A Kernel Test for Three-Variable Interactions with Random Processes

Total Page:16

File Type:pdf, Size:1020Kb

A Kernel Test for Three-Variable Interactions with Random Processes A Kernel Test for Three-Variable Interactions with Random Processes Paul K. Rubenstein123 Kacper P. Chwialkowski3 Arthur Gretton4 1Machine Learning Group, University of Cambridge 2Empirical Inference, MPI for Intelligent Systems, Tübingen, Germany 3Department of Computer Science, University College London 4Gatsby Computational Neuroscience Unit, University College London [email protected], [email protected], [email protected] Abstract seen far less analysis: tests of pairwise dependence have been proposed by Gaisser et al.[2010], Besserve et al. We apply a wild bootstrap method to the Lan- [2013], Chwialkowski et al.[2014], Chwialkowski and caster three-variable interaction measure in or- Gretton[2014], where the first publication also addresses der to detect factorisation of the joint distribution mutual independence of more than two univariate time se- on three variables forming a stationary random ries. The two final works use as their statistic the Hilbert- process, for which the existing permutation boot- Schmidt Indepenence Criterion, a general nonparametric strap method fails. As in the i.i.d. case, the Lan- measure of dependence [Gretton et al., 2005], which ap- caster test is found to outperform existing tests in plies even for multivariate or non-Euclidean variables (such cases for which two independent variables indi- as strings and groups). The asymptotic behaviour and cor- vidually have a weak influence on a third, but that responding test threshold are derived using particular as- when considered jointly the influence is strong. sumptions on the mixing properties of the processes from The main contributions of this paper are twofold: which the observations are drawn. These kernel approaches first, we prove that the Lancaster statistic satis- apply only to pairs of random processes, however. fies the conditions required to estimate the quan- The Lancaster interaction is a signed measure that can be tiles of the null distribution using the wild boot- used to construct a test statistic capable of detecting depen- strap; second, the manner in which this is proved dence between three random variables [Lancaster, 1969, is novel, simpler than existing methods, and can Sejdinovic et al., 2013]. If the joint distribution on the further be applied to other statistics. three variables factorises in some way into a product of a marginal and a pairwise marginal, the Lancaster interaction is zero everywhere. Given observations, this can be used to 1 INTRODUCTION construct a statistical test, the null hypothesis of which is that the joint distribution factorises thus. In the i.i.d. case, Nonparametric testing of independence or interaction be- the null distribution of the test statistic can be estimated tween random variables is a core staple of machine learn- using a permutation bootstrap technique: this amounts to ing and statistics. The majority of nonparametric sta- shuffling the indices of one or more of the variables and re- tistical tests of independence for continuous-valued ran- calculating the test statistic on this bootstrapped data set. dom variables rely on the assumption that the observed When our samples instead exhibit temporal dependence, data are drawn i.i.d. Feuerverger[1993], Gretton et al. shuffling the time indices destroys this dependence and thus [2007], Székely et al.[2007], Gretton and Gyorfi[2010], doing so does not correspond to a valid resample of the test Heller et al.[2013]. The same assumption applies to statistic. tests of conditional dependence, and of multivariate inter- Provided that our data-generating process satisfies some action between variables Zhang et al.[2011], Kankainen technical conditions on the forms of temporal dependence, and Ushakov[1998], Fukumizu et al.[2008], Sejdinovic recent work by Leucht and Neumann[2013], building on et al.[2013], Patra et al.[2015]. For many applications the work of Shao[2010], can come to our rescue. The wild in finance, medicine, and audio signal analysis, however, bootstrap is a method that correctly resamples from the null the i.i.d. assumption is unrealistic and overly restrictive. distribution of a test statistic, subject to certain conditions While many approaches exist for testing interactions be- on both the test statistic and the processes from which the tween time series under strong parametric assumptions observations have been drawn. Kirchgässner et al.[2012], Ledford and Tawn[1996], the problem of testing for general, nonlinear interactions has In this paper we show that the Lancaster interaction test statistic satisfies the conditions required to apply the wild tion4, we evaluate the Lancaster test on synthetic data to bootstrap procedure; moreover, the manner in which we identify cases in which it outperforms existing methods, as prove this is significantly simpler than existing proofs in the well as cases in which it is outperformed. In Section6, we literature of the same property for other kernel test statis- provide proofs of the main results of this paper, in particu- tics [Chwialkowski et al., 2014, Chwialkowski and Gretton, lar the aforementioned novel proof. Further proofs may be 2014]. Previous proofs have relied on the classical theory found in the Supplementary material. of V -statistics to analyse the asymptotic distribution of the kernel statistic. In particular, the Hoeffding decomposition 2 LANCASTER INTERACTION TEST gives an expression for the kernel test statistic as a sum of other V -statistics. Understanding the asymptotic properties 2.1 KERNEL NOTATION of the components of this decomposition is then conceptu- ally tractable, but algebraically extremely painful. More- Throughout this paper we will assume that the kernels over, as the complexity of the test statistic under analysis k; l; m, defined on the domains X , Y and Z respectively, grows, the number of terms that must be considered in this are characteristic [Sriperumbudur et al., 2011], bounded approach grows factorially.1 We conjecture that such anal- and Lipschitz continuous. We describe some notation rel- ysis of interaction statistics of 4 or more variables would in evant to the kernel k; similar notation holds for l and m. practice be unfeasible without automatic theorem provers Recall that µX := EX k(X; ·) 2 Fk is the mean embed- due to the sheer number of terms in the resulting computa- ding [Smola et al., 2007] of the random variable X. Given tions. observations Xi, an estimate of the mean embedding is µ~ = 1 Pn k(X ; ·) k In contrast, in the approach taken in this paper we explic- X n i=1 i . Two modifications of are used itly consider our test statistic to be the norm of a Hilbert in this work: ¯ 0 0 space operator. We exploit a Central Limit Theorem for k(x; x ) = hk(x; ·) − µX ; k(x ; ·) − µX i; (1) Hilbert space valued random variables Dehling et al.[2015] ~ 0 0 to show that our test statistic converges in probability to k(x; x ) = hk(x; ·) − µ~X ; k(x ; ·) − µ~X i (2) the norm of a related population-centred Hilbert space op- These are called the population centered kernel and empir- erator, for which the asymptotic analysis is much simpler. ically centered kernel respectively. Our approach is novel; previous analyses have not, to our knowledge, leveraged the Hilbert space geometry in the 2.2 LANCASTER INTERACTION context of statistical hypothesis testing using kernel V - statistics in this way. The Lancaster interaction on the triple of random vari- ables (X; Y; Z) is defined as the signed measure ∆ P = We propose that our method may in future be applied to L − − − + 2 . This the asymptotic analysis of other kernel statistics. In the PXYZ PXY PZ PXZ PY PX PYZ PX PY PZ measure can be used to detect three-variable interactions. appendix, we provide an application of this method to the It is straightforward to show that if any variable is indepen- Hilbert Schmidt Independence Criterion (HSIC) test statis- dent of the other two (equivalently, if the joint distribution tic, giving a significantly shorter and simpler proof than factorises into a product of marginals in any way), that given in Chwialkowski and Gretton[2014] PXYZ then ∆LP = 0. That is, writing HX = fX ?? (Y; Z)g and The Central Limit Theorem that we use in this paper makes similar for HY and HZ , we have that certain assumptions on the mixing properties of the ran- dom processes from which our data are drawn; as further H _H _H ) ∆ P = 0 (3) progress is made, this may be substituted for more up-to- X Y Z L date theorems that make weaker mixing assumptions. The reverse implication does not hold, and thus no con- clusion about the veracity of the H· can be drawn when OUTLINE: In Section2, we detail the Lancaster interac- ∆LP = 0. Following Sejdinovic et al.[2013], we can con- tion test and provide our main results. These results justify sider the mean embedding of this measure: use of the wild bootstrap to understand the null distribu- Z tion of the test statistic. In Section3, we provide more µL = k(x; ·)l(y; ·)m(z; ·)∆LP (4) detail about the wild bootstrap, prove that its use correctly controls Type I error and give a consistency result. In Sec- n Given an i.i.d. sample (Xi;Yi;Zi)i=1, the norm of the mean embedding µ can be empirically estimated using 1See for example Lemma 8 in Supplementary material A.3 L of Chwialkowski and Gretton[2014]. The proof of this lemma empirically centered kernel matrices. For example, for the requires keeping track of 4! terms; an equivalent approach for the kernel k with kernel matrix Kij = k(Xi;Xj), the empiri- Lancaster test would have 6! terms. Depending on the precise cally centered kernel matrix K~ is given by structure of the statistic, this approach applied to a test involving 4 variables could require as many as 8! = 40320 terms.
Recommended publications
  • Deep Kernel Learning
    Deep Kernel Learning Andrew Gordon Wilson∗ Zhiting Hu∗ Ruslan Salakhutdinov Eric P. Xing CMU CMU University of Toronto CMU Abstract (1996), who had shown that Bayesian neural net- works with infinitely many hidden units converged to Gaussian processes with a particular kernel (co- We introduce scalable deep kernels, which variance) function. Gaussian processes were subse- combine the structural properties of deep quently viewed as flexible and interpretable alterna- learning architectures with the non- tives to neural networks, with straightforward learn- parametric flexibility of kernel methods. ing procedures. Where neural networks used finitely Specifically, we transform the inputs of a many highly adaptive basis functions, Gaussian pro- spectral mixture base kernel with a deep cesses typically used infinitely many fixed basis func- architecture, using local kernel interpolation, tions. As argued by MacKay (1998), Hinton et al. inducing points, and structure exploit- (2006), and Bengio (2009), neural networks could ing (Kronecker and Toeplitz) algebra for automatically discover meaningful representations in a scalable kernel representation. These high-dimensional data by learning multiple layers of closed-form kernels can be used as drop-in highly adaptive basis functions. By contrast, Gaus- replacements for standard kernels, with ben- sian processes with popular kernel functions were used efits in expressive power and scalability. We typically as simple smoothing devices. jointly learn the properties of these kernels through the marginal likelihood of a Gaus- Recent approaches (e.g., Yang et al., 2015; Lloyd et al., sian process. Inference and learning cost 2014; Wilson, 2014; Wilson and Adams, 2013) have (n) for n training points, and predictions demonstrated that one can develop more expressive costO (1) per test point.
    [Show full text]
  • Kernel Methods As Before We Assume a Space X of Objects and a Feature Map Φ : X → RD
    Kernel Methods As before we assume a space X of objects and a feature map Φ : X → RD. We also assume training data hx1, y1i,... hxN , yN i and we define the data matrix Φ by defining Φt,i to be Φi(xt). In this section we assume L2 regularization and consider only training algorithms of the following form. N ∗ X 1 2 w = argmin Lt(w) + λ||w|| (1) w 2 t=1 Lt(w) = L(yt, w · Φ(xt)) (2) We have written Lt = L(yt, w · Φ) rather then L(mt(w)) because we now want to allow the case of regression where we have y ∈ R as well as classification where we have y ∈ {−1, 1}. Here we are interested in methods for solving (1) for D >> N. An example of D >> N would be a database of one thousand emails where for each email xt we have that Φ(xt) has a feature for each word of English so that D is roughly 100 thousand. We are interested in the case where inner products of the form K(x, y) = Φ(x)·Φ(y) can be computed efficiently independently of the size of D. This is indeed the case for email messages with feature vectors with a feature for each word of English. 1 The Kernel Method We can reduce ||w|| while holding L(yt, w · Φ(xt)) constant (for all t) by remov- ing any the component of w orthoganal to all vectors Φ(xt). Without loss of ∗ generality we can therefore assume that w is in the span of the vectors Φ(xt).
    [Show full text]
  • 3.2 the Periodogram
    3.2 The periodogram The periodogram of a time series of length n with sampling interval ∆is defined as 2 ∆ n In(⌫)= (Xt X)exp( i2⇡⌫t∆) . n − − t=1 X In words, we compute the absolute value squared of the Fourier transform of the sample, that is we consider the squared amplitude and ignore the phase. Note that In is periodic with period 1/∆andthatIn(0) = 0 because we have centered the observations at the mean. The centering has no e↵ect for Fourier frequencies ⌫ = k/(n∆), k =0. 6 By mutliplying out the absolute value squared on the right, we obtain n n n 1 ∆ − I (⌫)= (X X)(X X)exp( i2⇡⌫(t s)∆)=∆ γ(h)exp( i2⇡⌫h). n n t − s − − − − t=1 s=1 h= n+1 X X X− Hence the periodogram is nothing else than the Fourier transform of the estimatedb acf. In the following, we assume that ∆= 1 in order to simplify the formula (although for applications the value of ∆in the original time scale matters for the interpretation of frequencies). By the above result, the periodogram seems to be the natural estimator of the spectral density 1 s(⌫)= γ(h)exp( i2⇡⌫h). − h= X1 However, a closer inspection shows that the periodogram has two serious shortcomings: It has large random fluctuations, and also a bias which can be large. We first consider the bias. Using the spectral representation, we see that up to a term which involves E(X ) X t − 2 1 n 2 i2⇡(⌫ ⌫0)t i⇡(n+1)(⌫ ⌫0) In(⌫)= e− − Z(d⌫0) = n e− − Dn(⌫ ⌫0)Z(d⌫0) .
    [Show full text]
  • Lecture 2: Density Estimation 2.1 Histogram
    STAT 535: Statistical Machine Learning Autumn 2019 Lecture 2: Density Estimation Instructor: Yen-Chi Chen Main reference: Section 6 of All of Nonparametric Statistics by Larry Wasserman. A book about the methodologies of density estimation: Multivariate Density Estimation: theory, practice, and visualization by David Scott. A more theoretical book (highly recommend if you want to learn more about the theory): Introduction to Nonparametric Estimation by A.B. Tsybakov. Density estimation is the problem of reconstructing the probability density function using a set of given data points. Namely, we observe X1; ··· ;Xn and we want to recover the underlying probability density function generating our dataset. 2.1 Histogram If the goal is to estimate the PDF, then this problem is called density estimation, which is a central topic in statistical research. Here we will focus on the perhaps simplest approach: histogram. For simplicity, we assume that Xi 2 [0; 1] so p(x) is non-zero only within [0; 1]. We also assume that p(x) is smooth and jp0(x)j ≤ L for all x (i.e. the derivative is bounded). The histogram is to partition the set [0; 1] (this region, the region with non-zero density, is called the support of a density function) into several bins and using the count of the bin as a density estimate. When we have M bins, this yields a partition: 1 1 2 M − 2 M − 1 M − 1 B = 0; ;B = ; ; ··· ;B = ; ;B = ; 1 : 1 M 2 M M M−1 M M M M In such case, then for a given point x 2 B`, the density estimator from the histogram will be n number of observations within B` 1 M X p (x) = × = I(X 2 B ): bM n length of the bin n i ` i=1 The intuition of this density estimator is that the histogram assign equal density value to every points within 1 Pn the bin.
    [Show full text]
  • Density Estimation 36-708
    Density Estimation 36-708 1 Introduction Let X1;:::;Xn be a sample from a distribution P with density p. The goal of nonparametric density estimation is to estimate p with as few assumptions about p as possible. We denote the estimator by pb. The estimator will depend on a smoothing parameter h and choosing h carefully is crucial. To emphasize the dependence on h we sometimes write pbh. Density estimation used for: regression, classification, clustering and unsupervised predic- tion. For example, if pb(x; y) is an estimate of p(x; y) then we get the following estimate of the regression function: Z mb (x) = ypb(yjx)dy where pb(yjx) = pb(y; x)=pb(x). For classification, recall that the Bayes rule is h(x) = I(p1(x)π1 > p0(x)π0) where π1 = P(Y = 1), π0 = P(Y = 0), p1(x) = p(xjy = 1) and p0(x) = p(xjy = 0). Inserting sample estimates of π1 and π0, and density estimates for p1 and p0 yields an estimate of the Bayes rule. For clustering, we look for the high density regions, based on an estimate of the density. Many classifiers that you are familiar with can be re-expressed this way. Unsupervised prediction is discussed in Section 9. In this case we want to predict Xn+1 from X1;:::;Xn. Example 1 (Bart Simpson) The top left plot in Figure 1 shows the density 4 1 1 X p(x) = φ(x; 0; 1) + φ(x;(j=2) − 1; 1=10) (1) 2 10 j=0 where φ(x; µ, σ) denotes a Normal density with mean µ and standard deviation σ.
    [Show full text]
  • Consistent Kernel Mean Estimation for Functions of Random Variables
    Consistent Kernel Mean Estimation for Functions of Random Variables , Carl-Johann Simon-Gabriel⇤, Adam Scibior´ ⇤ †, Ilya Tolstikhin, Bernhard Schölkopf Department of Empirical Inference, Max Planck Institute for Intelligent Systems Spemanstraße 38, 72076 Tübingen, Germany ⇤ joint first authors; † also with: Engineering Department, Cambridge University cjsimon@, adam.scibior@, ilya@, [email protected] Abstract We provide a theoretical foundation for non-parametric estimation of functions of random variables using kernel mean embeddings. We show that for any continuous function f, consistent estimators of the mean embedding of a random variable X lead to consistent estimators of the mean embedding of f(X). For Matérn kernels and sufficiently smooth functions we also provide rates of convergence. Our results extend to functions of multiple random variables. If the variables are dependent, we require an estimator of the mean embedding of their joint distribution as a starting point; if they are independent, it is sufficient to have separate estimators of the mean embeddings of their marginal distributions. In either case, our results cover both mean embeddings based on i.i.d. samples as well as “reduced set” expansions in terms of dependent expansion points. The latter serves as a justification for using such expansions to limit memory resources when applying the approach as a basis for probabilistic programming. 1 Introduction A common task in probabilistic modelling is to compute the distribution of f(X), given a measurable function f and a random variable X. In fact, the earliest instances of this problem date back at least to Poisson (1837). Sometimes this can be done analytically.
    [Show full text]
  • Density and Distribution Estimation
    Density and Distribution Estimation Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 1 Copyright Copyright c 2017 by Nathaniel E. Helwig Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 2 Outline of Notes 1) PDFs and CDFs 3) Histogram Estimates Overview Overview Estimation problem Bins & breaks 2) Empirical CDFs 4) Kernel Density Estimation Overview KDE basics Examples Bandwidth selection Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 3 PDFs and CDFs PDFs and CDFs Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 4 PDFs and CDFs Overview Density Functions Suppose we have some variable X ∼ f (x) where f (x) is the probability density function (pdf) of X. Note that we have two requirements on f (x): f (x) ≥ 0 for all x 2 X , where X is the domain of X R X f (x)dx = 1 Example: normal distribution pdf has the form 2 1 − (x−µ) f (x) = p e 2σ2 σ 2π + which is well-defined for all x; µ 2 R and σ 2 R . Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 5 PDFs and CDFs Overview Standard Normal Distribution If X ∼ N(0; 1), then X follows a standard normal distribution: 1 2 f (x) = p e−x =2 (1) 2π 0.4 ) x ( 0.2 f 0.0 −4 −2 0 2 4 x Nathaniel E.
    [Show full text]
  • Recurrent Kernel Networks
    Recurrent Kernel Networks Dexiong Chen Laurent Jacob Inria∗ CNRSy [email protected] [email protected] Julien Mairal Inria∗ [email protected] Abstract Substring kernels are classical tools for representing biological sequences or text. However, when large amounts of annotated data are available, models that allow end-to-end training such as neural networks are often preferred. Links between recurrent neural networks (RNNs) and substring kernels have recently been drawn, by formally showing that RNNs with specific activation functions were points in a reproducing kernel Hilbert space (RKHS). In this paper, we revisit this link by generalizing convolutional kernel networks—originally related to a relaxation of the mismatch kernel—to model gaps in sequences. It results in a new type of recurrent neural network which can be trained end-to-end with backpropagation, or without supervision by using kernel approximation techniques. We experimentally show that our approach is well suited to biological sequences, where it outperforms existing methods for protein classification tasks. 1 Introduction Learning from biological sequences is important for a variety of scientific fields such as evolution [8] or human health [16]. In order to use classical statistical models, a first step is often to map sequences to vectors of fixed size, while retaining relevant features for the considered learning task. For a long time, such features have been extracted from sequence alignment, either against a reference or between each others [3]. The resulting features are appropriate for sequences that are similar enough, but they become ill-defined when sequences are not suited to alignment.
    [Show full text]
  • Nonparametric Density Estimation Histogram
    Nonparametric Density Estimation Histogram iid Data: X1; : : : ; Xn » P where P is a distribution with density f(x). Histogram estimator Aim: Estimation of density f(x) For constants a0 and h, let ak = a0 + k h and Parametric density estimation: Hk = # Xi Xi 2 (ak¡1; ak] © ¯ ª ± Fit parametric model ff(xj)j 2 £g to data à parameter estimate ^ ¯ be the number of observations in the kth interval (ak¡1; ak]. Then ^ ± Estimate f(x) by f(xj) n ^ 1 f (x) = Hk 1 k¡ k (x) ± Problem: Choice of suitable model à danger of mis¯ts hist hn (a 1;a ] kP=1 ± Complex models (eg mixtures) are di±cult to ¯t is the histogram estimator of f(x). Nonparametric density estimation: Advantages: ± Few assumptions (eg density is smooth) ± Easy to compute ± Exploratory tool Disadvantages: ± Sensitive in choice of o®set a Example: Velocities of galaxies 0 ± Nonsmooth estimator ± Velocities in km/sec of 82 galaxies from 6 well-separated conic sections of an un¯lled survey of the Corona Borealis region. 0.54 0.5 0.56 0.45 0.48 0.4 ± Multimodality is evidence for voids and superclusters in the far uni- 0.40 0.36 0.3 0.32 verse. 0.27 0.24 Density Density 0.2 Density 0.18 0.16 0.1 0.09 0.08 0.00 0.0 0.00 0.25 Kernel estimate (h=0.814) 1 2 3 4 5 6 0.9 1.9 2.9 3.9 4.9 5.9 0.8 1.8 2.8 3.8 4.8 5.8 Kernel estimate (h=0.642) Duration Duration Duration Normal mixture model (k=4) 0.5 0.20 0.56 0.56 0.48 0.48 0.4 0.15 0.40 0.40 0.3 0.32 0.32 Density Density 0.24 Density 0.24 Density 0.2 0.10 0.16 0.16 0.1 0.08 0.08 0.05 0.00 0.00 0.0 0.7 1.7 2.7 3.7 4.7 5.7 0.6 1.6 2.6 3.6 4.6 5.6 1 2 3 4 5 Duration Duration Duration 0.00 0 10 20 30 40 Five shifted histograms with bin width 0.5 and the averaged histogram, for the duration of eruptions of Velocity of galaxy (1000km/s) the Old Faithful geyser.
    [Show full text]
  • APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation
    APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation Walter Zucchini October 2003 Contents 1 Density Estimation 2 1.1 Introduction . 2 1.1.1 The probability density function . 2 1.1.2 Non–parametric estimation of f(x) — histograms . 3 1.2 Kernel density estimation . 3 1.2.1 Weighting functions . 3 1.2.2 Kernels . 7 1.2.3 Densities with bounded support . 8 1.3 Properties of kernel estimators . 12 1.3.1 Quantifying the accuracy of kernel estimators . 12 1.3.2 The bias, variance and mean squared error of fˆ(x) . 12 1.3.3 Optimal bandwidth . 15 1.3.4 Optimal kernels . 15 1.4 Selection of the bandwidth . 16 1.4.1 Subjective selection . 16 1.4.2 Selection with reference to some given distribution . 16 1.4.3 Cross–validation . 18 1.4.4 ”Plug–in” estimator . 19 1.4.5 Summary and extensions . 19 1 Chapter 1 Density Estimation 1.1 Introduction 1.1.1 The probability density function The probability distribution of a continuous–valued random variable X is conventionally described in terms of its probability density function (pdf), f(x), from which probabilities associated with X can be determined using the relationship Z b P (a · X · b) = f(x)dx : a The objective of many investigations is to estimate f(x) from a sample of observations x1; x2; :::; xn . In what follows we will assume that the observations can be regarded as independent realizations of X. The parametric approach for estimating f(x) is to assume that f(x) is a member of some parametric family of distributions, e.g.
    [Show full text]
  • Regression Discontinuity Design
    Regression Discontinuity Design Marcelo Coca Perraillon University of Chicago May 13 & 18, 2015 An updated version including nonparametric estimation and code is available here: https://clas.ucdenver.edu/marcelo-perraillon/teaching/health-services- research-methods-i-hsmp-7607 © Marcelo Coca Perraillon, 2021. Please read the entire copyright notice using the link above. 1 / 51 Introduction Plan Overview of RDD Meaning and validity of RDD Several examples from the literature Estimation (where most decisions are made) Discussion of Almond et al (low birth weight) Stata code and data for all examples will be available on Chalk. Email me if you have questions: [email protected] 2 / 51 Introduction Basics Method developed to estimate treatment effects in non-experimental settings Provides causal estimates of treatment effects Good internal validity; some assumptions can be empirically verified Treatment effects are local (LATE) Limits external validity Relatively easy to estimate (like RCT) First application: Thistlethwaite and Campbell (1960) 3 / 51 Introduction Thistlethwaite and Campbell Thistlethwaite and Campbell They studied the impact of merit awards on future academic outcomes Awards allocated based on test scores If a person had a score greater than c, the cutoff point, then she received the award Simple way of analyzing: compare those who received the award to those who didn't. (Why is this the wrong approach?) Confounding: factors that influence the test score are also related to future academic outcomes (income, parents' education, motivation) Thistlethwaite and Campbell realized they could compare individuals just above and below the cutoff point. 4 / 51 Introduction Validity Validity Simple idea: assignment mechanism is known We know that the probability of treatment jumps to 1 if test score > c Assumption is that individuals cannot manipulate with precision their assignment variable (think about the SAT) Key word: precision.
    [Show full text]
  • 6. Density Estimation 1. Cross Validation 2. Histogram 3. Kernel
    6. Density Estimation 6.1 Cross Validation 1. Cross Validation Suppose we observe X1; : : : ; Xn from an unknown density f. Our goal is to estimate f nonparametrically. Finding the best estimator 2. Histogram fn in some sense is equivalent to finding the optimal smoothing 3. Kernel Density Estimation parameter h. b 4. Local Polynomials How to measure the performance of fn? • Risk/Integrated Mean Square Error(IMSE) 5. Higher Dimensions b R(f ; f) = E (L(f ; f)) 6. Mixture Models n n where L(f ; f) = (f (x) − f(x))2dx. 7. Converting Density Estimation Into Regression n n b b • One can find an optimalR estimator that minimizes the risk b b function: fn∗ = argmin R(fn; f); b fn but the risk function isbunknown! b 1 2 Estimation of the Risk function Finding an optimal estimator fn • Use leave-one-out cross validation to estimate the risk function. • E(J(h)) = E(J(h)) = R(h) + cb • One can express the loss function as a function of the smoothing • Theboptimal smoothing parameter parameter h h∗ = argmin J(h) 2 h L(h) = (fn(x) − f(x)) dx Z • Nonparametric estimator f can be expressed as a function of h 2 2 = (fbn(x)) dx − 2 fn(x)f(x)dx + f (x)dx and the best estimator fn∗ can be obtained by Plug-in the Z Z Z b J(h) optimal smoothing parameter b b b • Cross-validation| estimator of the{z risk function }(up to constant) f ∗ = fh∗ 2 2 n b b J(h) = fn(x)dx − f( i)(Xi) n − i=1 Z X b b b t where f( i) is the density estimator obtained after removing i h − observation b 3 4 Theorem 1.
    [Show full text]