Breakup of a Long-Period Comet As the Origin of the Dinosaur Extinction Amir Siraj1? & Abraham Loeb1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Color Study of Asteroid Families Within the MOVIS Catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia De León1,2
A&A 617, A72 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832780 & © ESO 2018 Astrophysics Color study of asteroid families within the MOVIS catalog David Morate1,2, Javier Licandro1,2, Marcel Popescu1,2,3, and Julia de León1,2 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Tenerife, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 3 Astronomical Institute of the Romanian Academy, 5 Cu¸titulde Argint, 040557 Bucharest, Romania Received 6 February 2018 / Accepted 13 March 2018 ABSTRACT The aim of this work is to study the compositional diversity of asteroid families based on their near-infrared colors, using the data within the MOVIS catalog. As of 2017, this catalog presents data for 53 436 asteroids observed in at least two near-infrared filters (Y, J, H, or Ks). Among these asteroids, we find information for 6299 belonging to collisional families with both Y J and J Ks colors defined. The work presented here complements the data from SDSS and NEOWISE, and allows a detailed description− of− the overall composition of asteroid families. We derived a near-infrared parameter, the ML∗, that allows us to distinguish between four generic compositions: two different primitive groups (P1 and P2), a rocky population, and basaltic asteroids. We conducted statistical tests comparing the families in the MOVIS catalog with the theoretical distributions derived from our ML∗ in order to classify them according to the above-mentioned groups. We also studied the background populations in order to check how similar they are to their associated families. -
Asteroid Family Identification 613
Bendjoya and Zappalà: Asteroid Family Identification 613 Asteroid Family Identification Ph. Bendjoya University of Nice V. Zappalà Astronomical Observatory of Torino Asteroid families have long been known to exist, although only recently has the availability of new reliable statistical techniques made it possible to identify a number of very “robust” groupings. These results have laid the foundation for modern physical studies of families, thought to be the direct result of energetic collisional events. A short summary of the current state of affairs in the field of family identification is given, including a list of the most reliable families currently known. Some likely future developments are also discussed. 1. INTRODUCTION calibrate new identification methods. According to the origi- nal papers published in the literature, Brouwer (1951) used The term “asteroid families” is historically linked to the a fairly subjective criterion to subdivide the Flora family name of the Japanese researcher Kiyotsugu Hirayama, who delineated by Hirayama. Arnold (1969) assumed that the was the first to use the concept of orbital proper elements to asteroids are dispersed in the proper-element space in a identify groupings of asteroids characterized by nearly iden- Poisson distribution. Lindblad and Southworth (1971) cali- tical orbits (Hirayama, 1918, 1928, 1933). In interpreting brated their method in such a way as to find good agree- these results, Hirayama made the hypothesis that such a ment with Brouwer’s results. Carusi and Massaro (1978) proximity could not be due to chance and proposed a com- adjusted their method in order to again find the classical mon origin for the members of these groupings. -
Aas 14-267 Design of End-To-End Trojan Asteroid
AAS 14-267 DESIGN OF END-TO-END TROJAN ASTEROID RENDEZVOUS TOURS INCORPORATING POTENTIAL SCIENTIFIC VALUE Jeffrey Stuart,∗ Kathleen Howell,y and Roby Wilsonz The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential natural assets offering mineral resources for long-term human exploration of the solar system. Previous investigations have addressed the auto- mated design of tours within the asteroid swarm and the transition of prospective tours to higher-fidelity, end-to-end trajectories. The current development incorpo- rates the route-finding Ant Colony Optimization (ACO) algorithm into the auto- mated tour generation procedure. Furthermore, the potential scientific merit of the target asteroids is incorporated such that encounters with higher value asteroids are preferentially incorporated during sequence creation. INTRODUCTION Near Earth Objects (NEOs) are currently under consideration for manned sample return mis- sions,1 while a recent NASA feasibility assessment concludes that a mission to the Trojan asteroids can be accomplished at a projected cost of less than $900M in fiscal year 2015 dollars.2 Tour concepts within asteroid swarms allow for a broad sampling of interesting target bodies either for scientific investigation or as potential resources to support deep-space human missions. However, the multitude of asteroids within the swarms necessitates the use of automated design algorithms if a large number of potential mission options are to be surveyed. Previously, a process to automatically and rapidly generate sample tours within the Sun-Jupiter L4 Trojan asteroid swarm with a mini- mum of human interaction has been developed.3 This scheme also enables the automated transition of tours of interest into fully optimized, end-to-end trajectories using a variety of electrical power sources.4,5 This investigation extends the automated algorithm to use ant colony optimization, a heuristic search algorithm, while simultaneously incorporating a relative ‘scientific importance’ ranking into tour construction and analysis. -
Asteroid Smashup May Have Wiped out the Dinosaurs
Asteroid Smashup May Have Wiped Out the Dinosa... http://www.sciam.com/article.cfm?articleID=D75F... CURRENT ISSUE ASK THE HIGHLIGHTS: EXPERTS: The Trouble with Floyd Landis Men tested positive Ending Malaria for increased Deaths in Africa testosterone on the day of his spectacular SEARCH stage win at the Tour de France last year, after testing negative on previous days. Can a large dose of the hormone produce such an immediate and profound improvement? Technology Space & Physics Health Mind Nature Biology Archaeology & Paleontology News Video Blog In Focus Ask the Experts Weird Science Podcasts Gallery Recreations Magazine SA Digital Subscribe Store September 18, 2007 Current Magazine Scientific Ame rican Issue Content Scientific American News Past Feature ArticleDigitals September 05, 2007 Free Newsletters enter e-mail Issues Insights Scientific American Order M Ionsnt oPovpautliaorns RMeilnatded Links Latest News Issues D i dT theec Dhinno iDciea-Oliftf iMeaske Room for Mammals? Asteroid Smashup May Hav Seub scribe D e Reperv Imiepawcts Renew Staking Claims Lone Offender Killed the Dinosaurs Wiped Out the Dinosaurs Give a gift Skeptic Change AVindtei oG Nreawvsit y Submit your videos > Address Sustainable Simulations point to an asteroid collision that sealed the Customer B i rd D flue svprealdoinpgments dinosaurs' fate before their reign was half over Care F l oForumod devastation in East Africa By JR Minkel About Us S m SallA fa rm in the Big Apple MPaleayrssiapnse tcratiniv foer space shot E-mail Print RSS StumbleIt D o gLgey dteterrinrgs-do m o5re0 >, 100 & 150 The rock that blasted a Years Ago 110-mile-wide crater in Mexico's B rNeaekwinsg S Sccaiennce News from Reuters Yucatán Peninsula and probably By the Updated today at 3:18 killed off the dinosaurs 65 million Numbers AM years ago may owe its origin to the N o Wkia osaryksi nITgC starts Qualcomm inKvensotigwatiloendge breakup of an asteroid nearly as big IBM to offer free word processing, as the crater itself. -
Origin of the Near-Earth Asteroid Phaethon and the Geminids Meteor Shower
University of Central Florida STARS Faculty Bibliography 2010s Faculty Bibliography 1-1-2010 Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León H. Campins University of Central Florida K. Tsiganis A. Morbidelli J. Licandro Find similar works at: https://stars.library.ucf.edu/facultybib2010 University of Central Florida Libraries http://library.ucf.edu This Article is brought to you for free and open access by the Faculty Bibliography at STARS. It has been accepted for inclusion in Faculty Bibliography 2010s by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation de León, J.; Campins, H.; Tsiganis, K.; Morbidelli, A.; and Licandro, J., "Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower" (2010). Faculty Bibliography 2010s. 92. https://stars.library.ucf.edu/facultybib2010/92 A&A 513, A26 (2010) Astronomy DOI: 10.1051/0004-6361/200913609 & c ESO 2010 Astrophysics Origin of the near-Earth asteroid Phaethon and the Geminids meteor shower J. de León1,H.Campins2,K.Tsiganis3, A. Morbidelli4, and J. Licandro5,6 1 Instituto de Astrofísica de Andalucía-CSIC, Camino Bajo de Huétor 50, 18008 Granada, Spain e-mail: [email protected] 2 University of Central Florida, PO Box 162385, Orlando, FL 32816.2385, USA e-mail: [email protected] 3 Department of Physics, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece 4 Departement Casiopée: Universite de Nice - Sophia Antipolis, Observatoire de la Cˆote d’Azur, CNRS 4, 06304 Nice, France 5 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain 6 Department of Astrophysics, University of La Laguna, 38205 La Laguna, Tenerife, Spain Received 5 November 2009 / Accepted 26 January 2010 ABSTRACT Aims. -
Meteorite Flux to Earth in the Early Cretaceous As Reconstructed from Sediment-Dispersed Extraterrestrial Spinels
Meteorite flux to Earth in the Early Cretaceous as reconstructed from sediment-dispersed extraterrestrial spinels Birger Schmitz1,2*, Philipp R. Heck2, Walter Alvarez3,4, Noriko T. Kita5, Surya S. Rout2, Anders Cronholm1, Céline Defouilloy5, Ellinor Martin1, Jan Smit4,6, and Fredrik Terfelt1 1Astrogeobiology Laboratory, Department of Physics, Lund University, SE-22100 Lund, Sweden 2Robert A. Pritzker Center for Meteoritics and Polar Studies, The Field Museum of Natural History, Chicago, Illinois 60605, USA 3Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA 4Osservatorio Geologico di Coldigioco, Contrada Coldigioco 4, 62021 Apiro, Italy 5WiscSIMS, Department of Geoscience, University of Wisconsin–Madison, Madison, Wisconsin 53706, USA 6Department of Sedimentary Geology, Vrije Universiteit, 1081 HV Amsterdam, Netherlands ABSTRACT to 470 ± 6 Ma (Korochantseva et al., 2007), but the most precise relative We show that Earth’s sedimentary strata can provide a record of date is given by an abrupt two-orders-of magnitude increase worldwide the collisional evolution of the asteroid belt. From 1652 kg of pelagic in sand-sized L-chondritic chromite grains in mid-Ordovician sediments Maiolica limestone of Berriasian–Hauterivian age from Italy, we (Schmitz et al., 2003; Heck et al., 2016). recovered 108 extraterrestrial spinel grains (32–250 μm) represent- By dissolving 100-kg-sized samples of condensed sediments from ing relict minerals from coarse micrometeorites. Elemental and three different time periods in various acids, the highly refractory extraterres- oxygen isotope analyses were used to characterize the grains, provid- trial spinel minerals can be concentrated. The recovered grains typically ing a first-order estimate of the major types of asteroids delivering contain high concentrations of solar-wind noble gases, indicating that material at the time. -
Widespread Water Among Primitive Asteroid Families: New Insights from the Main Belt Comets
EPSC Abstracts Vol. 13, EPSC-DPS2019-892-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Widespread water among primitive asteroid families: new insights from the main belt comets Bojan Novakovic´ (1) and Henry Hsieh (2,3) (1) University of Belgrade, Serbia, (2) Planetary Science Institute, USA, (3) Academia Sinica Institute of Astronomy and Astrophysics, Taiwan, ([email protected]) Abstract The obtained results are summarized in Table 1. For the first time we found active asteroids associated to We present new results regarding the association of the Pallas and Luthera families, namely P/2017 S8 and main belt comets to asteroid families. We find three P/2019 A7, respectively. new firm links, and three potential associations. These results further strengthen the link between the main Table 1: A list of asteroid family associations of newly belt comets and compositionally primitive asteroid discovered main belt comet candidates. families. MBC candidate Family 1. Introduction P/2016 P1 (PANSTARRS) Euphrosyne? P/2017 S8 (PANSTARRS) Pallas Main belt comets (MBCs) are a subgroup of active as- P/2017 S5 (PANSTARRS) Theobalda teroids, which exhibit visible mass loss activity yet P/2017 S9 (PANSTARRS) Theobalda? are dynamically asteroidal, for which it is believed P/2019 A3 (PANSTARRS) Theobalda? that observed activity is driven by the sublimation of P/2019 A4 (PANSTARRS) None? volatile ices [1, 2]. Our recent work has demonstrated P/2019 A7 (PANSTARRS) Luthera that all MBCs associated to collisional families be- P/2019 A8 (PANSTARRS) None? long to families with primitive taxonomic classifica- tions [3]. -
Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report
NASA/TM–2016-219011 Asteroid Redirect Mission (ARM) Formulation Assessment and Support Team (FAST) Final Report Daniel D. Mazanek and David M. Reeves, Langley Research Center, Hampton, Virginia Paul A. Abell, Johnson Space Center, Houston, Texas Erik Asphaug, Arizona State University, Tempe, Arizona Neyda M. Abreu, Penn State DuBois, DuBois, Pennsylvania James F. Bell, Arizona State University, Tempe, Arizona William F. Bottke, Southwest Research Institute, Boulder, Colorado Daniel T. Britt and Humberto Campins, University of Central Florida, Orlando, Florida Paul W. Chodas, Jet Propulsion Laboratory, Pasadena, California Carolyn M. Ernst, John Hopkins University, Laurel, Maryland Marc D. Fries, Johnson Space Center, Houston, Texas Leslie S. Gertsch, Missouri University of Science and Technology, Rolla, Missouri Daniel P. Glavin, Goddard Space Flight Center, Greenbelt, Maryland Christine M. Hartzell, University of Maryland, College Park, Maryland Amanda R. Hendrix, Planetary Science Institute, Niwot, Colorado Joseph A. Nuth, Goddard Space Flight Center, Greenbelt, Maryland Daniel J. Scheeres, University of Colorado, Boulder, Colorado Joel C. Sercel, TransAstra Corporation, Lake View Terrace, California Driss Takir, United States Geological Survey, Flagstaff, Arizona Kris Zacny, Honeybee Robotics, Pasadena, California February 2016 NASA STI Program ... in Profile Since its founding, NASA has been dedicated to the CONFERENCE PUBLICATION. advancement of aeronautics and space science. The Collected papers from scientific and technical NASA scientific and technical information (STI) conferences, symposia, seminars, or other program plays a key part in helping NASA maintain meetings sponsored or this important role. co-sponsored by NASA. The NASA STI program operates under the auspices SPECIAL PUBLICATION. Scientific, technical, or of the Agency Chief Information Officer. -
8 Asteroid–Meteoroid Complexes
“9781108426718c08” — 2019/5/13 — 16:33 — page 187 — #1 8 Asteroid–Meteoroid Complexes Toshihiro Kasuga and David Jewitt 8.1 Introduction Jenniskens, 2011)1 and asteroid 3200 Phaethon are probably the best-known examples (Whipple, 1983). In such cases, it Physical disintegration of asteroids and comets leads to the appears unlikely that ice sublimation drives the expulsion of production of orbit-hugging debris streams. In many cases, the solid matter, raising following general question: what produces mechanisms underlying disintegration are uncharacterized, or the meteoroid streams? Suggested alternative triggers include even unknown. Therefore, considerable scientific interest lies in thermal stress, rotational instability and collisions (impacts) tracing the physical and dynamical properties of the asteroid- by secondary bodies (Jewitt, 2012; Jewitt et al., 2015). Any meteoroid complexes backwards in time, in order to learn how of these, if sufficiently violent or prolonged, could lead to the they form. production of a debris trail that would, if it crossed Earth’s orbit, Small solar system bodies offer the opportunity to understand be classified as a meteoroid stream or an “Asteroid-Meteoroid the origin and evolution of the planetary system. They include Complex”, comprising streams and several macroscopic, split the comets and asteroids, as well as the mostly unseen objects fragments (Jones, 1986; Voloshchuk and Kashcheev, 1986; in the much more distant Kuiper belt and Oort cloud reservoirs. Ceplecha et al., 1998). Observationally, asteroids and comets are distinguished princi- The dynamics of stream members and their parent objects pally by their optical morphologies, with asteroids appearing may differ, and dynamical associations are not always obvious. -
Introducing the Eulalia and New Polana Asteroid Families: Re-Assessing the Source Regions of Primitive Near-Earth Asteroids
44th Lunar and Planetary Science Conference (2013) 2835.pdf INTRODUCING THE EULALIA AND NEW POLANA ASTEROID FAMILIES: RE-ASSESSING THE SOURCE REGIONS OF PRIMITIVE NEAR-EARTH ASTEROIDS. K. J. Walsh1, M. Delbó2, W. F. Bottke1, D. Vokrouhlický3 and D. S. Lauretta4, 1Southwest Research Institute, Boulder, CO, 2Laboratoire Lagrange, UNS- CNRS-Observatoire de la Côte d’Azur, Nice, France, 3Institute of Astronomy, Charles University, V Holěsovičkaćh 2, Prague 8, Czech Republic, 4Lunar & Planetary Laboratory, University of Arizona, Tucson, AZ, USA. Introduction: The inner main asteroid belt (2.15 AU < times due to the Yarkovsky effect [1]. This effect a < 2.5 AU) is the dominant source region of near- causes a secular drift of the semi-major axis of the or- Earth objects (NEOs). Of those asteroids from this bit due to the emission of the thermal radiation. region that become NEOs, most are delivered via the Whether this effect causes an increase or decrease of ν6 secular resonance located at ∼2.15 AU. In particular, an asteroid’s semimajor axis depends on its rotation this pathway is the most likely delivery source for state, whereby prograde rotators drift outward and ret- NEOs on low Δ-velocity orbits, such as the proposed rograde rotators drift inward. Thus, radial drift into a space mission targets 1996 RQ36 and 1999 JU3. These resonance, followed by rapid increase in orbital eccen- missions are specifically targeting primitive asteroids - tricity and the eventual interaction with terrestrial those asteroids of C- or B-type taxonomies that are planets, is the typical pathway for Main Belt asteroids thought to be related to Carbonaceous Chondrite mete- to become NEOs [1]. -
Updated on 1 September 2018
20813 Aakashshah 12608 Aesop 17225 Alanschorn 266 Aline 31901 Amitscheer 30788 Angekauffmann 2341 Aoluta 23325 Arroyo 15838 Auclair 24649 Balaklava 26557 Aakritijain 446 Aeternitas 20341 Alanstack 8651 Alineraynal 39678 Ammannito 11911 Angel 19701 Aomori 33179 Arsenewenger 9117 Aude 16116 Balakrishnan 28698 Aakshi 132 Aethra 21330 Alanwhitman 214136 Alinghi 871 Amneris 28822 Angelabarker 3810 Aoraki 29995 Arshavsky 184535 Audouze 3749 Balam 28828 Aalamiharandi 1064 Aethusa 2500 Alascattalo 108140 Alir 2437 Amnestia 129151 Angelaboggs 4094 Aoshima 404 Arsinoe 4238 Audrey 27381 Balasingam 33181 Aalokpatwa 1142 Aetolia 19148 Alaska 14225 Alisahamilton 32062 Amolpunjabi 274137 Angelaglinos 3400 Aotearoa 7212 Artaxerxes 31677 Audreyglende 20821 Balasridhar 677 Aaltje 22993 Aferrari 200069 Alastor 2526 Alisary 1221 Amor 16132 Angelakim 9886 Aoyagi 113951 Artdavidsen 20004 Audrey-Lucienne 26634 Balasubramanian 2676 Aarhus 15467 Aflorsch 702 Alauda 27091 Alisonbick 58214 Amorim 30031 Angelakong 11258 Aoyama 44455 Artdula 14252 Audreymeyer 2242 Balaton 129100 Aaronammons 1187 Afra 5576 Albanese 7517 Alisondoane 8721 AMOS 22064 Angelalewis 18639 Aoyunzhiyuanzhe 1956 Artek 133007 Audreysimmons 9289 Balau 22656 Aaronburrows 1193 Africa 111468 Alba Regia 21558 Alisonliu 2948 Amosov 9428 Angelalouise 90022 Apache Point 11010 Artemieva 75564 Audubon 214081 Balavoine 25677 Aaronenten 6391 Africano 31468 Albastaki 16023 Alisonyee 198 Ampella 25402 Angelanorse 134130 Apaczai 105 Artemis 9908 Aue 114991 Balazs 11451 Aarongolden 3326 Agafonikov 10051 Albee -
Main-Belt Asteroids with Wise/Neowise: Near-Infrared Albedos
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors The Astrophysical Journal, 791:121 (11pp), 2014 August 20 doi:10.1088/0004-637X/791/2/121 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MAIN-BELT ASTEROIDS WITH WISE/NEOWISE: NEAR-INFRARED ALBEDOS Joseph R. Masiero1, T. Grav2, A. K. Mainzer1,C.R.Nugent1,J.M.Bauer1,3, R. Stevenson1, and S. Sonnett1 1 Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, MS 183-601, Pasadena, CA 91109, USA; [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2 Planetary Science Institute, Tucson, AZ, USA; [email protected] 3 Infrared Processing and Analysis Center, Caltech, Pasadena, CA, USA Received 2014 May 14; accepted 2014 June 25; published 2014 August 6 ABSTRACT We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near- infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm.