Prevalence of Paroxysmal Atrial Fibrillation Depending on the Regression of Left Ventricular Hypertrophy in Arterial Hypertension
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Idiopathic Isolated Right Ventricular Apical Hypertrophy
Acta Cardiol Sin 2018;34:288-290 Letter to the Editor doi: 10.6515/ACS.201805_34(3).20180122A Idiopathic Isolated Right Ventricular Apical Hypertrophy Debika Chatterjee1 and Pradeep Narayan2 INTRODUCTION creased RV compliance or RV dysfunction. Isolated right ventricular hypertrophy is extremely rare and reports in the literature are very sparse. We re- DISCUSSION port a case of focal apical right ventricular hypertrophy without involvement of the left ventricular cavity or the RV hypertrophy is usually reported in association inter-ventricular septum. with left ventricular hypertrophy which in turn could be secondary to hypertrophic cardiomyopathy (HCM), hy- pertensive left ventricular hypertrophy (LVH) or other CASE infiltrative conditions.1 However, isolated involvement of right ventricle is extremely rare in these conditions. The A 50 year old male, asymptomatic, normotensive only situation where isolated RV hypertrophy is seen is in patient on routine medical evaluation was found to have presence of idiopathic pulmonary artery hypertension. inverted T-waves on the electrocardiogram (Figure 1). However, the hypertrophy in these cases is rarely focal. He had no history of angina or any other symptoms. Isolated apical hypertrophic cardiomyopathy is an However, despite complete lack of symptoms, because extremely unusual nonobstructive hypertrophy that is of the abnormality on the electrocardiography (ECG) an localized to the cardiac apex.2 Even in these cases spar- echocardiography was carried out for further evaluation. ing of the left ventricular apex with involvement of only Echocardiography revealed focal hypertrophy of the the right ventricular apex is even more uncommon. The right ventricular (RV) apex almost obliterating the apex most common presenting symptom in patients with api- (Figure 2A) but sparing the inter-ventricular septum. -
Evidence of Atrial Functional Mitral Regurgitation Due to Atrial Fibrillation Reversal with Arrhythmia Control
Journal of the American College of Cardiology Vol. 58, No. 14, 2011 © 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2011.06.032 Heart Rhythm Disorders Evidence of Atrial Functional Mitral Regurgitation Due to Atrial Fibrillation Reversal With Arrhythmia Control Zachary M. Gertz, MD,* Amresh Raina, MD,* Laszlo Saghy, MD,† Erica S. Zado, PA-C,* David J. Callans, MD,* Francis E. Marchlinski, MD,* Martin G. Keane, MD,* Frank E. Silvestry, MD* Philadelphia, Pennsylvania; and Szeged, Hungary Objectives The purpose of this study was to determine whether atrial fibrillation (AF) might cause significant mitral regurgi- tation (MR), and to see whether this MR improves with restoration of sinus rhythm. Background MR can be classified by leaflet pathology (organic/primary and functional/secondary) and by leaflet motion (nor- mal, excessive, restrictive). The existence of secondary, normal leaflet motion MR remains controversial. Methods We performed a retrospective cohort study. Patients undergoing first AF ablation at our institution (n ϭ 828) were screened. Included patients had echocardiograms at the time of ablation and at 1-year clinical follow-up. The MR cohort (n ϭ 53) had at least moderate MR. A reference cohort (n ϭ 53) was randomly selected from those patients (n ϭ 660) with mild or less MR. Baseline echocardiographic and clinical characteristics were compared, and the effect of restoration of sinus rhythm was assessed by follow-up echocardiograms. Results MR patients were older than controls and more often had persistent AF (62% vs. 23%, p Ͻ 0.0001). -
Clinical Manifestation and Survival of Patients with I Diopathic Bilateral
ORIGINAL ARTICLE Clinical Manifestation and Survival of Patients with Mizuhiro Arima, TatsujiI diopathicKanoh, Shinya BilateralOkazaki, YoshitakaAtrialIwama,DilatationAkira Yamasaki and Sigeru Matsuda Westudied the histories of eight patients who lacked clear evidence of cardiac abnormalities other than marked bilateral atrial dilatation and atrial fibrillation, which have rarely been dis- cussed in the literature. From the time of their first visit to our hospital, the patients' chest radio- graphs and electrocardiograms showed markedly enlarged cardiac silhouettes and atrial fibrilla- tion, respectively. Each patient's echocardiogram showed a marked bilateral atrial dilatation with almost normal wall motion of both ventricles. In one patient, inflammatory change was demonstrated by cardiac catheterization and endomyocardial biopsy from the right ventricle. Seven of our eight cases were elderly women.Over a long period after the diagnosis of cardiome- galy or arrhythmia, diuretics or digitalis offered good results in the treatment of edema and congestion in these patients. In view of the clinical courses included in the present study, we conclude that this disorder has a good prognosis. (Internal Medicine 38: 112-118, 1999) Key words: cardiomegaly, atrial fibrillation, elder women,good prognosis Introduction echocardiography. The severity of mitral and tricuspid regur- gitation was globally assessed by dividing into three equal parts Idiopathic enlargement of the right atrium was discussed by the distance from the valve orifice. The regurgitant jet was de- Bailey in 1955(1). This disorder may be an unusual congenital tected on color Doppler recording in the four-chamber view malformation. A review of the international literature disclosed and classified into one of the three regions (-: none, +: mild, that although several cases have been discussed since Bailey's ++:moderate, +++: severe). -
Cardiac Hypertrophy, Hypertrophic Cardiomyopathy, and Hyperparathyroidism-An Association
Br Heart J: first published as 10.1136/hrt.54.5.539 on 1 November 1985. Downloaded from Br HeartJ 1985; 54: 539-42 Cardiac hypertrophy, hypertrophic cardiomyopathy, and hyperparathyroidism-an association C SYMONS, F FORTUNE, R A GREENBAUM, P DANDONA From the Departments of Cardiology and Human Metabolism, the Royal Free Hospital, London SUMMARY Left ventricular hypertrophy (symmetric, asymmetric, or hypertrophic cardio- myopathy) is an almost invariable accompaniment of primary hyperparathyroidism. Five of 18 patients with hypertrophic cardiomyopathy had raised serum concentrations of parathyroid hor- mone with normal serum calcium concentrations. Left ventricular hypertrophy did not occur in any of the six patients with hypercalcaemia alone. These relations suggest that parathyroid hormone rather than a rise in the extracellular calcium concentration is associated with a spectrum of left ventricular hypertrophy. All patients with increased circulating parathyroid hormone concentrations should have echo- cardiographic examination of the left ventricle. Conversely, parathyroid hormone concentrations should be measured in all patients with left ventricular hypertrophy from an unknown cause, especially those with hypertrophic cardiomyopathy. copyright. Calcium has powerful positive inotropic and chro- included.) Sixteen of these patients were found to notropic effects on cardiac muscle.' Any factor that have primary hyperparathyroidism and six of these promotes transmembrane calcium flux could be had had operations to remove either a parathyroid -
Hypertension and Arrhythmia
2005; 6: No. 24 HYPERTENSION AND ARRHYTHMIA Jean-Philippe Bagueta, Serap Erdineb, Jean-Michel Malliona From aCardiology and Hypertension Department, Grenoble University Hospital, BP 217, 38043 Grenoble cedex 09, France and b Istanbul University Cerrahpasa School of Medicine, Göztepe I. Orta Sok, 34 A/9 Istanbul, Turkey Correspondence: Jean-Philippe Baguet, Cardiologie et Hypertension artérielle, CHU de Grenoble - BP 217, 38043 Grenoble Cedex 09, France, tel +334767654.40, fax 334767655.59, [email protected] Introduction rapid or if there is some underlying problem with left ventricular Arrhythmia-both atrial and ventricular-is a common comorbidity function (either systolic or diastolic) (10). AF can also cause with hypertension (HT). Underlying mechanisms are many and episodes of dizziness or even syncope. Finally, in the various, including left ventricular hypertrophy (LVH), myocardial Framingham study, a correlation was observed between AF and ischemia, impaired left ventricular function and left atrial enlarge- mortality in both sexes, and this independently of other variables ment. Any form of arrhythmia may be associated with LVH but (11). ventricular arrhythmia is more common as well as being more dangerous. Treatment of atrial arrhythmia Preventing AF in hypertensive subjects depends on controlling Atrial arrhythmia blood pressure in order to reduce the risk of hypertensive car- Prevalence diomyopathy (or at least mitigating the consequences thereof). After supraventricular extrasystole, atrial fibrillation (AF) is the Antihypertensive therapy has been shown to reverse some of the next most common form of arrhythmia associated with HT. The structural cardiac changes caused by HT, including LVH and atri- relative risk of developing AF in HT is modest compared with other al enlargement (12, 13). -
Hypertrophic Cardiomyopathy: a Systematic Review
CLINICAL CARDIOLOGY CLINICIAN’S CORNER Hypertrophic Cardiomyopathy A Systematic Review Barry J. Maron, MD Context Throughout the past 40 years, a vast and sometimes contradictory litera- ture has accumulated regarding hypertrophic cardiomyopathy (HCM), a genetic car- YPERTROPHIC CARDIOMYOP- diac disease caused by a variety of mutations in genes encoding sarcomeric proteins athy (HCM) is a complex and and characterized by a broad and expanding clinical spectrum. relatively common genetic Objectives To clarify and summarize the relevant clinical issues and to profile rap- cardiac disease that has been idly evolving concepts regarding HCM. Hthe subject of intense scrutiny and in- Data Sources Systematic analysis of the relevant HCM literature, accessed through vestigation for more than 40 years.1-10 Hy- MEDLINE (1966-2000), bibliographies, and interactions with investigators. pertrophic cardiomyopathy is an impor- Study Selection and Data Extraction Diverse information was assimilated into tant cause of disability and death in a rigorous and objective contemporary description of HCM, affording greatest weight patients of all ages, although sudden and to prospective, controlled, and evidence-based studies. unexpected death in young people is per- Data Synthesis Hypertrophic cardiomyopathy is a relatively common genetic car- haps the most devastating component of diac disease (1:500 in the general population) that is heterogeneous with respect to disease- its natural history. Because of marked causing mutations, presentation, prognosis, and treatment strategies. Visibility at- heterogeneity in clinical expression, tached to HCM relates largely to its recognition as the most common cause of sudden natural history, and prognosis,11-20 HCM death in the young (including competitive athletes). -
Atrial Fibrillation in Hypertrophic Cardiomyopathy: Prevalence, Clinical Impact, and Management
Heart Failure Reviews (2019) 24:189–197 https://doi.org/10.1007/s10741-018-9752-6 Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical impact, and management Lohit Garg 1 & Manasvi Gupta2 & Syed Rafay Ali Sabzwari1 & Sahil Agrawal3 & Manyoo Agarwal4 & Talha Nazir1 & Jeffrey Gordon1 & Babak Bozorgnia1 & Matthew W. Martinez1 Published online: 19 November 2018 # Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Hypertrophic cardiomyopathy (HCM) is the most common hereditary cardiomyopathy characterized by left ventricular hyper- trophy and spectrum of clinical manifestation. Atrial fibrillation (AF) is a common sustained arrhythmia in HCM patients and is primarily related to left atrial dilatation and remodeling. There are several clinical, electrocardiographic (ECG), and echocardio- graphic (ECHO) features that have been associated with development of AF in HCM patients; strongest predictors are left atrial size, age, and heart failure class. AF can lead to progressive functional decline, worsening heart failure and increased risk for systemic thromboembolism. The management of AF in HCM patient focuses on symptom alleviation (managed with rate and/or rhythm control methods) and prevention of complications such as thromboembolism (prevented with anticoagulation). Finally, recent evidence suggests that early rhythm control strategy may result in more favorable short- and long-term outcomes. Keywords Atrial fibrillation . Hypertrophic cardiomyopathy . Treatment . Antiarrhythmic agents Introduction amyloidosis) [3–5]. The clinical presentation of HCM is het- erogeneous and includes an asymptomatic state, heart failure Hypertrophic cardiomyopathy (HCM) is the most common syndrome due to diastolic dysfunction or left ventricular out- inherited cardiomyopathy due to mutation in one of the sev- flow (LVOT) obstruction, arrhythmias (atrial fibrillation and eral sarcomere genes and transmitted in autosomal dominant embolism), and sudden cardiac death [1, 6]. -
Left Ventricular Remodeling in Hypertrophic Cardiomyopathy: an Overview of Current Knowledge
Journal of Clinical Medicine Review Left Ventricular Remodeling in Hypertrophic Cardiomyopathy: An Overview of Current Knowledge Beatrice Musumeci, Giacomo Tini , Domitilla Russo, Matteo Sclafani, Francesco Cava, Alessandro Tropea, Carmen Adduci, Francesca Palano, Pietro Francia and Camillo Autore * Cardiology, Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy; [email protected] (B.M.); [email protected] (G.T.); [email protected] (D.R.); [email protected] (M.S.); [email protected] (F.C.); [email protected] (A.T.); [email protected] (C.A.); [email protected] (F.P.); [email protected] (P.F.) * Correspondence: [email protected]; Tel.: +39-06-3377-5577 Abstract: While most patients with hypertrophic cardiomyopathy (HCM) show a relatively stable morphologic and clinical phenotype, in some others, progressive changes in the left ventricular (LV) wall thickness, cavity size, and function, defined, overall, as “LV remodeling”, may occur. The interplay of multiple pathophysiologic mechanisms, from genetic background to myocardial ischemia and fibrosis, is implicated in this process. Different patterns of LV remodeling have been recognized and are associated with a specific impact on the clinical course and management of the disease. These findings underline the need for and the importance of serial multimodal clinical and instrumental evaluations to identify and further characterize the LV remodeling phenomenon. A more complete definition of the stages of the disease may present a chance to improve the management of Citation: Musumeci, B.; Tini, G.; Russo, D.; Sclafani, M.; Cava, F.; HCM patients. Tropea, A.; Adduci, C.; Palano, F.; Francia, P.; Autore, C. -
Hypertrophic Cardiomyopathy
Clinical Update Adapted from: 2020 ACC/AHA Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy ACC/AHA Applying Class of Recommendation and Level of Evidence to Clinical Strategies, Interventions, Treatments, or Diagnostic Testing in Patient Care (Updated May 2019)* HCM Hypertrophic Cardiomyopathy (HCM) is a Globally Prevalent & Common Genetic Heart Disease Inheritance Pattern Sex Distribution Disease Prevalence Triggers for Evaluation +/- +/+ Symptoms 50% 50% Cardiac Event Heart Murmur +/- Abnormal EKG Women diagnosed Estimated Cardiac Imaging Autosomal Dominant less commonly 1:200 – 1:500 Family Studies Other non-HCM Causes of LV Hypertrophy ⅔ have LVOTO Metabolic & Multi-organ Syndromes RASopathies Mitochondrial myopathies LV Outflow Tract Glycogen / Lysosomal storage diseases Amyloidosis Obstruction Sarcoidosis (LVOTO) Hemochromatosis Danon disease Secondary Causes Athlete’s heart HCM ⅓ do not have LVOTO Hypertension Valvular & subvalvular stenosis Abbreviations: EKG, indicates electrocardiogram; RAS, reticular activating system. 3 Ommen, SR et al. 2020 ACC/AHA Guideline for the Diagnosis and Treatment of Patients with Hypertrophic Cardiomyopathy. Circulation. XXX:XX-XX. HCM Defining Hypertrophic Cardiomyopathy in 2020 • Morphologic expression confined solely to the heart • Characterized by left ventricular (LV) hypertrophy Basal anterior septum in continuity with the anterior free wall = most common • No other cardiac, systemic or metabolic disease capable of producing the magnitude of hypertrophy -
Changes in Cardiac Geometry Due to Hypertrophy
Changes in Cardiac Geometry Due to Hypertrophy By Marta Ellen Pedersen A Master’s Paper Submitted in Partial Fulfillment of The Requirements for the Degree of Master of Science in Clinical Exercise Physiology Dr. Joseph O’ Kroy Date University of Wisconsin-River Falls 2014 Introduction For any given body size, men have larger hearts than women, athletes have larger hearts than nonathletes, and often times, an enlarged heart is a symptom of an underlying disorder that is causing the heart to work harder than normal. This review will emphasize the differences between a pathologically enlarged heart and an athletically enlarged heart. Pathologically induced hypertrophy (myopathy) When heart cells get bigger, (often is the case when heart disease is present) the total heart works less efficiently. Some people suffer from conditions like hypertrophic cardiomyopathy, which includes significant heart muscle enlargement, and can be genetic or caused by high blood pressure. Cardiomyopathy decreases the size of the heart's chambers, reducing blood flow. Hypertrophy, or thickening, of the heart muscle can occur in response to increased stress on the heart. The most common causes of Cardiomyopathy are related to increased blood pressure. The extra work of pumping blood against the increased pressure causes the ventricle to thicken over time, the same way a body muscle increases in mass in response to weightlifting. Cardiomyopathy can occur in both the right and left atrium and the right and left ventricles. Blood travels through the right ventricle to the lungs. If conditions occur that decrease pulmonary circulation, extra stress can be placed on the right ventricle, and can lead to right ventricular myopathy. -
Atrial Infarction
Cardiovascular and Metabolic Science Review Vol. 31 No. 1 January-March 2020 Atrial infarction: a literature review Infarto atrial: revisión de la literatura Laura Duque-González,* María José Orrego-Garay,‡ Laura Lopera-Mejía,§ Mauricio Duque-Ramírez|| Keywords: Infarction, atrium, ABSTRACT RESUMEN atrial fibrillation, embolism and Atrial infarction is an often-missed entity that has been El infarto atrial es una entidad frecuentemente olvidada, thrombosis. described in association with ventricular infarction ha sido descrita en asociación con el infarto ventricular or as an isolated disease, which is mainly caused by o de manera aislada y es causado principalmente Palabras clave: atherosclerosis. The electrocardiographic diagnostic por aterosclerosis. Los criterios diagnósticos Infarto, aurícula, criteria were proposed more than fifty years ago and electrocardiográficos fueron propuestos hace más de 50 fibrilación auricular, have not yet been validated. The diagnosis is based on años y aún no han sido validados. El diagnóstico se basa en embolia y trombosis. elevations and depressions of the PTa segment and changes el hallazgo de elevación o depresión del segmento PTa y de in the P wave morphology. However, supraventricular alteraciones en la morfología de la onda P; sin embargo, arrhythmias such as atrial fibrillation are the most common las arritmias supraventriculares como la fibrilación atrial finding and often predominate in the clinical presentation. son las más comunes y con frecuencia predominan en el Early recognition and treatment may prevent serious cuadro clínico. Un rápido reconocimiento y tratamiento complications such as mural thrombosis or atrial rupture. pueden ayudar a prevenir complicaciones graves como la Further studies need to be carried out in order to establish trombosis mural o la ruptura auricular. -
Spontaneous Hemopericardium Leading to Cardiac Tamponade in a Patient with Essential Thrombocythemia
SAGE-Hindawi Access to Research Cardiology Research and Practice Volume 2011, Article ID 247814, 3 pages doi:10.4061/2011/247814 Case Report Spontaneous Hemopericardium Leading to Cardiac Tamponade in a Patient with Essential Thrombocythemia Anand Deshmukh,1, 2 Shanmuga P. Subbiah,3 Sakshi Malhotra,4 Pooja Deshmukh,4 Suman Pasupuleti,1 and Syed Mohiuddin1, 4 1 Department of Cardiovascular Medicine, Creighton University Medical Center, Omaha, NE 68131, USA 2 Creighton Cardiac Center, 3006 Webster Street, Omaha, NE 68131, USA 3 Department of Hematology and Oncology, Creighton University Medical Center, Omaha, NE 68131, USA 4 Department of Internal Medicine, Creighton University Medical Center, Omaha, NE 68131, USA Correspondence should be addressed to Anand Deshmukh, [email protected] Received 30 October 2010; Accepted 29 December 2010 Academic Editor: Syed Wamique Yusuf Copyright © 2011 Anand Deshmukh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acute cardiac tamponade requires urgent diagnosis and treatment. Spontaneous hemopericardium leading to cardiac tamponade as an initial manifestation of essential thrombocythemia (ET) has never been reported in the literature. We report a case of a 72-year-old Caucasian female who presented with spontaneous hemopericardium and tamponade requiring emergent pericardiocentesis. The patient was subsequently diagnosed to have ET. ET is characterized by elevated platelet counts that can lead to thrombosis but paradoxically it can also lead to a bleeding diathesis. Physicians should be aware of this complication so that timely life-saving measures can be taken if this complication arises.