Statistical Analysis Plan for Primary Analysis, and Final Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Analysis Plan for Primary Analysis, and Final Analysis NCT02993250 Janssen Pharmaceutical K.K. * Statistical Analysis Plan for Primary Analysis, and Final Analysis A Phase 2a, Multicenter, Open-label Study to Investigate the Safety, Pharmacokinetics, and Efficacy of Combination Treatment of AL-335, Odalasvir, and Simeprevir in Japanese Subjects With Chronic Hepatitis C Genotype 1 or 2 Virus Infection, With or Without Compensated Cirrhosis who are Direct-acting Antiviral Treatment-naïve Protocol 64294178HPC2003; Phase 2a AL-335, Odalasvir, TMC435(simeprevir) *This study is being conducted by Janssen Pharmaceutical K.K. in Japan. The term “sponsor” is used throughout the protocol to represent Janssen Pharmaceutical K.K. Status: Approved Date: 8 June 2018 Prepared by: Janssen Pharmaceutical K.K. Document No.: EDMS-ERI-164033457 Compliance: The study described in this report was performed according to the principles of Good Clinical Practice (GCP). Confidentiality Statement The information in this document contains trade secrets and commercial information that are privileged or confidential and may not be disclosed unless such disclosure is required by applicable law or regulations. In any event, persons to whom the information is disclosed must be informed that the information is privileged or confidential and may not be further disclosed by them. These restrictions on disclosure will apply equally to all future information supplied to you that is indicated as privileged or confidential. 1 Approved, Date: 8 June 2018 NCT02993250 AL-335, Odalasvir, TMC435(simeprevir) Statistical Analysis Plan 64294178HPC2003 TABLE OF CONTENTS TABLE OF CONTENTS ............................................................................................................................... 2 ABBREVIATIONS ........................................................................................................................................ 4 1. INTRODUCTION .................................................................................................................................. 5 1.1. Trial Objectives ................................................................................................................................ 5 1.2. Trial Design ...................................................................................................................................... 6 1.2.1. Endpoints ...................................................................................................................................... 6 1.3. Statistical Hypotheses for Trial Objectives ....................................................................................... 7 1.4. Sample Size Justification ................................................................................................................. 7 1.5. Randomization and Blinding ............................................................................................................ 7 2. GENERAL ANALYSIS DEFINITIONS ................................................................................................ 7 2.1. Visit Windows and Phase Definition ................................................................................................ 7 2.2. Pooling Algorithm for Analysis Centers .......................................................................................... 10 2.3. Analysis Sets .................................................................................................................................. 10 2.4. Definition of Subgroups .................................................................................................................. 10 3. SUBJECT INFORMATION ................................................................................................................ 10 3.1. Demographics and Baseline Characteristics ................................................................................. 10 3.2. Disposition Information ................................................................................................................... 11 3.3. Treatment Adherence .................................................................................................................... 12 3.4. Extent of Exposure ......................................................................................................................... 12 3.5. Protocol Deviations ........................................................................................................................ 12 3.6. Prior and Concomitant Medications ............................................................................................... 12 3.7. Medical History ............................................................................................................................... 13 4. EFFICACY ......................................................................................................................................... 13 4.1. Level of Significance ...................................................................................................................... 13 4.2. Data Handling Rules ...................................................................................................................... 13 4.3. Efficacy Endpoints .......................................................................................................................... 13 4.3.1. Definitions ................................................................................................................................... 14 4.3.2. Analysis Methods ........................................................................................................................ 17 4.3.3. Treatment Stopping Rules .......................................................................................................... 18 5. VIROLOGY ........................................................................................................................................ 19 5.1. Virology Assessments .................................................................................................................... 19 5.1.1. Viral strain typing ........................................................................................................................ 19 5.1.2. Viral sequencing ......................................................................................................................... 19 5.2. Virology Definitions ........................................................................................................................ 19 5.3. Virology Time Points and Samples ................................................................................................ 20 5.4. Virology Analyses ........................................................................................................................... 20 5.4.1. HCV geno/subtype analyses ...................................................................................................... 20 5.4.2. Resistance analyses ................................................................................................................... 21 5.4.2.1. Baseline ................................................................................................................................... 21 5.4.2.2. Post-Baseline ........................................................................................................................... 21 5.4.2.3. Over the Study Period ............................................................................................................. 21 6. SAFETY ............................................................................................................................................. 21 6.1. Adverse Events .............................................................................................................................. 21 6.1.1. Definitions ................................................................................................................................... 21 6.1.2. Analysis Methods ........................................................................................................................ 22 6.2. Clinical Laboratory Tests................................................................................................................ 23 6.2.1. Definitions ................................................................................................................................... 24 6.2.2. Analysis Methods ........................................................................................................................ 24 6.3. Vital Signs and Physical Examination Findings ............................................................................. 25 2 Approved, Date: 8 June 2018 NCT02993250 AL-335, Odalasvir, TMC435(simeprevir) Statistical Analysis Plan 64294178HPC2003 6.3.1. Definitions ................................................................................................................................... 25 6.3.2. Analysis Methods ........................................................................................................................ 25 6.4. Electrocardiogram .......................................................................................................................... 26 6.4.1. Definitions ................................................................................................................................... 26 6.4.2. Analysis Methods .......................................................................................................................
Recommended publications
  • Evidence of Atrial Functional Mitral Regurgitation Due to Atrial Fibrillation Reversal with Arrhythmia Control
    Journal of the American College of Cardiology Vol. 58, No. 14, 2011 © 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2011.06.032 Heart Rhythm Disorders Evidence of Atrial Functional Mitral Regurgitation Due to Atrial Fibrillation Reversal With Arrhythmia Control Zachary M. Gertz, MD,* Amresh Raina, MD,* Laszlo Saghy, MD,† Erica S. Zado, PA-C,* David J. Callans, MD,* Francis E. Marchlinski, MD,* Martin G. Keane, MD,* Frank E. Silvestry, MD* Philadelphia, Pennsylvania; and Szeged, Hungary Objectives The purpose of this study was to determine whether atrial fibrillation (AF) might cause significant mitral regurgi- tation (MR), and to see whether this MR improves with restoration of sinus rhythm. Background MR can be classified by leaflet pathology (organic/primary and functional/secondary) and by leaflet motion (nor- mal, excessive, restrictive). The existence of secondary, normal leaflet motion MR remains controversial. Methods We performed a retrospective cohort study. Patients undergoing first AF ablation at our institution (n ϭ 828) were screened. Included patients had echocardiograms at the time of ablation and at 1-year clinical follow-up. The MR cohort (n ϭ 53) had at least moderate MR. A reference cohort (n ϭ 53) was randomly selected from those patients (n ϭ 660) with mild or less MR. Baseline echocardiographic and clinical characteristics were compared, and the effect of restoration of sinus rhythm was assessed by follow-up echocardiograms. Results MR patients were older than controls and more often had persistent AF (62% vs. 23%, p Ͻ 0.0001).
    [Show full text]
  • Giant Right Atrium Or Ebstein Anomaly? Hacer Kamalı1, Abdullah Erdem1*, Cengiz Erol2 and Atıf Akçevin3
    ISSN: 2378-2951 Kamalı et al. Int J Clin Cardiol 2017, 4:104 DOI: 10.23937/2378-2951/1410104 Volume 4 | Issue 4 International Journal of Open Access Clinical Cardiology CASE REPORT Giant Right Atrium or Ebstein Anomaly? Hacer Kamalı1, Abdullah Erdem1*, Cengiz Erol2 and Atıf Akçevin3 1Department of Pediatric Cardiology, Istanbul Medipol University, Turkey 2Department of Radiology, Istanbul Medipol University, Turkey 3Department of Cardiovascular Surgery, Istanbul Medipol University, Turkey *Corresponding author: Abdullah Erdem, Associate Professor of Pediatric Cardiology, Department of Pediatric Cardiology, Istanbul Medipol University, Istanbul, Turkey, Tel: +905-0577-05805, Fax: +90212467064, E-mail: drabdullaherdem@ hotmail.com partment for exercise intolerance. She had been diag- Abstract nosed and followed up as Ebstein anomaly for ten years. Many acquired and congenital pathologies could cause en- Her heart rate was 75/min with normal jugular venous largement of Right Atrium (RA). In rare pathologies we couldn’t find an obvious reason for enlargement of RA. Sometimes it pressure. Findings of lung examination were normal. leads to misdiagnosis if we try to explain an unknown pa- Auscultation of heart revealed a 2/6 systolic murmur on thology with well known pathology. In this article we de- the lower left edge of the sternum. On abdominal ex- scribe a woman who presented with giant enlargement of amination, there was no organomegaly. Arterial Oxygen the RA misdiagnosed as Ebstein anomaly. Cardiac MRI is highly helpful for differential diagnosis of these kinds of atrial Saturation (SpO2) was 98%. Electrocardiography (ECG) pathologies. Although it is rare, giant RA should be consid- revealed absence of atrial fibrillation, the rhythm was ered in differential diagnosis of huge RA without an obvious sinus but there was right axis deviation and right bundle cause.
    [Show full text]
  • Clinical Manifestation and Survival of Patients with I Diopathic Bilateral
    ORIGINAL ARTICLE Clinical Manifestation and Survival of Patients with Mizuhiro Arima, TatsujiI diopathicKanoh, Shinya BilateralOkazaki, YoshitakaAtrialIwama,DilatationAkira Yamasaki and Sigeru Matsuda Westudied the histories of eight patients who lacked clear evidence of cardiac abnormalities other than marked bilateral atrial dilatation and atrial fibrillation, which have rarely been dis- cussed in the literature. From the time of their first visit to our hospital, the patients' chest radio- graphs and electrocardiograms showed markedly enlarged cardiac silhouettes and atrial fibrilla- tion, respectively. Each patient's echocardiogram showed a marked bilateral atrial dilatation with almost normal wall motion of both ventricles. In one patient, inflammatory change was demonstrated by cardiac catheterization and endomyocardial biopsy from the right ventricle. Seven of our eight cases were elderly women.Over a long period after the diagnosis of cardiome- galy or arrhythmia, diuretics or digitalis offered good results in the treatment of edema and congestion in these patients. In view of the clinical courses included in the present study, we conclude that this disorder has a good prognosis. (Internal Medicine 38: 112-118, 1999) Key words: cardiomegaly, atrial fibrillation, elder women,good prognosis Introduction echocardiography. The severity of mitral and tricuspid regur- gitation was globally assessed by dividing into three equal parts Idiopathic enlargement of the right atrium was discussed by the distance from the valve orifice. The regurgitant jet was de- Bailey in 1955(1). This disorder may be an unusual congenital tected on color Doppler recording in the four-chamber view malformation. A review of the international literature disclosed and classified into one of the three regions (-: none, +: mild, that although several cases have been discussed since Bailey's ++:moderate, +++: severe).
    [Show full text]
  • Young Adults. Look for ST Elevation, Tall QRS Voltage, "Fishhook" Deformity at the J Point, and Prominent T Waves
    EKG Abnormalities I. Early repolarization abnormality: A. A normal variant. Early repolarization is most often seen in healthy young adults. Look for ST elevation, tall QRS voltage, "fishhook" deformity at the J point, and prominent T waves. ST segment elevation is maximal in leads with tallest R waves. Note high take off of the ST segment in leads V4-6; the ST elevation in V2-3 is generally seen in most normal ECG's; the ST elevation in V2- 6 is concave upwards, another characteristic of this normal variant. Characteristics’ of early repolarization • notching or slurring of the terminal portion of the QRS wave • symmetric concordant T waves of large amplitude • relative temporal stability • most commonly presents in the precordial leads but often associated with it is less pronounced ST segment elevation in the limb leads To differentiate from anterior MI • the initial part of the ST segment is usually flat or convex upward in AMI • reciprocal ST depression may be present in AMI but not in early repolarization • ST segments in early repolarization are usually <2 mm (but have been reported up to 4 mm) To differentiate from pericarditis • the ST changes are more widespread in pericarditis • the T wave is normal in pericarditis • the ratio of the degree of ST elevation (measured using the PR segment as the baseline) to the height of the T wave is greater than 0.25 in V6 in pericarditis. 1 II. Acute Pericarditis: Stage 1 Pericarditis Changes A. Timing 1. Onset: Day 2-3 2. Duration: Up to 2 weeks B. Findings 1.
    [Show full text]
  • Atrial Infarction
    Cardiovascular and Metabolic Science Review Vol. 31 No. 1 January-March 2020 Atrial infarction: a literature review Infarto atrial: revisión de la literatura Laura Duque-González,* María José Orrego-Garay,‡ Laura Lopera-Mejía,§ Mauricio Duque-Ramírez|| Keywords: Infarction, atrium, ABSTRACT RESUMEN atrial fibrillation, embolism and Atrial infarction is an often-missed entity that has been El infarto atrial es una entidad frecuentemente olvidada, thrombosis. described in association with ventricular infarction ha sido descrita en asociación con el infarto ventricular or as an isolated disease, which is mainly caused by o de manera aislada y es causado principalmente Palabras clave: atherosclerosis. The electrocardiographic diagnostic por aterosclerosis. Los criterios diagnósticos Infarto, aurícula, criteria were proposed more than fifty years ago and electrocardiográficos fueron propuestos hace más de 50 fibrilación auricular, have not yet been validated. The diagnosis is based on años y aún no han sido validados. El diagnóstico se basa en embolia y trombosis. elevations and depressions of the PTa segment and changes el hallazgo de elevación o depresión del segmento PTa y de in the P wave morphology. However, supraventricular alteraciones en la morfología de la onda P; sin embargo, arrhythmias such as atrial fibrillation are the most common las arritmias supraventriculares como la fibrilación atrial finding and often predominate in the clinical presentation. son las más comunes y con frecuencia predominan en el Early recognition and treatment may prevent serious cuadro clínico. Un rápido reconocimiento y tratamiento complications such as mural thrombosis or atrial rupture. pueden ayudar a prevenir complicaciones graves como la Further studies need to be carried out in order to establish trombosis mural o la ruptura auricular.
    [Show full text]
  • Spontaneous Hemopericardium Leading to Cardiac Tamponade in a Patient with Essential Thrombocythemia
    SAGE-Hindawi Access to Research Cardiology Research and Practice Volume 2011, Article ID 247814, 3 pages doi:10.4061/2011/247814 Case Report Spontaneous Hemopericardium Leading to Cardiac Tamponade in a Patient with Essential Thrombocythemia Anand Deshmukh,1, 2 Shanmuga P. Subbiah,3 Sakshi Malhotra,4 Pooja Deshmukh,4 Suman Pasupuleti,1 and Syed Mohiuddin1, 4 1 Department of Cardiovascular Medicine, Creighton University Medical Center, Omaha, NE 68131, USA 2 Creighton Cardiac Center, 3006 Webster Street, Omaha, NE 68131, USA 3 Department of Hematology and Oncology, Creighton University Medical Center, Omaha, NE 68131, USA 4 Department of Internal Medicine, Creighton University Medical Center, Omaha, NE 68131, USA Correspondence should be addressed to Anand Deshmukh, [email protected] Received 30 October 2010; Accepted 29 December 2010 Academic Editor: Syed Wamique Yusuf Copyright © 2011 Anand Deshmukh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Acute cardiac tamponade requires urgent diagnosis and treatment. Spontaneous hemopericardium leading to cardiac tamponade as an initial manifestation of essential thrombocythemia (ET) has never been reported in the literature. We report a case of a 72-year-old Caucasian female who presented with spontaneous hemopericardium and tamponade requiring emergent pericardiocentesis. The patient was subsequently diagnosed to have ET. ET is characterized by elevated platelet counts that can lead to thrombosis but paradoxically it can also lead to a bleeding diathesis. Physicians should be aware of this complication so that timely life-saving measures can be taken if this complication arises.
    [Show full text]
  • Accuracy of Electrocardiographic Criteria for Atrial Enlargement: Validation with Cardiovascular Magnetic Resonance
    Accuracy of Electrocardiographic Criteria for Atrial Enlargement: Validation with Cardiovascular Magnetic Resonance The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Tsao, Connie W., Mark E. Josephson, Thomas H. Hauser, T. David O'Halloran, Anupam Agarwal, Warren J. Manning, and Susan B. Yeon. 2008. Accuracy of electrocardiographic criteria for atrial enlargement: Validation with cardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance 10(1): 7. Published Version doi://10.1186/1532-429X-10-7 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:10140325 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Journal of Cardiovascular Magnetic Resonance BioMed Central Research Open Access Accuracy of electrocardiographic criteria for atrial enlargement: validation with cardiovascular magnetic resonance Connie W Tsao1, Mark E Josephson1, Thomas H Hauser1, T David O'Halloran1, Anupam Agarwal1,2, Warren J Manning1,3 and Susan B Yeon*1 Address: 1Harvard-Thorndike Laboratory and the Department of Medicine, Cardiovascular Division, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts, USA, 2Cardiovascular and Metabolic Division, GlaxoSmithKline Pharmaceuticals, 1250 Collegeville
    [Show full text]
  • Pathophysiology of Atrial Fibrillation. Systemic Review
    PRACA POGLĄDOWA/RevieW papeR Folia Cardiologica 2020 tom 15, nr 5, strony 349–354 DOI: 10.5603/FC.2020.0050 Copyright © 2020 Via Medica ISSN 2353–7752 Pathophysiology of atrial fibrillation. Systemic review Patofizjologia migotania przedsionków. Przegląd systemowy Andrzej Wysokiński, Sebastian Sawonik●iD , Katarzyna Wysokińska Department of Cardiology, Medical University of Lublin, Lublin, Poland Abstract Atrial fibrillation (AF) is an arrhythmia in which chaotic electrical signals are generated in the atria. AF can be classified as first episode AF, paroxysmal AF, persistent AF, long-standing persistent AF and permanent AF. Hence, AF is one of the biggest problems of contemporary health care (due to severe complications like thromboembolic disease and huge expenses associated with the treatment). The pathophysiology of the AF includes a triggered activity in the myocardium and also left atrial enlargement (LAE), and remodelling of the atria that may result in an interatrial block (IAB). IAB is prolonged conduction between the atria and is diagnosed in electrocardiography (ECG) when P-wave duration ≥ 110 ms. Other ECG changes coexisting with IAB, LAE and also remodelling of the atria are attributed to P-wave dispersion ≥ 40 ms, and a P-wave terminal force in V1 ≤ –0.04 mm/s. Remodelling of the atria leads to structural, cellular and hormonal changes. At the cellular scale — mitochondrial size and count are enlarged. A neurohormonal imbalance is also related to arrhythmia. An increased level of atrial natriuretic peptide, B-type natriuretic peptide, angiotensin II, transforming growth factor-β1 are observed in the case of cellular and ion channels changes. Atrial fibrillation is a significant problem posed to modern health care.
    [Show full text]
  • Surgical Treatment of Idiopathic Enlargement of the Right Atrium
    Hindawi Case Reports in Surgery Volume 2018, Article ID 7241309, 5 pages https://doi.org/10.1155/2018/7241309 Case Report Surgical Treatment of Idiopathic Enlargement of the Right Atrium Francesca Chiara Surace, Federica Iezzi , Massimo Colaneri, and Marco Pozzi Department of Paediatric and Congenital Cardiac Surgery and Cardiology, Azienda Ospedaliero Universitaria, Ospedali Riuniti Ancona “Umberto I-G. M. Lancisi-G. Salesi”, Ancona, Italy Correspondence should be addressed to Federica Iezzi; [email protected] Received 25 June 2018; Accepted 26 August 2018; Published 20 September 2018 Academic Editor: Shuli Silberman Copyright © 2018 Francesca Chiara Surace et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Idiopathic enlargement of the right atrium (IERA) is a very rare abnormality. Approximately one-half (48%) of the patients with a congenital enlargement of the right atrium have no symptoms. When they occur, symptoms include shortness of breath (28% of cases), palpitations (17%), arrhythmias (12%), and in rare cases, right heart failure and extreme tiredness. We report one such case of a young man with a disproportionally enlarged right atrium. The basal transthoracic echocardiogram demonstrated a huge right atrium with a thick smoke pattern and mild tricuspid regurgitation in the absence of congenital heart disease. Magnetic resonance imaging confirmed the right atriomegaly, with initial compression of the right ventricle, and excluded congenital heart defects or absence of pericardium. The patient underwent surgical resection of the right atrial wall and the atriotomy was closed, leaving an atrial chamber of normal consistency and size.
    [Show full text]
  • Normal P Wave, in Atrial Enlargements, Artifacts, Dextrocardia and Interatrial Blocks
    Class 6 – SOLAECE Course Normal P wave, in atrial enlargements, artifacts, dextrocardia and interatrial blocks Authors: Antonio Bayés de Luna, Andrés R. Pérez-Riera, Adrian Baranchuk, Diego Conde The authors do not report any conflict of interest regarding this presentation 1. Introduction For some authors the name “atrial abnormalities” encompass the concept of atrial enlargement and atrial blocks (Bayés de Luna 2013)( Lee 2007). In this work we will expose the ECG/VCG characteristics of both concepts, emphasizing, as it happens with ventricular hypertrophy and ventricular blocks, that often the ECG/ VCG pattern of atrial enlargement especially of left atrial enlargement (LAE) is explained by the coexistence of interatrial block (IAB). However as we will see later there are clear evidences that the pattern of IAB may exist without the association of atrial enlargement/hypertrophy. Therefore atrial blocks and atrial enlargement are separate entities that are often associated with each other. Therefore we do not consider it appropriate to use the “umbrella” term atrial abnormalities to include both concepts without distinguishing between them (Lee 2007), as some authors do (Bayés de Luna 2013: ) (Tsao 2008). Depolarization and repolarization mode of the atria and ventricles A) Atrial muscle strip Depolarization P Longitudinal Repolarization Ta P Ta B) Ventricular myocardium R Depolarization T Transversal Repolarization q s Atrial Activation Pathways A Hypothesis currently accepted B Previous hypotesis SVC SVC SPV SPV IPV A LA LA IPV SAN SAN M BB RA RA P LV LV AV node AV node RV RV IVC IVC A: Anterior internodal bundle SVC: Superior Vena Cava M: Middle internodal or Wenckebach bundle IVC: Inferior Vena Cava P: Posterior internodal or Thorel Bundle RA: Right Atrium BB: Bachmann’s Bundle LA: Left Atrium SAN: Sinoatrial Node Old or previous hypothesis B – The activation wave spreads in a radiated way through the atria, just as the waves in a lake when you throw a stone in it.
    [Show full text]
  • The P Wave: Indicator of Atrial Enlargement - Print Article - JAAPA
    Marquette University e-Publications@Marquette Physician Assistant Studies Faculty Research and Physician Assistant Studies, Department Publications 8-12-2010 The P aW ve: Indicator of Atrial Enlargement Patrick Loftis Marquette University, [email protected] Accepted version. Journal of the American Academy of Physician Assistants (August 2010). Permalink.© 2010, American Academy of Physician Assistants and Haymarket Media Inc. Used with permission. The P wave: Indicator of atrial enlargement - Print Article - JAAPA http://www.jaapa.com/the-p-wave-indicator-of-atrial-enlargement/printart... << Return to The P wave: Indicator of atrial enlargement James F. Ginter, MPAS, PA-C, Patrick Loftis, PA-C, MPAS, RN August 12 2010 Once you've determined that a P wave precedes each QRS complex, you must scrutinize the P wave for contour and size. The normal P wave is less than 0.12 seconds in duration, and the largest deflection, whether positive or negative, should not exceed 2.5 mm. An abnormal P wave may indicate atrial enlargement. Atrial depolarization follows the discharge of the sinus node. Normally depolarization occurs first in the right atrium and then in the left atrium. Atrial enlargement is best observed in the P waves of leads II and V1. Lead II is oriented parallel to the flow of current through the atrium and is the main P wave vector. V1 is oriented perpendicular to the flow of current through the atrium. This results in a biphasic P wave, in which the first peak represents depolarization of the right atrium and the second peak represents depolarization of the left atrium, allowing for easy differentiation between the atria.
    [Show full text]
  • Large Atrial Septal Defect Misdiagnosed As Arrhythmogenic Right Ventricular Cardiomyopathy
    CASE REPORT Large atrial septal defect misdiagnosed as arrhythmogenic right ventricular cardiomyopathy Lisa Moore DO, Cihan Cevik MD ABSTRACT We report a case of a large ostium secundum atrial septal defect that was initially diagnosed as an arrhythmogenic right ventricular cardiomyopathy. We discuss the initial workup, diagnosis, and treatment of this patient’s atrial septal defect and explore how the pathophysiology of arrhythmogenic right ventricular cardiomyopathy may mimic congenital heart disease when there is a large left-to-right shunt. Keywords: atrial septal defect, arrhythmogenic right ventricular cardiomyopathy, arrhythmogenic right ventricular dysplasia, congenital heart disease, left to right shunt INTRODUCTION CASE Arrhythmogenic right ventricular cardiomyopathy A healthy, athletic 28-year-old man presented to an (ARVC) is a rare form of inherited cardiomyopathy outside facility with palpitations and exertional dysp- that typically presents in adulthood and is charac- nea. He had no known family history of cardiac dis- terized by ventricular arrhythmias, right ventricular ease. Workup from a referring provider included an structural defects, and a high risk for sudden cardiac abnormal EKG with possible epsilon waves, abnormal death.1 It is estimated that ARVC affects approx- echocardiogram demonstrating severely dilated right imately 1:2000-1:5000 people.2 In contrast, atrial atrium and right ventricle, and an abnormal Holter mon- septal defects (ASDs) account for 25–30% of con- itor demonstrating 7 beats of non-sustained ventricular genital heart defects diagnosed in adulthood.3 Atrial tachycardia. He was initially diagnosed with ARVC. septal defects often expand over time and may cause The patient’s workup in our facility included an complications, like arrhythmias, paradoxical embo- ECG, transthoracic echocardiogram (TTE) followed lization, heart failure, pulmonary hypertension with by transesophageal echocardiogram (TEE).
    [Show full text]