The Combination of IL-12 and IL-18 NK/T-NK Cells Derived with IL-2, IL-15

Total Page:16

File Type:pdf, Size:1020Kb

The Combination of IL-12 and IL-18 NK/T-NK Cells Derived with IL-2, IL-15 Cytokine Production and Killer Activity of NK/T-NK Cells Derived with IL-2, IL-15, or the Combination of IL-12 and IL-18 This information is current as Bernard R. Lauwerys, Nathalie Garot, Jean-Christophe of September 28, 2021. Renauld and Frédéric A. Houssiau J Immunol 2000; 165:1847-1853; ; doi: 10.4049/jimmunol.165.4.1847 http://www.jimmunol.org/content/165/4/1847 Downloaded from References This article cites 31 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/165/4/1847.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2000 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Cytokine Production and Killer Activity of NK/T-NK Cells Derived with IL-2, IL-15, or the Combination of IL-12 and IL-181 Bernard R. Lauwerys,* Nathalie Garot,* Jean-Christophe Renauld,†‡ and Fre´de´ric A. Houssiau2* NK cell populations were derived from murine splenocytes stimulated by IL-2, IL-15, or the combination of IL-12 and IL-18. Whereas NK cells derived with the latter cytokines consisted of an homogeneous population of NK cells (DX5؉CD3؊), those .(derived with IL-2 or IL-15 belonged to two different populations, namely NK cells (DX5؉CD3؊) and T-NK cells (DX5؉CD3؉ Among NK cells, only those derived with IL-12/IL-18 produced detectable levels of cytokines, namely IFN-␥, IL-10, and IL-13 (with the exception of IL-13 production by NK cells derived with IL-2). As for T-NK cells, IL-2-stimulated cells produced a wide Downloaded from range of cytokines, including IL-4, IL-5, IL-9, IL-10, and IL-13, but no IFN-␥, whereas IL-15-derived T-NK cells failed to produce any cytokine. Switch-culture experiments indicated that T-NK cells derived in IL-2 and further stimulated with IL-12/IL-18 produced IFN-␥ and higher IL-13 levels. Next, we observed that NK/T-NK cell populations exerted distinct effects on Ig produc- tion by autologous splenocytes according to the cytokines with which they were derived. Thus, addition of NK cells derived in IL-12/IL-18 inhibited Ig production and induced strong cytotoxicity against splenocytes, whereas addition of NK or T-NK cells grown in IL-2 or IL-15 did not. Experiments performed in IFN-␥R knockout mice demonstrated that IFN-␥ was not involved in http://www.jimmunol.org/ the killer activity of IL-12/IL-18-derived NK cells. The hypothesis that their cytotoxic activity was related to the induction of target apoptosis was confirmed on murine A20 lymphoma cells. Experiments performed in MRL/lpr mice indicated that IL-12/IL-18- derived NK cells displayed their distinct killer activity through a Fas-independent pathway. Finally, perforin was much more expressed in IL-12/IL-18-derived NK cells as compared with IL-2- or IL-15-derived NK cells, an observation that might explain their unique cytotoxicity. The Journal of Immunology, 2000, 165: 1847–1853. atural killer cells are thought to play a critical role in the have indicated that IL-15, but not IL-2, is required for NK cell defense mechanisms against pathogens and transformed ontogeny. Thus, mice genetically deficient for the IL-2R ␥-chain by guest on September 28, 2021 N cells. They display MHC-unrestricted cytotoxicity and gene, involved in IL-2 and IL-15 signaling pathways, lack NK produce various cytokines, such as IFN-␥ and TNF-␣, that further cells (16), whereas IL-2-KO mice have NK cells, although their enhance their cytotoxic effects and contribute to modulate both function is impaired (17, 18). The important role of IL-12 and innate and acquired immune responses. Thus, IFN-␥ production IL-18 as NK cell-activating factors was confirmed by the obser- by NK cells may skew immune responses toward a Th1 pattern, vation that IL-18- and IL-12-deficient mice displayed impaired NK in particular during infection with Listeria monocytogenes (1). cell activity (19). Similarly, IL-5 production by NK cells was shown to contribute We and others recently unmasked a striking synergy between to the eosinophilic reaction in a mouse model of allergic IL-12 and IL-18 for the proliferation and activation of murine NK inflammation (2). cells (20, 21). NK cells derived with the latter cytokines consisted The proliferation and activation of NK cells are controlled by of a homogeneous population, whereas those derived with IL-2 or cytokines such as IL-2 (3, 4), IL-12 (5, 6), IL-15 (7–9), and IL-18 IL-15 belonged to two different populations, namely NK and (10–15). Interestingly, observations made in knockout (KO)3 mice T-NK cells, the latter expressing both NK and T cell surface mark- ers. Interestingly, NK cells stimulated with IL-12/IL-18 secreted large amounts of IFN-␥, whereas NK cells grown in IL-2 or IL-15 *Rheumatology and †Experimental Medicine Units, Christian de Duve Institute of Cellular Pathology, Universite´catholique de Louvain, Brussels, Belgium; and ‡Lud- did not. This observation prompted us to further compare the func- wig Institute for Cancer Research, Brussels, Belgium tional characteristics of NK/T-NK cells derived in IL-2, IL-15, or Received for publication November 12, 1999. Accepted for publication May IL-12/IL-18. 31, 2000. Here, we describe 1) that murine NK and T-NK cell populations The costs of publication of this article were defrayed in part by the payment of page display distinct cytokine production profiles according to the charges. This article must therefore be hereby marked advertisement in accordance growth factors they are derived and stimulated with and 2) that with 18 U.S.C. Section 1734 solely to indicate this fact. IL-12/IL-18-derived NK cells exert a unique killer activity com- 1 This work was supported in part by grants from the Centre de Recherche Interuni- versitaire en Vaccinologie; the Fonds National de la Recherche Scientifique et Me´di- pared with NK cells derived in IL-2 or IL-15. cale; the Belgian Federal Service for Scientific, Technical, and Cultural Affairs; the Ope´ration Te´le´vie; and the Actions de Recherche Concerte´es (Communaute´Franc¸aise Materials and Methods de Belgique, Direction de la Recherche Scientifique). J.-C.R. is a Research Associate with the Fonds National de la Recherche Scientifique, Belgium. Cytokines and Abs 2 Address correspondence and reprint requests to Dr. Frederic A. Houssiau, Service Murine rIL-18 was purchased from Peprotech EC (London, U.K.). Murine de Rhumatologie UCL 5390, Universite´catholique de Louvain, Avenue Hippocrate, rIL-12 and human rIL-15 (which is active on murine cells) were obtained 10 B-1200 Brussels, Belgium. E-mail address: [email protected] from R&D Systems Europe (Abingdon, U.K.). Human rIL-2 was pur- 3 Abbreviations used in this paper: KO, knockout; FasL, Fas ligand. chased from Eurocetus (Chiron, Amsterdam, The Netherlands), and murine Copyright © 2000 by The American Association of Immunologists 0022-1767/00/$02.00 1848 CYTOKINE PRODUCTION AND KILLER ACTIVITY OF NK/T-NK CELLS rIFN-␥ was a kind gift from Dr. W. Fiers (University of Ghent, Ghent, 51Cr release Ϫ minimal 51Cr release (targets alone)]/[maximal 51Cr release Belgium). The following cytokine concentrations were used: 1 ng/ml for (targets in 1% Triton) Ϫ minimal 51Cr release]) ϫ 100. IL-12; 100 ng/ml for IL-18; 50 ng/ml for IL-15 (except if otherwise indi- cated); 100 U/ml for IL-2; and 100 ng/ml for IFN-␥. Anti-Fas ligand (FasL) Annexin V labeling assays mAb was purchased from PharMingen (San Diego, CA) and used at a 4 concentration of 20 ␮g/ml. An Armenian hamster IgG1 purchased from Purified NK cells were seeded at 1 ϫ 10 /well in U-shaped microtiter 5 PharMingen (20 ␮g/ml) was used as isotype-matched control. plates with 1 ϫ 10 A20 cells. After 24 h, cells were tested for apoptosis by a 15-min incubation with FITC-conjugated annexin V (Genzyme Animals and cellular preparations Diagnostics, Cambridge, MA; 0.5 ␮g/ml) and propidium iodide (Sigma, 1 ␮g/ml) in HEPES buffer (10 mM HEPES-NaOH (pH 7.4), 150 mM ϫ ␥ (NZB NZW)F1 hybrids (BWF1), C57BL/6, 129, and IFN- R-KO 129 NaCl, 5 mM KCl, 1 mM MgCl2, and 1.8 mM CaCl2) before being analyzed mice were bred in our animal facility. The latter animals, initially derived by flow cytometry. by Dr. S. Huang and Dr. M. Aguet (22), were obtained through the courtesy of Dr. F. Brombacher (Max Planck Institute for Immunobiology, Freiburg, RNA extraction and RT-PCR analyses Germany). MRL/lpr mice were purchased from Harlan (Oxon, U.K.). For most experiments, we used BWF1 spleen cells that spontaneously produce Purified NK and T-NK cells were lyzed in TriPur (Boehringer Mannheim, Mann- huge amounts of Ig.
Recommended publications
  • Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus
    Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus by Seth G Thacker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2011 Doctoral Committee: Associate Professor Mariana J. Kaplan, Chair Professor David A. Fox Professor Alisa E. Koch Professor Matthias Kretzler Professor Nicholas W. Lukacs Associate Professor Daniel T. Eitzman © Seth G Thacker 2011 Sharon, this work is dedicated to you. This achievement is as much yours as it is mine. Your support through all six years of this Ph.D. process has been incredible. You put up with my countless miscalculations on when I would finish experiments, and still managed to make me and our kids feel loved and special. Without you this would have no meaning. Sharon, you are the safe harbor in my life. ii Acknowledgments I have been exceptionally fortunate in my time here at the University of Michigan. I have been able to interact with so many supportive people over the years. I would like to express my thanks and admiration for my mentor. Mariana has taught me so much about writing, experimental design and being a successful scientist in general. I could never have made it here without her help. I would also like to thank Mike Denny. He had a hand in the beginning of all of my projects in one way or another, and was always quick and eager to help in whatever way he could. He really made my first year in the lab successful.
    [Show full text]
  • Interleukin-18 in Health and Disease
    International Journal of Molecular Sciences Review Interleukin-18 in Health and Disease Koubun Yasuda 1 , Kenji Nakanishi 1,* and Hiroko Tsutsui 2 1 Department of Immunology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; [email protected] 2 Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-798-45-6573 Received: 21 December 2018; Accepted: 29 January 2019; Published: 2 February 2019 Abstract: Interleukin (IL)-18 was originally discovered as a factor that enhanced IFN-γ production from anti-CD3-stimulated Th1 cells, especially in the presence of IL-12. Upon stimulation with Ag plus IL-12, naïve T cells develop into IL-18 receptor (IL-18R) expressing Th1 cells, which increase IFN-γ production in response to IL-18 stimulation. Therefore, IL-12 is a commitment factor that induces the development of Th1 cells. In contrast, IL-18 is a proinflammatory cytokine that facilitates type 1 responses. However, IL-18 without IL-12 but with IL-2, stimulates NK cells, CD4+ NKT cells, and established Th1 cells, to produce IL-3, IL-9, and IL-13. Furthermore, together with IL-3, IL-18 stimulates mast cells and basophils to produce IL-4, IL-13, and chemical mediators such as histamine. Therefore, IL-18 is a cytokine that stimulates various cell types and has pleiotropic functions. IL-18 is a member of the IL-1 family of cytokines. IL-18 demonstrates a unique function by binding to a specific receptor expressed on various types of cells.
    [Show full text]
  • BAFF Suppresses IL-15 Expression in B Cells
    BAFF Suppresses IL-15 Expression in B Cells Ning Ma, Chen Xing, He Xiao, Youdi He, Gencheng Han, Guojiang Chen, Chunmei Hou, Bernadette Marrero, Yujuan Wang, Shengquan Zhang, Beifen Shen, Yan Li and Renxi This information is current as Wang of September 28, 2021. J Immunol 2014; 192:4192-4201; Prepublished online 26 March 2014; doi: 10.4049/jimmunol.1302132 http://www.jimmunol.org/content/192/9/4192 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/03/26/jimmunol.130213 Material 2.DCSupplemental http://www.jimmunol.org/ References This article cites 39 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/192/9/4192.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BAFF Suppresses IL-15 Expression in B Cells Ning Ma,*,†,1 Chen Xing,*,1 He Xiao,*,1 Youdi He,‡ Gencheng Han,* Guojiang Chen,* Chunmei Hou,* Bernadette Marrero,x Yujuan Wang,{ Shengquan Zhang,‖ Beifen Shen,* Yan Li,* and Renxi Wang* Clinical trials have shown that BAFF inhibitors do not reduce memory B cell levels but can reduce the number of mature B cells.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Discovery of a Novel IL-15 Based Protein with Improved
    www.nature.com/scientificreports OPEN Discovery of a novel IL-15 based protein with improved developability and efcacy for Received: 1 November 2017 Accepted: 30 April 2018 cancer immunotherapy Published: xx xx xxxx Qiyue Hu, Xin Ye, Xiangdong Qu, Dongbing Cui, Lei Zhang, Zhibin Xu, Hong Wan, Lianshan Zhang & Weikang Tao Interleukin-15 (IL-15) can promote both innate and adaptive immune reactions by stimulating CD8+/ CD4+ T cells and natural killer cells (NK) while showing no efect in activating T-regulatory (Treg) cells or inducing activation-associated death among efector T cells and NK cells. Thus, IL-15 is considered as one of the most promising molecules for antitumor immune therapy. To improve the drug-like properties of natural IL-15, we create an IL-15-based molecule, named P22339, with the following characteristics: 1) building a complex of IL-15 and the Sushi domain of IL-15 receptor α chain to enhance the agonist activity of IL-15 via transpresentation; 2) through a rational structure-based design, creating a disulfde bond linking the IL-15/Sushi domain complex with an IgG1 Fc to augment its half-life. P22339 demonstrates excellent developability, pharmacokinetic and pharmacodynamic properties as well as antitumor efcacy in both in vitro assessments and in vivo studies. It signifcantly suppresses tumor growth and metastasis in rodent models, and activates T efector cells and NK cells in cynomolgus monkey. Overall, these data suggest that P22339 has a great potential for cancer immunotherapy. Interleukin 15 (IL-15) is a cytokine of about 12–14 KD discovered by Grabstein et al.
    [Show full text]
  • Human Cytokine Response Profiles
    Comprehensive Understanding of the Human Cytokine Response Profiles A. Background The current project aims to collect datasets profiling gene expression patterns of human cytokine treatment response from the NCBI GEO and EBI ArrayExpress databases. The Framework for Data Curation already hosted a list of candidate datasets. You will read the study design and sample annotations to select the relevant datasets and label the sample conditions to enable automatic analysis. If you want to build a new data collection project for your topic of interest instead of working on our existing cytokine project, please read section D. We will explain the cytokine project’s configurations to give you an example on creating your curation task. A.1. Cytokine Cytokines are a broad category of small proteins mediating cell signaling. Many cell types can release cytokines and receive cytokines from other producers through receptors on the cell surface. Despite some overlap in the literature terminology, we exclude chemokines, hormones, or growth factors, which are also essential cell signaling molecules. Meanwhile, we count two cytokines in the same family as the same if they share the same receptors. In this project, we will focus on the following families and use the member symbols as standard names (Table 1). Family Members (use these symbols as standard cytokine names) Colony-stimulating factor GCSF, GMCSF, MCSF Interferon IFNA, IFNB, IFNG Interleukin IL1, IL1RA, IL2, IL3, IL4, IL5, IL6, IL7, IL9, IL10, IL11, IL12, IL13, IL15, IL16, IL17, IL18, IL19, IL20, IL21, IL22, IL23, IL24, IL25, IL26, IL27, IL28, IL29, IL30, IL31, IL32, IL33, IL34, IL35, IL36, IL36RA, IL37, TSLP, LIF, OSM Tumor necrosis factor TNFA, LTA, LTB, CD40L, FASL, CD27L, CD30L, 41BBL, TRAIL, OPGL, APRIL, LIGHT, TWEAK, BAFF Unassigned TGFB, MIF Table 1.
    [Show full text]
  • Usefulness of IL-21, IL-7, and IL-15 Conditioned Media for Expansion of Antigen-Specific CD8+ T Cells from Healthy Donor-Pbmcs Suitable for Immunotherapy
    Cellular Immunology 360 (2021) 104257 Contents lists available at ScienceDirect Cellular Immunology journal homepage: www.elsevier.com/locate/ycimm Research paper Usefulness of IL-21, IL-7, and IL-15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy Julian´ A. Chamucero-Millares a,b, David A. Bernal-Est´evez b, Carlos A. Parra-Lopez´ a,* a Immunology and Translational Medicine Research Group, Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogota,´ South-America, Colombia b Immunology and Clinical Oncology Research Group, Fundacion´ Salud de los Andes, Calle 44 #58-05, Bogota,´ South-America, Colombia ARTICLE INFO ABSTRACT Keywords: Clonal anergy and depletion of antigen-specific CD8+ T cells are characteristics of immunosuppressed patients Antigen-specific T cells such as cancer and post-transplant patients. This has promoted translational research on the adoptive transfer of Monocyte-derived dendritic cells T cells to restore the antigen-specific cellular immunity in these patients. In the present work, we compared the Dendritic cell-based immunotherapy capability of PBMCs and two types of mature monocyte-derived DCs (moDCs) to prime and to expand ex-vivo Adoptive cell transfer antigen-specific CD8+ T cells using culture conditioned media supplemented with IL-7, IL-15, and IL-21. The Cancer immunotherapy Viral immunity data obtained suggest that protocols involving moDCs are as efficient as PBMCs-based cultures in expanding CD8 T cell antigen-specific CD8+ T cell to ELA and CMV model epitopes. These three gamma common chain cytokines Immunological memory promote the expansion of naïve-like and central memory CD8+ T cells in PBMCs-based cultures and the expansion of effector memory T cells when moDCs were used.
    [Show full text]
  • IL-15 Triggers an Antiapoptotic Pathway in Human Intraepithelial Lymphocytes That Is a Potential New Target in Celiac Disease
    IL-15 triggers an antiapoptotic pathway in human intraepithelial lymphocytes that is a potential new target in celiac disease– associated inflammation and lymphomagenesis Georgia Malamut, … , Nadine Cerf-Bensussan, Bertrand Meresse J Clin Invest. 2010;120(6):2131-2143. https://doi.org/10.1172/JCI41344. Research Article Gastroenterology Enteropathy-associated T cell lymphoma is a severe complication of celiac disease (CD). One mechanism suggested to underlie its development is chronic exposure of intraepithelial lymphocytes (IELs) to potent antiapoptotic signals initiated by IL-15, a cytokine overexpressed in the enterocytes of individuals with CD. However, the signaling pathway by which IL- 15 transmits these antiapoptotic signals has not been firmly established. Here we show that the survival signals delivered by IL-15 to freshly isolated human IELs and to human IEL cell lines derived from CD patients with type II refractory CD (RCDII) — a clinicopathological entity considered an intermediary step between CD and enteropathy-associated T cell lymphoma — depend on the antiapoptotic factors Bcl-2 and/or Bcl-xL. The signals also required IL-15Rβ, Jak3, and STAT5, but were independent of PI3K, ERK, and STAT3. Consistent with these data, IELs from patients with active CD and RCDII contained increased amounts of Bcl-xL, phospho-Jak3, and phospho-STAT5. Furthermore, incubation of patient duodenal biopsies with a fully humanized human IL-15–specific Ab effectively blocked Jak3 and STAT5 phosphorylation. In addition, treatment with this Ab induced IEL apoptosis and wiped out the massive IEL accumulation in mice overexpressing human IL-15 in their gut epithelium. Together, our results delineate the IL-15–driven survival pathway in human IELs and demonstrate that IL-15 and its downstream effectors are meaningful therapeutic targets in RCDII.
    [Show full text]
  • Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer
    cancers Review Immunomodulatory Effects of IL-2 and IL-15; Implications for Cancer Immunotherapy Ying Yang 1,2 and Andreas Lundqvist 2,* 1 Department of Respiratory, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 310009, China; [email protected] 2 Department of Oncology-Pathology, Karolinska Institutet, S-17164 Stockholm, Sweden * Correspondence: [email protected] Received: 7 November 2020; Accepted: 26 November 2020; Published: 30 November 2020 Simple Summary: Emerging knowledge of the two type I cytokine family members IL-2 and IL-15 has led to critical therapeutic implications for cancer treatment. Here we discuss the distinct roles of IL-2 and IL-15 in activating various functions of T and NK cells with a particular focus on the signals that contribute to the resistance of immune suppressive factors within the tumor microenvironment. We furthermore highlight efforts to modify these cytokines to amplify their antitumor efficacy while minimizing toxicity. Finally, we summarize the clinical applications of IL-2 and IL-15 in metastatic cancer. Abstract: The type I cytokine family members interleukin-2 (IL-2) and IL-15 play important roles in the homeostasis of innate and adaptive immunity. Although IL-2 and IL-15 receptor complexes activate similar signal transduction cascades, triggering of these receptors results in different functional activities in lymphocytes. While IL-2 expands regulatory T cells and CD4+ helper T cells, IL-15 supports the development of central memory T cells and NK cells. Recent data have provided evidence that IL-2 and IL-15 differ in their ability to activate T and NK cells to resist various forms of immune suppression.
    [Show full text]
  • Differential Effects of Interleukin-2 and Interleukin-15 Versus Interleukin-21 on CD4+ Cutaneous T-Cell Lymphoma Cells
    Research Article Differential Effects of Interleukin-2 and Interleukin-15 versus Interleukin-21 on CD4+ Cutaneous T-Cell Lymphoma Cells Michal Marzec,1 Krzysztof Halasa,1 Monika Kasprzycka,1 Maria Wysocka,2 Xiaobin Liu,1 John W. Tobias,3 Donald Baldwin,1,4 Qian Zhang,1 Niels Odum,5 Alain H. Rook,2 and Mariusz A. Wasik1 Departments of 1Pathology and Laboratory Medicine, 2Dermatology, and 3Biostatistics and 4Penn Microarray Facility, University of Pennsylvania, Philadelphia, Pennsylvania and 5Institute of Medical Microbiology and Immunology, University of Copenhagen, Copenhagen, Denmark Abstract and h chains and, similar to IL-2, also uses the third, IL-15–specific, nontransducing a chain. Consequently, IL-2 and IL-15 share a In this study, we compared the effects of interleukin-2 (IL-2), IL-15, and IL-21 on gene expression, activation of cell number of properties, including stimulation of T-cell, natural killer signaling pathways, and functional properties of cells derived (NK)–cell, and B-cell proliferation and functional maturation, but from CD4+ cutaneous T-cell lymphoma (CTCL). Whereas both certain features unique to each of these cytokines have also been IL-2 and IL-15 modulated, in a CTCL cell line, the expression described (1, 2). IL-21 is also quite pleiotropic and displays a of >1,000 gene transcripts by at least 2-fold, IL-21 up-regulated spectrum of effects on immune cells (3), with its ability to increase <40 genes. All three cytokines induced tyrosine phosphoryla- cytotoxicity of both NK (4) and CD8+ T cells (5) being the best g tion of Jak1 and Jak3 in CTCL cell lines and native leukemic defined.
    [Show full text]
  • Uniprot Nr. Proseek Panel 2,4-Dienoyl-Coa Reductase, Mitochondrial
    Protein Name (Short Name) Uniprot Nr. Proseek Panel 2,4-dienoyl-CoA reductase, mitochondrial (DECR1) Q16698 CVD II 5'-nucleotidase (5'-NT) P21589 ONC II A disintegrin and metalloproteinase with thrombospondin motifs 13 (ADAM-TS13) Q76LX8 CVD II A disintegrin and metalloproteinase with thrombospondin motifs 15 (ADAM-TS 15) Q8TE58 ONC II Adenosine Deaminase (ADA) P00813 INF I ADM (ADM) P35318 CVD II ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase 1 (CD38) P28907 NEU I Agouti-related protein (AGRP) O00253 CVD II Alpha-2-macroglobulin receptor-associated protein (Alpha-2-MRAP) P30533 NEU I Alpha-L-iduronidase (IDUA) P35475 CVD II Alpha-taxilin (TXLNA) P40222 ONC II Aminopeptidase N (AP-N) P15144 CVD III Amphiregulin (AR) P15514 ONC II Angiopoietin-1 (ANG-1) Q15389 CVD II Angiopoietin-1 receptor (TIE2) Q02763 CVD II Angiotensin-converting enzyme 2 (ACE2) Q9BYF1 CVD II Annexin A1 (ANXA1) P04083 ONC II Artemin (ARTN) Q5T4W7 INF I Axin-1 (AXIN1) O15169 INF I Azurocidin (AZU1 P20160 CVD III BDNF/NT-3 growth factors receptor (NTRK2) Q16620 NEU I Beta-nerve growth factor (Beta-NGF) P01138 NEU I, INF I Bleomycin hydrolase (BLM hydrolase) Q13867 CVD III Bone morphogenetic protein 4 (BMP-4) P12644 NEU I Bone morphogenetic protein 6 (BMP-6) P22004 CVD II Brain-derived neurotrophic factor (BDNF) P23560 NEU I, INF I Brevican core protein (BCAN) Q96GW7 NEU I Brorin (VWC2) Q2TAL6 NEU I Brother of CDO (Protein BOC) Q9BWV1 CVD II Cadherin-3 (CDH3) P22223 NEU I Cadherin-5 (CDH5) P33151 CVD III Cadherin-6 (CDH6) P55285 NEU I Carbonic anhydrase 5A, mitochondrial
    [Show full text]
  • Supplemental Table S10. Differentially Expressed Interleukins Comparing SARS-Cov-2 Versus Medium
    Supplemental Table S10. Differentially expressed interleukins comparing SARS-CoV-2 versus medium ProbeName p ([SARS-CoV-2]Regulation Vs [Medium])FC ([SARS-CoV-2] ([SARS-CoV-2]GeneSymbol Vs Vs [Medium]) [Medium])Description A_33_P3211608 3,97E-02 up 2,974933 IL1RL1 Homo sapiens interleukin 1 receptor-like 1 (IL1RL1), transcript variant 4, non-coding RNA [NR_104167] A_23_P17053 6,39262E-05 up 6,132556 IL36G Homo sapiens interleukin 36, gamma (IL36G), transcript variant 1, mRNA [NM_019618] A_33_P3339625 1,17303E-05 up 16,473091 IL17C Homo sapiens interleukin 17C (IL17C), mRNA [NM_013278] A_33_P3243230 1,76904E-07 up 16,647413 HSINTLK8M interleukin 8 {Homo sapiens} (exp=-1; wgp=0; cg=0), partial (97%) [THC2544321] A_32_P223777 0,00139653 up 1,9878159 IL6ST Homo sapiens interleukin 6 signal transducer (IL6ST), transcript variant 1, mRNA [NM_002184] A_23_P76078 0,045698304 up 1,8592229 IL23A Homo sapiens interleukin 23, alpha subunit p19 (IL23A), mRNA [NM_016584] A_23_P336554 0,00221631 up 1,7976834 IL1RAP Homo sapiens interleukin 1 receptor accessory protein (IL1RAP), transcript variant 2, mRNA [NM_134470] A_33_P3251876 0,03411692 up 1,5917065 IL18R1 Homo sapiens interleukin 18 receptor 1 (IL18R1), transcript variant 1, mRNA [NM_003855] A_33_P3211666 0,026903022 up 1,5705488 IL18R1 Homo sapiens interleukin 18 receptor 1 (IL18R1), transcript variant 1, mRNA [NM_003855] A_23_P90925 0,004416244 up 2,695789 IL36B Homo sapiens interleukin 36, beta (IL36B), transcript variant 2, mRNA [NM_173178] A_24_P68783 0,000239245 up 2,834167 IL36RN Homo sapiens
    [Show full text]