APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation

Total Page:16

File Type:pdf, Size:1020Kb

APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation Walter Zucchini October 2003 Contents 1 Density Estimation 2 1.1 Introduction . 2 1.1.1 The probability density function . 2 1.1.2 Non–parametric estimation of f(x) — histograms . 3 1.2 Kernel density estimation . 3 1.2.1 Weighting functions . 3 1.2.2 Kernels . 7 1.2.3 Densities with bounded support . 8 1.3 Properties of kernel estimators . 12 1.3.1 Quantifying the accuracy of kernel estimators . 12 1.3.2 The bias, variance and mean squared error of fˆ(x) . 12 1.3.3 Optimal bandwidth . 15 1.3.4 Optimal kernels . 15 1.4 Selection of the bandwidth . 16 1.4.1 Subjective selection . 16 1.4.2 Selection with reference to some given distribution . 16 1.4.3 Cross–validation . 18 1.4.4 ”Plug–in” estimator . 19 1.4.5 Summary and extensions . 19 1 Chapter 1 Density Estimation 1.1 Introduction 1.1.1 The probability density function The probability distribution of a continuous–valued random variable X is conventionally described in terms of its probability density function (pdf), f(x), from which probabilities associated with X can be determined using the relationship Z b P (a · X · b) = f(x)dx : a The objective of many investigations is to estimate f(x) from a sample of observations x1; x2; :::; xn . In what follows we will assume that the observations can be regarded as independent realizations of X. The parametric approach for estimating f(x) is to assume that f(x) is a member of some parametric family of distributions, e.g. N(¹; σ2), and then to estimate the parameters of the assumed distribution from the data. For example, fitting a normal distribution leads to the estimator 1 2 fˆ(x) = p e(x¡¹ˆ)=2ˆσ ; x 2 IR ; 2¼σˆ 1 Pn 2 1 Pn 2 where¹ ˆ = n i=1 xi andσ ˆ = n¡1 i=1(xi ¡ ¹ˆ) . This approach has advantages as long as the distributional assumption is correct, or at least is not seriously wrong. It is easy to apply and it yields (relatively) stable estimates. The main disadvantage of the parametric approach is lack of flexibility. Each parametric family of distributions imposes restrictions on the shapes that f(x) can have. For exam- ple the density function of the normal distribution is symmetrical and bell–shaped, and therefore is unsuitable for representing skewed densities or bimodal densities. 2 CHAPTER 1. DENSITY ESTIMATION 3 1.1.2 Non–parametric estimation of f(x) — histograms The idea of the non–parametric approach is to avoid restrictive assumptions about the form of f(x) and to estimate this directly from the data. A well–known non–parametric estimator of the pdf is the histogram. It has the advantage of simplicity but it also has disadvantages, such as lack of continuity. Secondly, in terms of various mathematical measures of accuracy there exist alternative non–parametric estimators that are superior to histograms. To construct a histogram one needs to select a left bound, or starting point, x0, and the bin width, b. The bins are of the form [x0 + (i ¡ 1)b; x0 + ib), i = 1; 2; :::; m. The estimator of f(x) is then given by 1 Number of observations in the same bin as x fˆ(x) = n b More generally one can also use bins of different widths, in which case 1 Number of observations in the same bin as x fˆ(x) = n Width of bin containing x The choice of bins, especially the bin widths, has a substantial effect on the shape and other properties of fˆ(x). This is illustrated in the example that follows. Example 1 We consider a population of 689 of a certain model of new cars. Of interest here is the amount (in DM) paid by the customers for “optional extras”, such as radio, hubcaps, special upholstery, etc. The top histogram in Figure 1.1 relates to the entire population; the bottom histogram is for a random sample of size 10 from the population. Figure 1.2 shows three histogram estimates of f(x) for the sample, for different bin widths. Note that the estimates are piecewise constant and that they are strongly influenced by the choice of bin width. The bottom right hand graph is an example of a so–called kernel estimator of f(x). We will be examining such estimations in more detail. 1.2 Kernel density estimation 1.2.1 Weighting functions From the definition of the pdf, f(x), of a random variable, X, one has that Zx+h P (x ¡ h < X < x + h) = f(t)dt ¼ 2hf(x) x¡h CHAPTER 1. DENSITY ESTIMATION 4 Histogram of total expenditure (population of 689 cars) 0.20 0.15 0.10 0.05 Density 0.00 0 10 20 30 40 1000 DM Histogram of total expenditure (sample of 10 cars) 0.20 0.15 0.10 0.05 Density 0.00 0 10 20 30 40 1000 DM Figure 1.1: Histogram for all cars in the population and for a random sample of size n = 10. Histogram of samp Histogram of samp 0.05 0.08 0.04 0.06 0.03 0.04 0.02 Density 0.01 Density 0.02 0.00 0.00 0 5 10 15 20 25 30 0 5 10 15 20 25 30 1000 DM 1000 DM Histogram of samp Kernel density estimate 0.10 0.08 0.06 0.06 0.04 0.04 Density 0.02 Density 0.02 0.00 0.00 0 5 10 15 20 25 30 0 5 10 15 20 25 30 1000 DM N = 10 Bandwidth = 2.344 Figure 1.2: Histograms with different bin widths and a kernel estimate of f(x) for the same sample. CHAPTER 1. DENSITY ESTIMATION 5 and hence 1 f(x) ¼ P (x ¡ h < X < x + h) (1.1) 2h The above probability can be estimated by a relative frequency in the sample, hence 1 number of observations in (x ¡ h; x + h) fˆ(x) = (1.2) 2h n An alternative way to represent fˆ(x) is 1 Xn fˆ(x) = w(x ¡ x ; h) ; (1.3) n i i=1 where x1; x2; :::; xn are the observed values and ½ 1 for jtj < h ; w(t; h) = 2h 0 otherwise : It is left to the reader as an exercise to show that fˆ(x) defined in (1.3) has the properties of a pdf, that is fˆ(x) is non–negative for all x, and the area between fˆ(x) and the x–axis is equal to one. 1 One way to think about (1.3) is to imagine that a rectangle (height 2h and width 2h) is placed over each observed point on the x–axis. The estimate of the pdf at a given point is 1=n times the sum of the heights of all the rectangles that cover the point. Figure 1.3 shows fˆ(x) for such rectangular “weighting functions” and for different values of h. We note that the estimates of fˆ(x) in Figure 1.3 fluctuate less as the value of h is increased. By increasing h one increases the width of each rectangle and thereby increases the degree of “smoothing”. Instead of using rectangles in (1.3) one could use other weighting functions, for example triangles: ½ 1 (1 ¡ jtj=h) for jtj < h ; w(t; h) = h 0 otherwise : Again it is left to the reader to check that the resulting fˆ(x) is indeed a pdf. Examples of fˆ(x) based on the triangular weighting function and four different values of h are shown in Figure 1.4. Note that here too larger values of h lead to smoother estimates fˆ(x). Another alternative weighting function is the Gaussian: 1 2 2 w(t; h) = p e¡t =2h ; ¡1 < t < 1 : 2¼h Figure 1.5 shows fˆ(x) based on this weighting function for different values of h. Again the fluctuations in fˆ(x) decrease with increasing h. CHAPTER 1. DENSITY ESTIMATION 6 Rectangular kernel Rectangular kernel bw= 0.5 bw= 1 0.20 0.20 0.15 0.15 0.10 0.10 Density 0.05 Density 0.05 0.00 0.00 0 10 20 30 40 0 10 20 30 40 1000 DM 1000 DM Rectangular kernel Rectangular kernel bw= 2 bw= 4 0.20 0.20 0.15 0.15 0.10 0.10 Density 0.05 Density 0.05 0.00 0.00 0 10 20 30 40 0 10 20 30 40 1000 DM 1000 DM Figure 1.3: Estimates of f(x) for different values of h. The abbreviation bw (short for bandwidth) is used here instead of h. Triangular kernel Triangular kernel bw= 0.5 bw= 1 0.20 0.20 0.15 0.15 0.10 0.10 Density 0.05 Density 0.05 0.00 0.00 0 10 20 30 40 0 10 20 30 40 1000 DM 1000 DM Triangular kernel Triangular kernel bw= 2 bw= 4 0.20 0.20 0.15 0.15 0.10 0.10 Density 0.05 Density 0.05 0.00 0.00 0 10 20 30 40 0 10 20 30 40 1000 DM 1000 DM Figure 1.4: Estimates of f(x) based on triangular weighting functions. CHAPTER 1. DENSITY ESTIMATION 7 Gaussian kernel Gaussian kernel bw= 0.5 bw= 1 0.20 0.20 0.10 0.10 Density Density 0.00 0.00 0 10 20 30 40 0 10 20 30 40 1000 DM 1000 DM Gaussian kernel Gaussian kernel bw= 2 bw= 4 0.20 0.20 0.10 0.10 Density Density 0.00 0.00 0 10 20 30 40 0 10 20 30 40 1000 DM 1000 DM Figure 1.5: Estimates of f(x) based on Gaussian weighting functions.
Recommended publications
  • Nonparametric Density Estimation Using Kernels with Variable Size Windows Anil Ramchandra Londhe Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1980 Nonparametric density estimation using kernels with variable size windows Anil Ramchandra Londhe Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Statistics and Probability Commons Recommended Citation Londhe, Anil Ramchandra, "Nonparametric density estimation using kernels with variable size windows " (1980). Retrospective Theses and Dissertations. 6737. https://lib.dr.iastate.edu/rtd/6737 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. WhDe the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • Deep Kernel Learning
    Deep Kernel Learning Andrew Gordon Wilson∗ Zhiting Hu∗ Ruslan Salakhutdinov Eric P. Xing CMU CMU University of Toronto CMU Abstract (1996), who had shown that Bayesian neural net- works with infinitely many hidden units converged to Gaussian processes with a particular kernel (co- We introduce scalable deep kernels, which variance) function. Gaussian processes were subse- combine the structural properties of deep quently viewed as flexible and interpretable alterna- learning architectures with the non- tives to neural networks, with straightforward learn- parametric flexibility of kernel methods. ing procedures. Where neural networks used finitely Specifically, we transform the inputs of a many highly adaptive basis functions, Gaussian pro- spectral mixture base kernel with a deep cesses typically used infinitely many fixed basis func- architecture, using local kernel interpolation, tions. As argued by MacKay (1998), Hinton et al. inducing points, and structure exploit- (2006), and Bengio (2009), neural networks could ing (Kronecker and Toeplitz) algebra for automatically discover meaningful representations in a scalable kernel representation. These high-dimensional data by learning multiple layers of closed-form kernels can be used as drop-in highly adaptive basis functions. By contrast, Gaus- replacements for standard kernels, with ben- sian processes with popular kernel functions were used efits in expressive power and scalability. We typically as simple smoothing devices. jointly learn the properties of these kernels through the marginal likelihood of a Gaus- Recent approaches (e.g., Yang et al., 2015; Lloyd et al., sian process. Inference and learning cost 2014; Wilson, 2014; Wilson and Adams, 2013) have (n) for n training points, and predictions demonstrated that one can develop more expressive costO (1) per test point.
    [Show full text]
  • Kernel Methods As Before We Assume a Space X of Objects and a Feature Map Φ : X → RD
    Kernel Methods As before we assume a space X of objects and a feature map Φ : X → RD. We also assume training data hx1, y1i,... hxN , yN i and we define the data matrix Φ by defining Φt,i to be Φi(xt). In this section we assume L2 regularization and consider only training algorithms of the following form. N ∗ X 1 2 w = argmin Lt(w) + λ||w|| (1) w 2 t=1 Lt(w) = L(yt, w · Φ(xt)) (2) We have written Lt = L(yt, w · Φ) rather then L(mt(w)) because we now want to allow the case of regression where we have y ∈ R as well as classification where we have y ∈ {−1, 1}. Here we are interested in methods for solving (1) for D >> N. An example of D >> N would be a database of one thousand emails where for each email xt we have that Φ(xt) has a feature for each word of English so that D is roughly 100 thousand. We are interested in the case where inner products of the form K(x, y) = Φ(x)·Φ(y) can be computed efficiently independently of the size of D. This is indeed the case for email messages with feature vectors with a feature for each word of English. 1 The Kernel Method We can reduce ||w|| while holding L(yt, w · Φ(xt)) constant (for all t) by remov- ing any the component of w orthoganal to all vectors Φ(xt). Without loss of ∗ generality we can therefore assume that w is in the span of the vectors Φ(xt).
    [Show full text]
  • MDL Histogram Density Estimation
    MDL Histogram Density Estimation Petri Kontkanen, Petri Myllym¨aki Complex Systems Computation Group (CoSCo) Helsinki Institute for Information Technology (HIIT) University of Helsinki and Helsinki University of Technology P.O.Box 68 (Department of Computer Science) FIN-00014 University of Helsinki, Finland {Firstname}.{Lastname}@hiit.fi Abstract only on finding the optimal bin count. These regu- lar histograms are, however, often problematic. It has been argued (Rissanen, Speed, & Yu, 1992) that reg- We regard histogram density estimation as ular histograms are only good for describing roughly a model selection problem. Our approach uniform data. If the data distribution is strongly non- is based on the information-theoretic min- uniform, the bin count must necessarily be high if one imum description length (MDL) principle, wants to capture the details of the high density portion which can be applied for tasks such as data of the data. This in turn means that an unnecessary clustering, density estimation, image denois- large amount of bins is wasted in the low density re- ing and model selection in general. MDL- gion. based model selection is formalized via the normalized maximum likelihood (NML) dis- To avoid the problems of regular histograms one must tribution, which has several desirable opti- allow the bins to be of variable width. For these irreg- mality properties. We show how this frame- ular histograms, it is necessary to find the optimal set work can be applied for learning generic, ir- of cut points in addition to the number of bins, which regular (variable-width bin) histograms, and naturally makes the learning problem essentially more how to compute the NML model selection difficult.
    [Show full text]
  • 3.2 the Periodogram
    3.2 The periodogram The periodogram of a time series of length n with sampling interval ∆is defined as 2 ∆ n In(⌫)= (Xt X)exp( i2⇡⌫t∆) . n − − t=1 X In words, we compute the absolute value squared of the Fourier transform of the sample, that is we consider the squared amplitude and ignore the phase. Note that In is periodic with period 1/∆andthatIn(0) = 0 because we have centered the observations at the mean. The centering has no e↵ect for Fourier frequencies ⌫ = k/(n∆), k =0. 6 By mutliplying out the absolute value squared on the right, we obtain n n n 1 ∆ − I (⌫)= (X X)(X X)exp( i2⇡⌫(t s)∆)=∆ γ(h)exp( i2⇡⌫h). n n t − s − − − − t=1 s=1 h= n+1 X X X− Hence the periodogram is nothing else than the Fourier transform of the estimatedb acf. In the following, we assume that ∆= 1 in order to simplify the formula (although for applications the value of ∆in the original time scale matters for the interpretation of frequencies). By the above result, the periodogram seems to be the natural estimator of the spectral density 1 s(⌫)= γ(h)exp( i2⇡⌫h). − h= X1 However, a closer inspection shows that the periodogram has two serious shortcomings: It has large random fluctuations, and also a bias which can be large. We first consider the bias. Using the spectral representation, we see that up to a term which involves E(X ) X t − 2 1 n 2 i2⇡(⌫ ⌫0)t i⇡(n+1)(⌫ ⌫0) In(⌫)= e− − Z(d⌫0) = n e− − Dn(⌫ ⌫0)Z(d⌫0) .
    [Show full text]
  • A Least-Squares Approach to Direct Importance Estimation∗
    JournalofMachineLearningResearch10(2009)1391-1445 Submitted 3/08; Revised 4/09; Published 7/09 A Least-squares Approach to Direct Importance Estimation∗ Takafumi Kanamori [email protected] Department of Computer Science and Mathematical Informatics Nagoya University Furocho, Chikusaku, Nagoya 464-8603, Japan Shohei Hido [email protected] IBM Research Tokyo Research Laboratory 1623-14 Shimotsuruma, Yamato-shi, Kanagawa 242-8502, Japan Masashi Sugiyama [email protected] Department of Computer Science Tokyo Institute of Technology 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan Editor: Bianca Zadrozny Abstract We address the problem of estimating the ratio of two probability density functions, which is often referred to as the importance. The importance values can be used for various succeeding tasks such as covariate shift adaptation or outlier detection. In this paper, we propose a new importance estimation method that has a closed-form solution; the leave-one-out cross-validation score can also be computed analytically. Therefore, the proposed method is computationally highly efficient and simple to implement. We also elucidate theoretical properties of the proposed method such as the convergence rate and approximation error bounds. Numerical experiments show that the proposed method is comparable to the best existing method in accuracy, while it is computationally more efficient than competing approaches. Keywords: importance sampling, covariate shift adaptation, novelty detection, regularization path, leave-one-out cross validation 1. Introduction In the context of importance sampling (Fishman, 1996), the ratio of two probability density func- tions is called the importance. The problem of estimating the importance is attracting a great deal of attention these days since the importance can be used for various succeeding tasks such as covariate shift adaptation or outlier detection.
    [Show full text]
  • Lecture 2: Density Estimation 2.1 Histogram
    STAT 535: Statistical Machine Learning Autumn 2019 Lecture 2: Density Estimation Instructor: Yen-Chi Chen Main reference: Section 6 of All of Nonparametric Statistics by Larry Wasserman. A book about the methodologies of density estimation: Multivariate Density Estimation: theory, practice, and visualization by David Scott. A more theoretical book (highly recommend if you want to learn more about the theory): Introduction to Nonparametric Estimation by A.B. Tsybakov. Density estimation is the problem of reconstructing the probability density function using a set of given data points. Namely, we observe X1; ··· ;Xn and we want to recover the underlying probability density function generating our dataset. 2.1 Histogram If the goal is to estimate the PDF, then this problem is called density estimation, which is a central topic in statistical research. Here we will focus on the perhaps simplest approach: histogram. For simplicity, we assume that Xi 2 [0; 1] so p(x) is non-zero only within [0; 1]. We also assume that p(x) is smooth and jp0(x)j ≤ L for all x (i.e. the derivative is bounded). The histogram is to partition the set [0; 1] (this region, the region with non-zero density, is called the support of a density function) into several bins and using the count of the bin as a density estimate. When we have M bins, this yields a partition: 1 1 2 M − 2 M − 1 M − 1 B = 0; ;B = ; ; ··· ;B = ; ;B = ; 1 : 1 M 2 M M M−1 M M M M In such case, then for a given point x 2 B`, the density estimator from the histogram will be n number of observations within B` 1 M X p (x) = × = I(X 2 B ): bM n length of the bin n i ` i=1 The intuition of this density estimator is that the histogram assign equal density value to every points within 1 Pn the bin.
    [Show full text]
  • Density Estimation 36-708
    Density Estimation 36-708 1 Introduction Let X1;:::;Xn be a sample from a distribution P with density p. The goal of nonparametric density estimation is to estimate p with as few assumptions about p as possible. We denote the estimator by pb. The estimator will depend on a smoothing parameter h and choosing h carefully is crucial. To emphasize the dependence on h we sometimes write pbh. Density estimation used for: regression, classification, clustering and unsupervised predic- tion. For example, if pb(x; y) is an estimate of p(x; y) then we get the following estimate of the regression function: Z mb (x) = ypb(yjx)dy where pb(yjx) = pb(y; x)=pb(x). For classification, recall that the Bayes rule is h(x) = I(p1(x)π1 > p0(x)π0) where π1 = P(Y = 1), π0 = P(Y = 0), p1(x) = p(xjy = 1) and p0(x) = p(xjy = 0). Inserting sample estimates of π1 and π0, and density estimates for p1 and p0 yields an estimate of the Bayes rule. For clustering, we look for the high density regions, based on an estimate of the density. Many classifiers that you are familiar with can be re-expressed this way. Unsupervised prediction is discussed in Section 9. In this case we want to predict Xn+1 from X1;:::;Xn. Example 1 (Bart Simpson) The top left plot in Figure 1 shows the density 4 1 1 X p(x) = φ(x; 0; 1) + φ(x;(j=2) − 1; 1=10) (1) 2 10 j=0 where φ(x; µ, σ) denotes a Normal density with mean µ and standard deviation σ.
    [Show full text]
  • Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams
    Journal of Machine Learning Research 20 (2019) 1-49 Submitted 9/18; Revised 4/19; Published 7/19 Nonparametric Estimation of Probability Density Functions of Random Persistence Diagrams Vasileios Maroulas [email protected] Department of Mathematics University of Tennessee Knoxville, TN 37996, USA Joshua L Mike [email protected] Computational Mathematics, Science, and Engineering Department Michigan State University East Lansing, MI 48823, USA Christopher Oballe [email protected] Department of Mathematics University of Tennessee Knoxville, TN 37996, USA Editor: Boaz Nadler Abstract Topological data analysis refers to a broad set of techniques that are used to make inferences about the shape of data. A popular topological summary is the persistence diagram. Through the language of random sets, we describe a notion of global probability density function for persistence diagrams that fully characterizes their behavior and in part provides a noise likelihood model. Our approach encapsulates the number of topological features and considers the appearance or disappearance of those near the diagonal in a stable fashion. In particular, the structure of our kernel individually tracks long persistence features, while considering those near the diagonal as a collective unit. The choice to describe short persistence features as a group reduces computation time while simultaneously retaining accuracy. Indeed, we prove that the associated kernel density estimate converges to the true distribution as the number of persistence diagrams increases and the bandwidth shrinks accordingly. We also establish the convergence of the mean absolute deviation estimate, defined according to the bottleneck metric. Lastly, examples of kernel density estimation are presented for typical underlying datasets as well as for virtual electroencephalographic data related to cognition.
    [Show full text]
  • DENSITY ESTIMATION INCLUDING EXAMPLES Hans-Georg Müller
    DENSITY ESTIMATION INCLUDING EXAMPLES Hans-Georg M¨ullerand Alexander Petersen Department of Statistics University of California Davis, CA 95616 USA In order to gain information about an underlying continuous distribution given a sample of independent data, one has two major options: • Estimate the distribution and probability density function by assuming a finitely- parameterized model for the data and then estimating the parameters of the model by techniques such as maximum likelihood∗(Parametric approach). • Estimate the probability density function nonparametrically by assuming only that it is \smooth" in some sense or falls into some other, appropriately re- stricted, infinite dimensional class of functions (Nonparametric approach). When aiming to assess basic characteristics of a distribution such as skewness∗, tail behavior, number, location and shape of modes∗, or level sets, obtaining an estimate of the probability density function, i.e., the derivative of the distribution function∗, is often a good approach. A histogram∗ is a simple and ubiquitous form of a density estimate, a basic version of which was used already by the ancient Greeks for pur- poses of warfare in the 5th century BC, as described by the historian Thucydides in his History of the Peloponnesian War. Density estimates provide visualization of the distribution and convey considerably more information than can be gained from look- ing at the empirical distribution function, which is another classical nonparametric device to characterize a distribution. This is because distribution functions are constrained to be 0 and 1 and mono- tone in each argument, thus making fine-grained features hard to detect. Further- more, distribution functions are of very limited utility in the multivariate case, while densities remain well defined.
    [Show full text]
  • Consistent Kernel Mean Estimation for Functions of Random Variables
    Consistent Kernel Mean Estimation for Functions of Random Variables , Carl-Johann Simon-Gabriel⇤, Adam Scibior´ ⇤ †, Ilya Tolstikhin, Bernhard Schölkopf Department of Empirical Inference, Max Planck Institute for Intelligent Systems Spemanstraße 38, 72076 Tübingen, Germany ⇤ joint first authors; † also with: Engineering Department, Cambridge University cjsimon@, adam.scibior@, ilya@, [email protected] Abstract We provide a theoretical foundation for non-parametric estimation of functions of random variables using kernel mean embeddings. We show that for any continuous function f, consistent estimators of the mean embedding of a random variable X lead to consistent estimators of the mean embedding of f(X). For Matérn kernels and sufficiently smooth functions we also provide rates of convergence. Our results extend to functions of multiple random variables. If the variables are dependent, we require an estimator of the mean embedding of their joint distribution as a starting point; if they are independent, it is sufficient to have separate estimators of the mean embeddings of their marginal distributions. In either case, our results cover both mean embeddings based on i.i.d. samples as well as “reduced set” expansions in terms of dependent expansion points. The latter serves as a justification for using such expansions to limit memory resources when applying the approach as a basis for probabilistic programming. 1 Introduction A common task in probabilistic modelling is to compute the distribution of f(X), given a measurable function f and a random variable X. In fact, the earliest instances of this problem date back at least to Poisson (1837). Sometimes this can be done analytically.
    [Show full text]
  • Density and Distribution Estimation
    Density and Distribution Estimation Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 1 Copyright Copyright c 2017 by Nathaniel E. Helwig Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 2 Outline of Notes 1) PDFs and CDFs 3) Histogram Estimates Overview Overview Estimation problem Bins & breaks 2) Empirical CDFs 4) Kernel Density Estimation Overview KDE basics Examples Bandwidth selection Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 3 PDFs and CDFs PDFs and CDFs Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 4 PDFs and CDFs Overview Density Functions Suppose we have some variable X ∼ f (x) where f (x) is the probability density function (pdf) of X. Note that we have two requirements on f (x): f (x) ≥ 0 for all x 2 X , where X is the domain of X R X f (x)dx = 1 Example: normal distribution pdf has the form 2 1 − (x−µ) f (x) = p e 2σ2 σ 2π + which is well-defined for all x; µ 2 R and σ 2 R . Nathaniel E. Helwig (U of Minnesota) Density and Distribution Estimation Updated 04-Jan-2017 : Slide 5 PDFs and CDFs Overview Standard Normal Distribution If X ∼ N(0; 1), then X follows a standard normal distribution: 1 2 f (x) = p e−x =2 (1) 2π 0.4 ) x ( 0.2 f 0.0 −4 −2 0 2 4 x Nathaniel E.
    [Show full text]