Optical Properties of Snow in Backscatter

Total Page:16

File Type:pdf, Size:1020Kb

Optical Properties of Snow in Backscatter 574 Journal of Glaciology, Vol. 52, No. 179, 2006 Optical properties of snow in backscatter S. KAASALAINEN,1,2 M. KAASALAINEN,3 T. MIELONEN,1 J. SUOMALAINEN,1 J.I. PELTONIEMI,1 J. NA¨ RA¨ NEN1,4 1Finnish Geodetic Institute, Geodeetinrinne 2, PO Box 15, FIN-02431 Masala, Finland E-mail: [email protected] 2Finnish Meteorological Institute/Arctic Research Center, Ta¨htela¨ntie 62, FIN-99600 Sodankyla¨, Finland 3Department of Mathematics and Statistics, University of Helsinki, PO Box 68, FIN-00014 Helsinki, Finland 4Department of Astronomy, University of Helsinki, PO Box 14, FIN-00014 Helsinki, Finland ABSTRACT. We present an overview and the first systematic results on the backscatter properties of snow samples with different grain properties. During a 2 year study we investigated the effect of the apparent characteristics of the samples on the intensity enhancement in the direction of exact backscatter (retroreflection), using a specific instrument designed for backscatter measurements. We observed that a sharp peak in intensity (the hot spot) occurs for most types of snow, which is not observable with traditional goniometers. The key factors in the peak properties are the temperature (related to the changes in grain structure) and grain shape and size. These results form the basis of a larger backscatter data archive which is being applied in the systematic study and exploitation of ’hot spots’ in remote sensing of natural targets, as well as in the development of airborne laser intensity measurement. 1. INTRODUCTION instruments that observe at, or close to, exact backscatter (e.g. POLDER and HyMap; see Comacho-de-Coca and The optical properties of snow play a major role in remote others, 2004). The most important observational property of sensing of the cryosphere and mapping of icy regions. exact backscatter is that it cannot be reached with Methods for deriving the key factors of snow- and ice-cover goniometers, as in these the detector necessarily blocks variations, such as albedo, metamorphism and grain the light source. However, the effect at zero-angle vicinity characteristics (Grenfell and others, 1994; Fily and others, undoubtedly contains a significant amount of information on 1997, 1998, 1999), are developed for more effective the target material: as Van Albada and Lagendijk (1985) detection of changes in snow cover. Mapping of snow- note, the effect is simply much too sharp to be observed and ice-covered areas provides important indications of without a beam-splitter. climate change, hydrological processes and water resources There are few ground reference data available on natural (Fily and others, 1998; Magagi and Bernier, 2003). hot spots, even though the backscatter effect has been Remote sensing of snow and other land surfaces is based measured systematically for various substances in laboratory on spectral and directional features of light scattered from experiments. Laboratory experiments on backscattering pat- the surfaces (see Fily and others, 1998; Nolin and Liang, terns have been carried out mostly for powders and particles, 2000). The bidirectional reflectance distribution function and applied in the fields of optics, condensed matter physics, (BRDF) describes the directional properties of light re- astronomy and medicine (for more references see Yoon and flected from a surface, and it is used both in directional others, 1993; Shkuratov and others, 2002; Kaasalainen and corrections of, and as a source of information in, remote- others, 2005a). Small-scale laboratory measurements of sensing data (Verstraete and Pinty, 2001, and references natural targets have been made, for example for clumps of therein). Comparisons with models and in situ measure- grass or needles (Hapke and others, 1996). However, a large ments are important for more reliable information to be number of measurements, particularly field measurements derived from remote instruments. Computational studies of made more or less in situ, would be required to understand the directional reflectance of snow are found in Leroux and and exploit better the hot spot signatures and establish a others (1998) and Mishchenko and others (1999). Among remote-sensing ground reference databank. the most recent goniometric experiments of the bidirec- Snow (back)scattering, exact or general, is still a relatively tional reflectance of snow are those by Aoki and others unexplored field. It has been studied mainly for snow (2000), Painter and Dozier (2004) and Peltoniemi and crystals in the atmosphere (e.g. Borovoi and others, 2000) others (2005). and mapping of snow cover at zero phase angle by radar or The increased reflectance at small phase angles (light- microwave, with connections to physical parameters (Fily source–target–detector angle; see Fig. 1) is observed as a ‘hot and others, 1998; Strozzi and Ma¨tzler, 1998; Magagi and spot’ in remote images for targets such as forest and Bernier, 2003). This is essentially the objective in the optical vegetation (Hapke and others, 1996; Comacho-de-Coca regime as well. In astronomy, strong backscatter peaks and others, 2004). The increase is particularly pronounced (called opposition effect in this context) have been observed at zero phase and its immediate vicinity, which is often for numerous ice-covered surfaces (including those with referred to as ‘exact backscattering’ to distinguish it from water ice), such as rings and satellites (Domingue and backward scattering in the same hemisphere in which the Verbiscer, 1997; Poulet and others, 2002). Optical back- light source is placed (also termed retrosolar scattering in scattering of snow on the ground has been addressed in only remote sensing). Backscattering has recently gained more a few studies thus far (Piironen and others, 2000; Shkuratov importance in terrestrial remote sensing, since there are new and others, 2002; Kaasalainen and others, 2003), with a few Downloaded from https://www.cambridge.org/core. 02 Oct 2021 at 18:25:48, subject to the Cambridge Core terms of use. Kaasalainen and others: Optical properties of snow in backscatter 575 peaks observed for some samples. These studies have focused mainly on the effects of impurities. Systematic backscattering experiments are lacking, and no description of snow backscatter, or the key parameters related to it, is available. This lack of information is one of the main incentives for undertaking the present study. Another key factor is that this study makes use of a standard experimental set-up that has been used widely in backscatter studies of materials other than snow. Therefore its use here is a natural extension of these applications. On the theoretical side, there are a number of studies on exact backscattering in both optics and light scattering, so the need to access the zero phase-angle vicinity properly is also important for developing the theoretical methods. Indeed, much of current backscatter theory has remained Fig. 1. The small-angle laser goniometer. Retroreflection from the tentative due to a lack of the systematic experiments needed sample is observed through the beam-splitter by the charge- for building any hypotheses into a theory. In fact, current coupled device (CCD) camera (left). Non-zero phase angles theoretical results and recent experiments have several (source–target–detector) are obtained by rotating the beam-splitter mutual inconsistencies or uncertainties (Nelson and others, (right). The distance from beam-splitter to sample was 12 cm, and from the CCD to the sample 120 cm. 2002), so there is an obvious need for new measurements. Although the backscatter effects are extremely strong, even their basic physical interpretation requires both experimen- tal and theoretical studies. The current physical interpret- charge-coupled device (CCD) detectors in the measurement ation of hot spots is based on shadow hiding in rough of (backscattered) laser intensity (e.g. Yoon and others, surfaces and coherent backscatter, which is a microscopic- 1993; Wiersma and others, 1995; Nelson and others, 2000; scale interference effect (Hapke and others, 1996; Shkuratov Shkuratov and others, 2002). The measurement presented and others, 2002). here is based on these techniques, and has been used This paper presents the results of a 2 year campaign of widely in laser-based backscatter measurement in optics snow backscattering measurements, the first extensive study and related fields for laser intensity measurement and with systematic variation of snow parameters. The existing, standard CCD photometry used in the laboratory and, for well-established techniques for measurement of back- example, in astronomical studies. scattering were applied to snow surfaces to obtain informa- The measurements were made using the small-angle tion on the backscattering properties of snow and to search goniometer constructed particularly for backscattering for the main contributors to snow hot spot. The potential measurements, as shown in Figure 1. A 632.8 nm He–Ne applications to glaciology and snow studies via remote laser was used as a light source. The backscatter geometry is sensing are obvious as airborne laser intensity measurements worked out using a beam-splitter. The sample was placed are under development (Geist and others, 2003; Kaasalainen on a rotator to smooth out the laser speckle and obtain a and others, 2005b). The laser altimetry measurement deals larger sample area as the spot (about 4 mm in diameter) with the retroreflected laser beam, but the intensity moved on the surface. Transmittance filters of 10% and 3% information has not been discussed thus far. The search for were used in front of the light source to keep the signal in a tool for change detection is of primary importance to the linear range in the CCD frame. More detailed glaciology in this context. It is essential to realize that this descriptions of the instrument are provided by Na¨ra¨nen approach is quite feasible even when exact quantitative and others (2004) and Kaasalainen and others (2005a, b). inference of the physical properties of the target is uncertain We modified the original laboratory set-up to be robust due to insufficient theoretical modelling, noisy data, or even enough for field conditions.
Recommended publications
  • LIDAR RTH Collis Stanford Research Institute ABSTRACT Lidar Is An
    LIDAR R. T. H. Collis Stanford Research Institute ABSTRACT Lidar is an optical 'radar' technique employing laser energy. Variations in signal intensity as a function of range provide information on atmospheric constituents, even when these are too tenuous to be normally visible. The theoretical and technical basis of the technique is described and typical values of the atmospheric optical parameters given. The significance of these parameters to atmospheric and meteorological problems is discussed. While the basic technique can provide valuable informa- tion about clouds and other material in the atmosphere, it is not possible to determine particle size and number concentrations precisely. There are also inherent diffi- culties in evaluating lidar observations. Nevertheless, lidar can provide much useful information as is shown by illustrations. These include lidar observations of: cirrus cloud, showing mountain wave motions; stratification in 'clear' air due to the thermal profile near the ground; determinations of low cloud and 'visibility' along an air- field approach path; and finally the motion and internal structure of clouds of tracer materials (insecticide spray and explosion-caused dust) which demonstrate the use of lidar for studying transport and diffusion processes. Lidar is a generic, rather than a specific, technique and thus can be applied in a variety of forms to a wide range of research and operational problems. Research applications include: the investigation of dust in the high atmosphere; studies of air motion and turbulence revealed by cirrus and other clouds; boundary layer phenomena, as shown by variations in turbidity in the mixing layer; turbu- lence and diffusion processes using suitable indicators; and investigations of the effects of cirrus and other particulate 147 LIDAR layers on measurement of radiation in and through the earth's atmosphere.
    [Show full text]
  • Pitch Angle Dependence of Energetic Electron Precipitation: Energy
    Confidential manuscript submitted to JGR 1 Pitch Angle Dependence of Energetic Electron Precipitation: 2 Energy Deposition, Backscatter, and the Bounce Loss Cone 1 2 3 R. A. Marshall and J. Bortnik 1 4 Ann and H. J. Smead Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 5 80309, USA. 2 6 Department of Atmospheric and Oceanic Sciences, University of California Los Angeles, Los Angeles, CA 90095, USA. 7 Key Points: • 8 We characterize energy deposition and atmospheric backscatter of radiation belt 9 electrons as a function of energy and pitch angle • 10 We use these simulations to characterize the bounce loss cone and show that it is 11 energy dependent • 12 The simulated backscatter of precipitation is characterized by field aligned beams 13 of low energies which should be observable Corresponding author: R. A. Marshall, [email protected] –1– Confidential manuscript submitted to JGR 14 Abstract 15 Quantifying radiation belt precipitation and its consequent atmospheric effects re- 16 quires an accurate assessment of the pitch angle distribution of precipitating electrons, as 17 well as knowledge of the dependence of the atmospheric deposition on that distribution. 18 Here, Monte Carlo simulations are used to investigate the effects of the incident electron 19 energy and pitch angle on precipitation for bounce-period time scales, and the implica- 20 tions for both the loss from the radiation belts and the deposition in the upper atmosphere. 21 Simulations are conducted at discrete energies and pitch angles to assess the dependence 22 on these parameters of the atmospheric energy deposition profiles and to estimate the 23 backscattered particle distributions.
    [Show full text]
  • A Layman's Interpretation Guide L-Band and C-Band Synthetic
    A Layman’s Interpretation Guide to L-band and C-band Synthetic Aperture Radar data Version 2.0 15 November, 2018 Table of Contents 1 About this guide .................................................................................................................................... 2 2 Briefly about Synthetic Aperture Radar ......................................................................................... 2 2.1 The radar wavelength .................................................................................................................... 2 2.2 Polarisation ....................................................................................................................................... 3 2.3 Radar backscatter ........................................................................................................................... 3 2.3.1 Sigma-nought .................................................................................................................................................. 3 2.3.2 Gamma-nought ............................................................................................................................................... 3 2.4 Backscatter mechanisms .............................................................................................................. 4 2.4.1 Direct backscatter ......................................................................................................................................... 4 2.4.2 Forward scattering ......................................................................................................................................
    [Show full text]
  • Cumulus Humulis Aerosol Process Study
    OVERVIEW OF THE CUMULUS HUMILIS AEROSOL PROCESSING STUDY BY LARRY K. BERG, CARL M. BERKOWITZ, JOHN A. OGREN, CHRIS A. HOSTETLER, RICHARD A. FERRARE, MANVENDRA K. DUBEY, ELISABETH ANDREWS, RICHARD L. COULTER, JOHNATHAN W. HAIR, JOHN M. HUBBE, YIN-NAN LEE, CLAUDIO MAZZOLENI* JASON OLFERT\ AND STEPHEN R. SPRINGSTON During the summer of 2007, CHAPS investigated changes in the chemical and optical properties of aerosols due to their interaction with shallow cumuli. erosols influence climate directly by scattering framework, the Cumulus Humilis Aerosol Processing and absorbing radiation and indirectly through Study (CHAPS) is a stage 1 activity, that is, a detailed Atheir influence on cloud microphysical and process study. The specific focus of CHAPS was to dynamical properties. The Intergovernmental Panel provide concurrent observations of the chemical com- on Climate Change (IPCC) concluded that the global position of the activated [particles that are currently radiative forcing due to aerosols is large and in gen- serving as cloud condensation nuclei (CCN)] and eral cools the planet (Forster et al. 2007). But the nonactivated aerosols, the scattering and extinction uncertainties in these estimates are also large due to profiles, and detailed aerosol and droplet size spectra our poor understanding of many of the important in the vicinity of Oklahoma City, Oklahoma, during processes related to aerosols and clouds. To address June 2007. this uncertainty, Ghan and Schwartz (2007) proposed Numerous campaigns have examined aerosol an integrated strategy for addressing issues related to properties downwind from large pollution sources, aerosols and aerosol processes. Using this conceptual including the Megacity Initiative: Local and Global AFFILIATIONS: BERG, BERKOWITZ, AND HUBBE—Pacific Northwest "CURRENT AFFILIATION: The University of Alberta, National Laboratory, Richland, Washington; OGREN—NOAA Edmonton, Alberta, Canada Earth System Research Laboratory, Boulder, Colorado; HOSTETLER, CORRESPONDING AUTHOR: Dr.
    [Show full text]
  • Forward and Backscattering Measurements of Rainfall Over a Path at the Gpm Frequencies
    FORWARD AND BACKSCATTERING MEASUREMENTS OF RAINFALL OVER A PATH AT THE GPM FREQUENCIES Rafael F. Rincon1, Robert Meneghini1, and Roger Lang2 1NASA/Goddard Space Flight Center, Greenbelt, MD 2The George Washington University, Washington, DC 1. INTRODUCTION attenuations, or reflectivity factors, at two frequencies are linearly independent. This paper describes the theoretical basis and conceptual design of a dual-frequency radar and 2.1. Microwave link Dual-wavelength Inversion microwave link (radar/link) system capable of technique measuring simultaneously forward and backscatter from rainfall. The forward and backscattering The microwave link analysis assumes that the path- radar/link system will enable small-scale rain studies average DSD can be represented by a two-parameter essential in understanding the rainfall process, and gamma distribution given by make significant contributions to the investigation of L radar inversion algorithms for the estimation of 1 2 N(DNDzdzNDeeo )=− ( , ') ' = eexp(ΛDe ) , (2.1) precipitation parameters that include liquid water L ∫0 content, median mass diameter, number concentration, and rainfall rate. The system will where N , and Λ are path-average parameters of operate at the frequencies of 13.6 GHz and 35.5 GHz o enabling the testing and validation of established the DSD, and De is the equi-volumetric drop diameter. radar retrieval algorithms such as those used by the Tropical Rain Mapping Mission (TRMM) single- The following approach makes use of attenuation at frequency radar, and those proposed
    [Show full text]
  • Automated Delineation of Dry and Melt Snow Zones in Antarctica
    2152 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 8, AUGUST 2006 Automated Delineation of Dry and Melt Snow Zones in Antarctica Using Active and Passive Microwave Observations From Space Hongxing Liu, Member, IEEE, Lei Wang, and Kenneth C. Jezek, Associate Member, IEEE Abstract—This paper presents the algorithms and analysis re- percolation zone, and the dry snow zone. Long-term variations sults for delineating snow zones using active and passive mi- in areal extent of different snow zones contribute to changes in crowave satellite remote sensing data. With a high-resolution the Earth’s radiation budget, and hence to climate changes [3]. Radarsat synthetic aperture radar (SAR) image mosaic, dry snow The balance between accumulation and melt in different snow zones, percolation zones, wet snow zones, and blue ice patches for the Antarctic continent have been successfully delineated. A zones also affects the runoff and discharge of stream systems competing region growing and merging algorithm is used to fed by snow and glacier melt water. Moreover, snow pack is initially segment the SAR images into a series of homogeneous extremely sensitive to atmospheric temperature. Spatial extent regions. Based on the backscatter characteristics and texture and geographical position of different snow zones indicate property, these image regions are classified into different snow regional climate condition [4]–[6]. zones. The higher level of knowledge about the areal size of and Since the publication of Benson’s [1] classification scheme adjacency relationship between snow zones is incorporated into in the early 1960s, many investigators have employed satel- the algorithms to correct classification errors caused by the SAR image noise and relief-induced radiometric distortions.
    [Show full text]
  • Short-Range Elastic Backscatter Micro-Lidar for Quantitative Aerosol Profiling with High Range and Temporal Resolution
    remote sensing Article Short-Range Elastic Backscatter Micro-Lidar for Quantitative Aerosol Profiling with High Range and Temporal Resolution Romain Ceolato * , Andres E. Bedoya-Velásquez and Vincent Mouysset ONERA, The French Aerospace Lab, Universite de Toulouse, FR 31055 Toulouse, France; [email protected] (A.E.B.-V.); [email protected] (V.M.) * Correspondence: [email protected] Received: 13 August 2020; Accepted: 30 September 2020; Published: 10 October 2020 Abstract: A bi-static short-range elastic backscatter micro-lidar, named Colibri, has been developed for quantitative aerosol profiling with high range and temporal resolution within the first hundred meters. The geometric (i.e., overlap) and radiometric (i.e., lidar constant) calibrations were performed along with dark current and background noise characterizations. Results of a measurement campaign have demonstrated the capability of our system to characterize aerosol plumes with high range-resolution (<10 cm) in the short-range close to their emission sources (from 10 m). To this aim, fog-oil aerosol plumes were generated in a tunnel and characterized by using an optical particle counter. A forward inverse method without boundary conditions is presented for inverting short-range lidar profiles when no reference molecular zone is available. Lastly, we report the different retrieved lidar products, namely the distribution of aerosol layers, radiative properties (i.e., backscatter profiles), and the microphysical properties (i.e., number concentration profiles). For the validation of the proposed methodology, the lidar products were compared with measurements from the optical particle counter. Lastly, the impact of calibration errors on the lidar products is discussed through an uncertainty analysis.
    [Show full text]
  • Recommendations for Processing Atmospheric Attenuated Backscatter Profiles from Vaisala CL31 Ceilometers
    Atmos. Meas. Tech., 9, 3769–3791, 2016 www.atmos-meas-tech.net/9/3769/2016/ doi:10.5194/amt-9-3769-2016 © Author(s) 2016. CC Attribution 3.0 License. Recommendations for processing atmospheric attenuated backscatter profiles from Vaisala CL31 ceilometers Simone Kotthaus1, Ewan O’Connor1,2, Christoph Münkel3, Cristina Charlton-Perez4, Martial Haeffelin5, Andrew M. Gabey1, and C. Sue B. Grimmond1 1Department of Meteorology, University of Reading, Reading, RG6 6BB, UK 2Finnish Meteorological Institute, 00101 Helsinki, Finland 3Vaisala GmbH, 22607 Hamburg, Germany 4Met Office, Meteorology Building, University of Reading, Reading, RG6 6BB, UK 5Institute Pierre Simon Laplace, Centre National de la Recherche Scientifique, École Polytechnique, 91128 Palaiseau, France Correspondence to: Simone Kotthaus ([email protected]) Received: 14 March 2016 – Published in Atmos. Meas. Tech. Discuss.: 29 March 2016 Revised: 12 July 2016 – Accepted: 20 July 2016 – Published: 17 August 2016 Abstract. Ceilometer lidars are used for cloud base height backscatter observed with Vaisala CL31 sensors, including detection, to probe aerosol layers in the atmosphere (e.g. de- the estimation of noise which is not provided in the standard tection of elevated layers of Saharan dust or volcanic ash), CL31 output. After taking these aspects into account, attenu- and to examine boundary layer dynamics. Sensor optics and ated backscatter profiles from Vaisala CL31 ceilometers are acquisition algorithms can strongly influence the observed considered capable of providing valuable information for a attenuated backscatter profiles; therefore, physical interpre- range of applications including atmospheric boundary layer tation of the profiles requires careful application of cor- studies, detection of elevated aerosol layers, and model veri- rections.
    [Show full text]
  • Presentations of Supercells, the Main Updraft Will Be WSR-88D Melting Layer Detection Algorithm Located Approximately Over the “Inflow Notch” That (Giangrande Et Al
    25th CONFERENCE ON SEVERE LOCAL STORMS, 11-14 OCTOBER 2010, DENVER, COLORADO 11.2 POLARIMETRIC RADAR CHARACTERISTICS OF LARGE HAIL Matthew R. Kumjian*1,2,3,4, Joseph C. Picca1,2,3,4, Scott M. Ganson3, Alexander V. Ryzhkov1,2,4, John Krause1,2, Dušan Zrnić2, and Alexander Khain5 1. Cooperative Institute for Mesoscale Meteorological Studies, Norman, OK 2. National Severe Storms Laboratory, Norman, OK 3. School of Meteorology, University of Oklahoma, Norman, OK 4. Atmospheric Radar Research Center, Norman, OK 5. Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel 1. INTRODUCTION mixed success, and none has explicitly considered the The advantage of dual-polarization radar data in melting process. In fact, Liu and Chadrasekar (2001) the discrimination of precipitation types has been and Lim et al. (2005) do not define what is meant by demonstrated successfully (e.g., Straka et al. 2000; Liu “large” and “small” hail. To alleviate such confusion, and Chandrasekar 2001; Lim et al. 2005; Park et al. we will use the following definitions: large hail refers 2009; Clabo et al. 2009), including the detection of hail to equivolume diameters in excess of 2.5 cm, and among other precipitation echoes (e.g., Wakimoto and “giant” hail refers to those stones with diameters Bringi 1988; Heinselman and Ryzhkov et al. 2006; exceeding 5.0 cm (2.0”). Depue et al. 2007). Conventional detection of hail This paper will be structured as follows. In section using dual-polarization data is based on the idea that 2, an overview is given of various factors affecting large hail tumbles as it falls, leading to differential scattering properties of hailstones that must be taken reflectivity (ZDR) near 0 dB.
    [Show full text]
  • Precipitation Bragg Scatter in Radar Observations at Nadir
    SEPTEMBER 2011 J A M E S O N 1981 Precipitation Bragg Scatter in Radar Observations at Nadir A. R. JAMESON RJH Scientific, Inc., Arlington, Virginia (Manuscript received 8 February 2011, in final form 6 April 2011) ABSTRACT As precipitation sediments and interacts with turbulence, spatial structures appear as the familiar ‘‘streamers’’ of precipitation sweeping across the road during a thunderstorm or like those so obvious in snow that is backlit. Some of these are at scales that resonate with the radar wavelength, and as a consequence they produce coherent backscatter (precipitation Bragg scatter). Recently, and in contrast to incoherent scattering, it was found that the power-normalized cross-correlation functions of backscattered complex amplitudes in neighboring range bins r12 averaged over time exist. Moreover, they are identical to the fractional contri- butions F made by radar coherent backscatter in the radial direction to the total backscattered power in rain and snow. This coherent power can significantly affect some radar techniques for measuring precipitation intensity because it depends upon the square of the particle concentrations rather than the linear dependence in the case of incoherent backscatter. All of these observations were made by radars looking tangentially to the ground, however. Yet for many purposes, including the global measurements of precipitation from space, radar observations in precipitation are at or near nadir to the surface of the earth. A natural question, then, is: Can coherent backscattered power be found in observations in precipitation at nadir as well? Here, radar observations collected at nadir in a convective shower and snow are analyzed.
    [Show full text]
  • Backscatter Measurements on Optical Fibers
    .*•»' •' ">. I* in o * \ NBS TECHNICAL NOTE 1034 ^CAO O* * U.S. DEPARTMENT OF COMMERCE / National Bureau of Standards Backscatter Measurements on Optical Fibers .2 NATIONAL BUREAU OF STANDARDS The National Bureau of Standards' was established by an act of Congress on March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau's technical work is per- formed by the National Measurement Laboratory, the National Engineering Laboratory, and the Institute for Computer Sciences and Technology. THE NATIONAL MEASUREMENT LABORATORY provides the national system ol physical and chemical and materials measurement; coordinates the system with measurement systems of other nations and furnishes essential services leading to accurate and uniform physical and chemical measurement throughout the Nation's scientific community, industry, and commerce; conducts materials research leading to improved methods of measurement, standards, and data on the properties of materials needed by industry, commerce, educational institutions, and Government; provides advisory and research services to other Government agencies; develops, produces, and distributes Standard Reference
    [Show full text]
  • National Weather Service Glossary Page 1 of 254 03/15/08 05:23:27 PM National Weather Service Glossary
    National Weather Service Glossary Page 1 of 254 03/15/08 05:23:27 PM National Weather Service Glossary Source:http://www.weather.gov/glossary/ Table of Contents National Weather Service Glossary............................................................................................................2 #.............................................................................................................................................................2 A............................................................................................................................................................3 B..........................................................................................................................................................19 C..........................................................................................................................................................31 D..........................................................................................................................................................51 E...........................................................................................................................................................63 F...........................................................................................................................................................72 G..........................................................................................................................................................86
    [Show full text]