JournalofMachineLearningResearch10(2009)1391-1445 Submitted 3/08; Revised 4/09; Published 7/09 A Least-squares Approach to Direct Importance Estimation∗ Takafumi Kanamori
[email protected] Department of Computer Science and Mathematical Informatics Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan Shohei Hido
[email protected] IBM Research Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan Masashi Sugiyama
[email protected] Department of Computer Science Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan Editor: Bianca Zadrozny Abstract We address the problem of estimating the ratio of two probability density functions, which is often referred to as the importance. The importance values can be used for various succeeding tasks such as covariate shift adaptation or outlier detection. In this paper, we propose a new importance estimation method that has a closed-form solution; the leave-one-out cross-validation score can also be computed analytically. Therefore, the proposed method is computationally highly efficient and simple to implement. We also elucidate theoretical properties of the proposed method such as the convergence rate and approximation error bounds. Numerical experiments show that the proposed method is comparable to the best existing method in accuracy, while it is computationally more efficient than competing approaches. Keywords: importance sampling, covariate shift adaptation, novelty detection, regularization path, leave-one-out cross validation 1. Introduction In the context of importance sampling (Fishman, 1996), the ratio of two probability density func- tions is called the importance. The problem of estimating the importance is attracting a great deal of attention these days since the importance can be used for various succeeding tasks such as covariate shift adaptation or outlier detection.