williams, Lawrence Woods, Albert Zimmerman, Jonathon Steele, David Cunnif, Carissa Brealey Bonacci, Ronald Miller, Haleh Safavi, Harry Shaw Wave Optics Simulations of a Dual Beacon Hartmann Turbulence Sensor ..................................................... 325 Jack E. McCrae, Christopher A. Rice, Steven T. Fiorino, Santasri R. Bose-Pillai, Aaron J. Archibald Surviving and Operating Through the Lunar Night .......................................................................................... 333 Andrew Petro Applying System Readiness Levels to Cost Estimates – A Case Study Part 2 ................................................. 339 Patrick K. Malone Safety Assessment Process for UAS Ground-Based Detect And Avoid .......................................................... 359 Stephen J. Lloyd, Jason Glaneuski, Chris A. Wargo, Dylan Hasson Balancing Pragmatism and Values in Business Decision Making ................................................................... 369 Rahul Dixit, Harpreet Singh, Ratna Babu Chinnam Towards
Recommended publications
  • Autonomous Vehicles in Support of Naval Operations Committee on Autonomous Vehicles in Support of Naval Operations, National Research Council
    Autonomous Vehicles in Support of Naval Operations Committee on Autonomous Vehicles in Support of Naval Operations, National Research Council ISBN: 0-309-55115-3, 256 pages, 6 x 9, (2005) This free PDF was downloaded from: http://www.nap.edu/catalog/11379.html Visit the National Academies Press online, the authoritative source for all books from the National Academy of Sciences, the National Academy of Engineering, the Institute of Medicine, and the National Research Council: • Download hundreds of free books in PDF • Read thousands of books online, free • Sign up to be notified when new books are published • Purchase printed books • Purchase PDFs • Explore with our innovative research tools Thank you for downloading this free PDF. If you have comments, questions or just want more information about the books published by the National Academies Press, you may contact our customer service department toll-free at 888-624-8373, visit us online, or send an email to [email protected]. This free book plus thousands more books are available at http://www.nap.edu. Copyright © National Academy of Sciences. Permission is granted for this material to be shared for noncommercial, educational purposes, provided that this notice appears on the reproduced materials, the Web address of the online, full authoritative version is retained, and copies are not altered. To disseminate otherwise or to republish requires written permission from the National Academies Press. Autonomous Vehicles in Support of Naval Operations http://www.nap.edu/catalog/11379.html AUTONOMOUS VEHICLES IN SUPPORT OF NAVAL OPERATIONS Committee on Autonomous Vehicles in Support of Naval Operations Naval Studies Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C.
    [Show full text]
  • Monash Robotics and Mechatronics Engineering
    MONASH ROBOTICS AND MECHATRONICS ENGINEERING monash.edu/engineering/ robotics-mechatronics WHAT DO ROBOTICS WHAT IS AND MECHATRONICS ROBOTICS AND ENGINEERS DO? Key to robotics and mechatronics engineering is the ability to analyse and design complex MECHATRONICS machines and systems, which often involve automation. Robotics and mechatronics engineers work with instrumentation, sensors and computer systems. They use these to control movement, optimise processes, ENGINEERING? monitor systems and detect faults. Robotics and mechatronics engineers can be found working in transport, manufacturing, healthcare and construction, particularly in Robotics and mechatronics are places where automation can improve efficiency and productivity, and where multidisciplinary fields of engineering reliability and safety are essential to that combine mechanical engineering, engineering operations. computing, electronics and control theory. They design and develop robots to operate in collaboration with humans, and control At the forefront of rapidly transforming technologies, robotics and systems for vehicles, aircraft, machinery, mechatronics engineers work to design robots and improve the production lines and can now be found automation, performance, features and functionality of products working in biotechnology and biomedicine. and systems with a mix of mechanical and electronic components. Being multidisciplinary in nature, robotics and As a robotics or mechatronics engineer you could design aircraft mechatronics engineers are highly skilled at avionics for autonomous drones, build robots for industry or medicine, managing projects and teams which bridge develop systems based on smartphones, or help robots understand the traditional areas of mechanical and human behaviour. Robotics and mechatronics engineering is also electrical engineering. used in the development, design and operation of processes and production lines needed to make most consumer products.
    [Show full text]
  • Unmanned Systems Roadmap: 2007-2032
    DEC 102007 MEMORANDUM FOR SECRETARIES OF THE MILITARY DEPARTMENTS CHAIRMAN OF THE JOINT CHIEFS OF STAFF CIllEF OF STAFF OF THE ARMY CIllEF OF NAVAL OPERAnONS CHIEF OF STAFF OF THE AIR FORCE COMMANDANT OF THE MARINE CORPS DIRECTOR, DEFENSE ADVANCED RESEARCH PROJECTS AGENCY SUBJECT: Unmanned Systems Roadmap This is the first edition ofthe integrated Office ofthe Secretary ofDefense Unmanned Systems Roadmap (2007-2032) which includes Unmanned Aircraft Systems, Unmanned Ground Systems, and Unmanned Maritime Systems. This roadmap provides Defense-wide vision for unmanned systems and related technologies. The Department will continue to promote a common vision for future unmanned systems by making this roadmap widely available to industry and our Allies, and updating it as transformational concepts emerge. Unmanned systems will continue to have a central role in meeting our country's diverse security needs, especially in the Global War on Terrorism. ~-- Under Secretary ofDefense Intelligence w1tt-:~/ mes E. Cartwright J G. Gri es General, USMC Assistant Secretary ofDefense Vice Chairman, Jo' t Chiefs ofStaff Networks and Information Integration Unmanned Systems Roadmap 2007-2032 Executive Summary Today’s military has seen an evolution in technology that is creating an entirely new capability to project power through the use of unmanned systems while reducing the risk to human life. The contributions of unmanned systems continue to increase. As of October 2006, coalition Unmanned Aircraft Systems (UASs), exclusive of hand-launched systems, had flown almost 400,000 flight hours in support of Operations Enduring Freedom and Iraqi Freedom, Unmanned Ground Vehicles (UGVs) had responded to over 11,000 Improvised Explosive Device (IED) situations, and Unmanned Maritime Systems (UMSs) had provided security to ports.
    [Show full text]
  • Where Should Humans Step Aside and Let The
    emotely piloted aircraft of human control alters the concept of University team sponsored by the Offi ce of such as the MQ-9 Reaper legitimate action. Naval Research. These robots could even and RQ-4 Global Hawk are Discomfort persists. “Drones are a “act as objective, unblinking observers manned by squadrons of technological step that further isolates the on the battlefi eld, reporting any unethical pilots and sensor operators on the ground. American people from military action,” behavior back to command,” they said in RFive or 10 years from now, however, law professor Mary L. Dudziak said, the report “Autonomous Military Robotics: that may no longer be the case, as full according to The New Yorker in a 2009 Risk, Ethics, and Design.” autonomy for air vehicles is well within article. The release of the November 2012 Taken to the extreme, autonomy theo- the Air Force’s technical reach. guidelines stirred calls for an executive retically enhances legitimacy. “Future According to USAF offi cials, artifi cial order stating that lethal and nonlethal generations may come to regard tactical intelligence and other technology advances attack with fully autonomous weapons warfare as properly the business of ma- will enable unmanned systems to make violates the law of war. chines and not appropriate for people at and execute complex decisions required Intriguingly, there is a vocal group on all,” noted Thomas K. Adams in a 2001 for full autonomy sometime in the decade the other side, too. These scientists see article for the US Army War College’s after 2015. autonomy as a means to reduce error journal Parameters, reprinted in 2011.
    [Show full text]
  • Autonomous Horizons: the Way Forward Is a Product of the Office Air University Press 600 Chennault Circle, Bldg 1405 of the US Air Force Chief Scientist (AF/ST)
    Autonomous Horizons The Way Forward A vision for Air Force senior leaders of the potential for autonomous systems, and a general framework for the science and technology community to advance the state of the art Dr. Greg L. Zacharias Chief Scientist of the United States Air Force 2015–2018 The second volume in a series introduced by: Autonomous Horizons: Autonomy in the Air Force – A Path to the Future, Volume 1: Human Autonomy Teaming (AF/ST TR 15-01) March 2019 Air University Press Curtis E. LeMay Center for Doctrine Development and Education Maxwell AFB, Alabama Chief of Staff, US Air Force Library of Congress Cataloging-in-Publication Data Gen David L. Goldfein Names: Zacharias, Greg, author. | Air University (U.S.). Press, publisher. Commander, Air Education and Training | United States. Department of Defense. United States Air Force. Command Title: Autonomous horizons : the way forward / by Dr. Greg L. Zacha- Lt Gen Steven L. Kwast rias. Description: First edition. | Maxwell Air Force Base, AL : AU Press, 2019. “Chief Scientist for the United States Air Force.” | Commander and President, Air University Lt Gen Anthony J. Cotton “January 2019.” |Includes bibliographical references. Identifiers: LCCN 2018061682 | ISBN 9781585662876 Commander, Curtis E. LeMay Center for Subjects: LCSH: Aeronautics, Military—Research—United States. | Doctrine Development and Education United States. Air Force—Automation. | Artificial intelligence— Maj Gen Michael D. Rothstein Military applications—United States. | Intelligent control systems. | Autonomic
    [Show full text]
  • Remotely Piloted Aircraft System (Rpas) Concept of Operations (Conops) for International Ifr Operations
    REMOTELY PILOTED AIRCRAFT SYSTEM (RPAS) CONCEPT OF OPERATIONS (CONOPS) FOR INTERNATIONAL IFR OPERATIONS Disclaimer This document is an unedited version of an ICAO publication and has not yet been approved in final form. As its content may still be supplemented, removed, or otherwise modified during the editing process, ICAO shall not be responsible whatsoever for any costs or liabilities incurred as a result of its use. ICAO RPAS Concept of Operations Table of Contents 1 Introduction .......................................................................................................................................... 1 1.1 Purpose ......................................................................................................................................... 1 1.2 Problem Statement ....................................................................................................................... 1 1.3 Scope ............................................................................................................................................. 3 1.3.1 RPAS Operations ................................................................................................................... 4 1.3.2 RPAS Technology Aspects ..................................................................................................... 4 1.3.3 Airspace aspects .................................................................................................................... 4 1.4 Key Assumptions ..........................................................................................................................
    [Show full text]
  • Out of the Loop: the Human-Free Future of Unmanned Aerial Vehicles
    AN EMERGING THREATS ESSAY Out of the Loop The Human-free Future of Unmanned Aerial Vehicles by Shane Harris Koret-Taube Task Force on National Security and Law www.emergingthreatsessays.com In the game of life and evolution there are three players at the table: human beings, nature, and machines. I am firmly on the side of nature. But nature, I suspect, is on the side of the machines. Darwin Among the Machines1 —George Dyson in national security and law If you want to understand how human beings stack up next to machines in the conduct of modern warfare, consider this: In World War II, it took a fleet of 1,000 B-17 bombers—flown, navigated, and manned by a crew of 10,000 men—to destroy one Axis ground target. American bombs were so imprecise that, on average, only one in five fell within 1,000 feet of where they were on task force aimed. Aerial bombing was a clumsy affair, utterly dependent on the extraordinary labor of human beings. Just one generation later, that was no longer true. In the Vietnam War, it took thirty F-4 fighter-bombers, each flown and navigated by only two men, to destroy a target. That was a 99.4 percent reduction in manpower. The precision of attack was also greatly enhanced by the first widespread use of laser-guided munitions. After Vietnam, humans’ connection to air war became more attenuated, and less relevant. In the Gulf War, one pilot flying one plane could hit two targets. The effectiveness of the human-machine pairing was breathtaking.
    [Show full text]
  • Global Indians
    NEW YORK • WASHINGTON D.C. • CHICAGO • ATLANTA • CALIFORNIA VOL 26, No. 1377 February 26, 2021 50¢ Periodical Postage GLOBAL INDIANS 32 million worldwide, over 200 Indian-origin people occupy leadership positions in 15 countries Neera Tanden nomination in Antonio Guterres jeopardy UN chief Details on page 6 'extremely grateful' to India Communities unite to combat Details on page 6 Anti-Asian Violence Congress Details on page 17 government in Puducherry falls Rishi requests intervention of Details on page 10 Governor Newsom CONTENTS Details on page 20 picture courtesy NASA An illustration of NASA's Perseverance rover landing safely on Mars. (inset) Indian-American scientist Swati Bollywood -------------------------- 30 Mohan, who led the guidance, navigation, and control operations of the Mars 2020 mission Classifieds ------------------------ 31 CAPT KRISHAN SHARMA AND AGENCIES Community Post -------------- 17-24 Cover/Top Stories --------------- 5-8 The PIOs, include leaders like Mahatma Gandhi, the guidance, navigation, and control operations of Edit Page --------------------------- 33 Horoscope --------------------------- 9 This week’s question Netaji Subash Chandra Bose, mathematician S the Mars 2020 mission. Mohan's family emigrated Chandrasekhar and Bio-chemist Hargobind Khorana, from India to the US when she was only a year old. Immigration Post ------------12-13 Do you think Biden will have a Life Style ------------------------ 14-15 better deal with Iran? who continue to make India proud and with contri- Raised in Northern Virginia and Washington DC OP-ED------------------------------- 32 butions to India's freedom struggle and excellence in metro area, she completed her bachelor's degree Last week’s result Info/Highlights ---------------------- 4 scientific fields. from Cornell University in Mechanical & Aerospace Will Indo-US relations improve Real Estate -------------------- 25-27 under Biden? As the world witnessed the historic landing of Engineering, and her M.S.
    [Show full text]
  • MAPPING the DEVELOPMENT of AUTONOMY in WEAPON SYSTEMS Vincent Boulanin and Maaike Verbruggen
    MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen MAPPING THE DEVELOPMENT OF AUTONOMY IN WEAPON SYSTEMS vincent boulanin and maaike verbruggen November 2017 STOCKHOLM INTERNATIONAL PEACE RESEARCH INSTITUTE SIPRI is an independent international institute dedicated to research into conflict, armaments, arms control and disarmament. Established in 1966, SIPRI provides data, analysis and recommendations, based on open sources, to policymakers, researchers, media and the interested public. The Governing Board is not responsible for the views expressed in the publications of the Institute. GOVERNING BOARD Ambassador Jan Eliasson, Chair (Sweden) Dr Dewi Fortuna Anwar (Indonesia) Dr Vladimir Baranovsky (Russia) Ambassador Lakhdar Brahimi (Algeria) Espen Barth Eide (Norway) Ambassador Wolfgang Ischinger (Germany) Dr Radha Kumar (India) The Director DIRECTOR Dan Smith (United Kingdom) Signalistgatan 9 SE-169 72 Solna, Sweden Telephone: +46 8 655 97 00 Email: [email protected] Internet: www.sipri.org © SIPRI 2017 Contents Acknowledgements v About the authors v Executive summary vii Abbreviations x 1. Introduction 1 I. Background and objective 1 II. Approach and methodology 1 III. Outline 2 Figure 1.1. A comprehensive approach to mapping the development of autonomy 2 in weapon systems 2. What are the technological foundations of autonomy? 5 I. Introduction 5 II. Searching for a definition: what is autonomy? 5 III. Unravelling the machinery 7 IV. Creating autonomy 12 V. Conclusions 18 Box 2.1. Existing definitions of autonomous weapon systems 8 Box 2.2. Machine-learning methods 16 Box 2.3. Deep learning 17 Figure 2.1. Anatomy of autonomy: reactive and deliberative systems 10 Figure 2.2.
    [Show full text]
  • March 2021 Universe
    Featured Stories This is the first image Perseverance sent back after touching down on Mars on Feb. 18, 2021. The view, from one of Perseverance's Hazard Cameras, is partially obscured by a dust cover. Image Credit: NASA/JPL-Caltech Perseverance Lands on Mars! By Taylor Hill It’s confirmed: Jezero Crater will be the proving ground for the Perseverance rover to further our search for ancient Martian life. After seven minutes screaming through the Martian atmosphere, the Perseverance rover and its helicopter stowaway Ingenuity touched down safely on Mars. Perseverance mission commentator and guidance, navigation, and controls operations Lead Swati Mohan made the call at 12:55 p.m.; "Touchdown confirmed, Perseverance safely on the surface of Mars, ready to begin seeking the signs of past life." The first image taken by the rover's engineering camera was beamed back a mere two minutes later, providing visual evidence that the rover was truly safe on Mars' rocky red soil. Universe | March 2021 | Page 1 At JPL, select members of the Mars 2020 team, JPL Director Mike Watkins, NASA Acting Administrator Steve Jurczyk, NASA Associate Administrator for the Science Mission Directorate Thomas Zurbuchen, and NASA Science Mission Directorate’s Planetary Science Division Director Lori Glaze cheered upon touchdown from the socially-distanced Mission Support Area (MSA) in Building 230, while a majority of the Mars 2020 team and the Lab watched a livestream from their homes—a markedly different landing day experience compared to past missions due to Covid safety precautions. At the time of landing, more than 2,600 JPLers were watching the Zoom livestream, while more than 2.2 million members of the public from around the world watched the NASA.gov Youtube livestream of the landing.
    [Show full text]
  • Standardization Roadmap for Unmanned Aircraft Systems, Version 1.0
    Standardization roadmap For Unmanned Aircraft Systems, Version 1.0 Prepared by the ANSI Unmanned Aircraft Systems Standardization Collaborative (UASSC) December 2018 ©2018 American National Standards Institute (ANSI). All rights reserved. Published by ANSI. Printed in the United States of America. Limited License: This material may be copied without permission from ANSI only for non-commercial and non-promotional purposes and if and to the extent that text is not altered or deleted in any fashion and the ANSI copyright is clearly noted as set forth immediately above. No part of this publication may be re- produced or distributed in any form or by any means, or stored in a database or retrieval system, except as permitted by the Limited License or under Sections 107 or 108 of the U.S. Copyright Act, without prior written permission of the publisher. Material in this publication is for educational purposes. Neither the publisher nor the authors assume any liability for any errors or omissions or for how this publication or its contents are used or interpreted or for any consequences resulting directly or indirectly from the use of this publication. For legal or other advice, please consult your personal lawyer or the appropriate professional. The views expressed by the individuals in this publication do not necessarily reflect the views shared by the companies they are employed by (or the companies mentioned in this publication). The employment status and affiliations of authors with the companies referenced are subject to change. Table of Contents Table of Contents ………………………………………………………………………………………………………………………………. 3 Acknowledgments …..………………………………………………………………………………………………………………………… 7 Executive Summary …………………………………………………………………………………………………………………………. 15 Summary Table of Gaps and Recommendations……………………………………………………………………………….
    [Show full text]
  • International Women's Day 8Th of March
    INTERNATIONAL WOMEN'S DAY 8TH OF MARCH INTERNATIONAL WOMEN'S DAY 8TH OF MARCH EDITORIAL ARTICLES - https://www.successmantra.in/blog/post/article/editorial95 International Women’s Day was observed on March 8, 2021. The day celebrates the achievements of women and calls for action to empower women to create a gender-equal world. The theme of International Women’s Day 2021 is #ChooseToChallenge. “A challenged world is an alert world and from challenge comes change. So let's all choose to challenge. ” The International Day highlights how we can help to forge a gender-equal world- by celebrating women’s achievements, taking action for gender equality and raising awareness against bias. WOMEN IN NEWS IN 2021 Kamala Harris: Kamala Harris created history by becoming the first female, African- American and Asian-American to be sworn in as Vice President of the United States. The 56-year-old was born to immigrant parents from India and Jamaica. Ngozi Okonjo- Iweala: Ngozi Okonjo- Iweala has become the new Chief of the World Trade Organisation. She is the first woman and African to hold the position at WTO. She was appointed after she received the complete support of Joe Biden’s administration on February 5, 2021. She is the former Finance Minister of Nigeria and will hold the position from March 1, 2021, to August 31, 2025. Kaja Kallas: Kaja Kallas became the first female Prime Minister of Estonia on January 26, 2021 after the new two-party coalition government was sworn in. This Editorial Articles By www.successmantra.in & www.easevidya.com 1 INTERNATIONAL WOMEN'S DAY 8TH OF MARCH would be the first time that the Baltic nation will be led by a woman ever since it regained independence in 1991.
    [Show full text]