Arizona at the Large Hadron Collider: the ATLAS Detector, the Particle Zoo, the Higgs Boson, and the Search for New Phenomena

Total Page:16

File Type:pdf, Size:1020Kb

Arizona at the Large Hadron Collider: the ATLAS Detector, the Particle Zoo, the Higgs Boson, and the Search for New Phenomena Arizona at the Large Hadron Collider: the ATLAS Detector, the Particle Zoo, the Higgs Boson, and the Search for New Phenomena. OLLI Presentation. October 24, 2014. Michael Shupe, Professor Department of Physics The University of Arizona At least 156 billion light years Physics Lets Us Touch The Universe At All Scales zoom 10,000,000,000 Astrophysics Biophysics zoom 100,000 more Condensed Matter Physics Atomic, Molecular, and Optical (AMO) At least 1000 Nuclear Physics more High Energy Physics “Inner space” is as “empty” as outer space. But the vacuum is filled with dancing quanta! High Energy Physics Research focused on the fundamental building blocks in nature, and the interactions among them. Electromagnetic Force Strong (Nuclear) Force Weak Force (Changes particle types) Gravity (Gravitons?) The Higgs Boson How do we “see” new phenomena at this level? By studying the debris from head-on collisions between particles. Shown below are proton-antiproton collisions leading to the production of top (t) quark pairs. This was used at Fermilab, west of Chicago, to discover the top quark in 1995. Arizona was there! - Arizona’s Impact on the Design and Construction of the ATLAS Detector at the Large Hadron Collider Arizona HEP Faculty Members - John Rutherfoord Michael Shupe Ken Johns Elliott Cheu Erich Varnes The University of Arizona Team Faculty Research Associates & Staff Graduate Students 7 This is the Full Experimental High Energy Physics Group at The University of Arizona Faculty Graduate Students John Rutherfoord ATLAS Jeff Temple D0 Michael Shupe ATLAS Bryan Gmyrek D0 Kenneth Johns D0/ATLAS Susan Burke D0 Elliott Cheu D0/ATLAS Xiaowen Lei ATLAS Erich Varnes D0/ATLAS Caleb Parnel-Lampen ATLAS Research Scientists Walter Freeman ATLAS Peter Loch ATLAS Technical Sasha Savine ATLAS Charlie Armijo D0 Postdoctoral Gabe Facini ATLAS Stefan Anderson D0 Anna Malin D0 Peter Tamburello D0 Robert Walker ATLAS Jessica Leveque D0 Secretary Walter Lampl ATLAS Claudia Miller Engineers Leif Shaver Mech. Joel Steinberg Elect. Dan Tompkins Elect. The size and breadth of this group has enabled us to make a substantial impact on D0 at the Fermilab Tevatron, and on ATLAS at the Large Hadron Collider. Now for what we did. A quick virtual tour of CERN and Arizona Large Hadron Collider, CERN, Geneva, CH pp collision @ 7 TeV 14 TeV - The ATLAS Detector at the LHC (Proton-Proton Collisions at 14 TeV) The high energy group at The University of Arizona joined the ATLAS experiment in 1994, and had major impact—from the start—on the design of the experiment! Collisions began in 2009. First big data set in 2010. Magnets in the LHC Tunnel 27 kilometer tunnel. More than 1600 magnets. ATLAS, In Its Underground Cavern The ATLAS Detector: ~$1.5B – “World’s Largest Experiment” Tracking Calorimeters Muon: Air Core Toroids Integrated Forward Calorimeters ($16M) Massive Forward Radiation Shield (~700 Metric Tonnes) Arizona was the only U.S. group to make a major change in the ATLAS design! We conceived the integrated FCal and shield design, adopted by ATLAS in June,1994. Our research group, constructing the ATLAS Integrated Forward Calorimeter in a clean room in the basement of the Physics building. Arizona conceived, engineered and supervised this $16M project for ATLAS. Some of our research group, at CERN, during the installation of the ATLAS Integrated Forward Calorimeter ATLAS - 2005 ATLAS - 2007 ATLAS - 2007 CSC Chambers 19 - The structure of matter, and the “Zoo” of Particles That We Know About Today The underlying patterns of matter In Chemistry, all the types of molecules we see are made from just 92 naturally occurring elements (the Periodic Table). The atoms in this table, are made of protons, neutrons, electrons + photons, for the electric force + “nuclear glue”. 21 ATOMS NUCLEI NUCLEONS QUARKS Helium The only quarks needed to build up protons and neutrons are u and d. u has charge 2e/3, and d has charge minus e/3. What quarks do neutrons contain? Who ordered this one? The only particles needed to What else can we build the periodic table of the make from the six elements are protons, quarks? Thousands of neutrons, and electrons! not-so-stable particles! (Plus photons and gluons!) 22 Distance Scales: From Atoms, to Nucleons, to Quarks 23 By the late 1970’s, hundreds of new particles had been detected, and more quarks had been Spin1/2 found: u,d,s,c,b. Neutron Proton Spin 3/2 24 The Fundamental Particles We Know at Present Six quarks (and antiquarks), six leptons (and antileptons), four force-carrying particles. Electromagnetic Force Strong (Nuclear) Force Weak Force (Changes particle types) Gravity (Gravitons?) The Higgs Boson Particle Mass Ratios, With “Zoo” Comparisons 26 10/22/2014 26 - The Beginnings of Quantum Mechanics (particles waves), and Why We Talk About “Particles” and “Fields” The Beginnings of Quantum Mechanics 1900: Max Planck discovers that electromagnetic waves deliver their energy in “bundles”, E = hf Planck’s constant: h 6.6260693(11) 1034 J s 1905: Albert Einstein claims that these waves are composed of particles, “photons” (), each of energy E = hf, explaining the photoelectric effect. 1924: Louis de Broglie suggests 1927: that particles, such as the Davisson- electron, are also waves of Germer wavelength = h/p p = h/ experiment says yes! Waves are particles, and particles are waves. They are really all “quanta”, with energy E = hf and momentum p = h/ A given type of particle has “additional” properties: spin, mass, electric charge, weak charge, strong charge, parity, etc. (Photons are mass-less particles with spin 1.) “Nature forces us to the conclusion that quanta are real, but offers no additional ‘guidance’ to help us create a mental picture of how quanta act as both waves and particles. The best we can do currently is to label this two-sided behavior as ‘wave particle duality’. Quantum mechanics still fascinates and mystifies the people who work most closely with it.” (Richard Feynman) What is a “Field”? * Each force has a “carrier” particle,- and these carriers can be emitted or absorbed by particles with the right type of charge. * We have seen these “charges” in previous slides. Photons carry the electromagnetic force, and interact with particles that have electric charge (+ or -). Gluons carry the strong force and interact with particles with strong charge (R,G,B,or the “anticolors”). The heavy bosons W+, W-, and Z0, carry the weak force and interact with particles that have weak charge. * Photons are neutral, and cannot interact with other photons, but gluons can interact with other gluons, and the W’s and Z can interact among themselves. * Electromagnetic force fields can extend to infinity, strong force fields are self containing with the size scale of a proton, and weak interactions are very short ranged. Sketch of an electric field caused by three electric charges. The lines show the directions- of the field, and the field is strongest where the lines are densely packed together. Feynman Diagrams: the Horizontal Lines are Field Carriers A “simple” strong interaction between a neutron and proton: A u-quark is exchanged, and a d-quark pair pops out of the vacuum. Later, a d-quark pair annihilates. At every step, gluons are holding the proton and neutron together. In the end, the n and p have swapped identities! Just another day at the office… Superficially, strong interaction fields carried by gluons (below), look a bit like electric fields carried by photons (right), especially at short range. But since gluons interact with each other, as quarks are driven apart, the gluon field pulls together into a “string” (aka “flux tube”). When the energy in the string get high enough, it breaks, and new quarks are created! Particles interact through the exchange of “field quanta” such as photons (if they have electric charge). The interactions can be represented by Feynman diagrams, which are then translated into mathematical expressions (“Lagrangians”) next slide The Standard Model Lagrangian: Quantum Field Theory quarks, leptons and their strong, quarks & leptons have mass electromagnetic and weak interactions gauge sector flavour sector EWSB sector mass sector neutrinos have Higgs bosons … and mass too! beyond? 36 A Summary of the Interactions Among Particles/Fields - How Do We Study Quarks and Leptons, and Search for New Particles, at the LHC? By Sifting Through the Debris of Proton-Proton Collisions. The higher the proton beam energies, the shorter the distance scale we can explore. The de Broglie equation: h/p The bigger the momentum of colliding particles, the shorter their wavelengths. Shorter quantum wavelengths improve the resolution! 39 Fantasy Machine: A Quark Collider Quark Detector q1 q Quark Beam 1 1 Quark Beam 2 3.5 TeV gBRbar 3.5 TeV q2 The momentum of the “force q2 carrying” particle (here a gluon) determines its wavelength, and the distance scale that can be probed. Quark Detector 40 Reality: the LHC 7 TeV Proton-Proton Collider •Each proton is a chaotic mix of 3 “valence quarks” + other quarks + gluons. •The two that collide typically carry a small fraction of the proton momentum: parton distribution functions (PDF’s). •Outgoing quarks, or gluons, barely escape the protons before they cascade in to more quarks and gluons (a parton shower). And this is just the start! 41 Factorization makes this calculable. P 0 1 q(x1) Dq (z) xP11Hard Scattering Process sˆ Parton Jets xP22 P 2 qgqg X g(x2) ˆ 42 The momentum distributions of quarks and gluons: For two-jet (dijet) events, the jets do not emerge from the collision back-to- back in the longitudinal direction! To access the information about the original collision, we rely on kinematics to “undo” the effects of the Lorentz boost, and study the collision in the 2- parton rest frame.
Recommended publications
  • Report of the IPPOG Higgs Panel
    International Particle Physics Outreach Group Higgs - What now ? Report of the IPPOG Higgs Panel Thomas Naumann DESY 1 Explaining the Higgs International Particle Physics Outreach Group • The basics of the Higgs boson [TED-Ed, D. Barney + S. Goldfarb] based on many IPPOG discussions… • A new particle is discovered: a Higgs boson! [made with CERN-EDU] simple video playing in a loop at the entrance of Microsom + Globe @ CERN, explains very basic concepts, FR + EN • The Higgs Field, explained [TED-Ed, Don Lincoln] • The Higgs Boson Explained [PhD Comics] • The Particle Adventure [ParticleAdventure.org] 2 IPPOG Meeting, November 2013, Sylvie Brunet for ATLAS Outreach Higgs Resources: ATLAS International Particle Physics Outreach Group www.atlas.ch/HiggsResources http://cms.web.cern.ch/org/cms- presentations-public new ATLAS Book: classify Higgs resources + put to IPPOG DB: • by format • by target audience 3 UK: Royal Society summer science exhibition booklet International Particle Physics Outreach Group Contributions from all UK Particle Physics groups Coordinator Cristina Lazzeroni Excellent web resource for those not able to visit exhibition http://understanding-the-higgs-boson.org/exhibit/booklet/ Higgs: messages International Particle Physics Outreach Group • announcement of the Nobel Prize: ‚ ... for the theoretical discovery ...‘ ??? Freudian slip to honour CERN ? but G. Ingelman: • ‘this is a triumph of the scientific method … of formulating theoretical predictions … and testing them in experiments’ • LHC to resolve a theory jam of
    [Show full text]
  • Jul/Aug 2013
    I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www.
    [Show full text]
  • Prusaprinters
    CERN's CMS Detector A Alex VIEW IN BROWSER updated 24. 4. 2019 | published 24. 4. 2019 Summary The Compact Muon Solenoid (CMS) detector is one of the big four experiments of the Large Hadron Collider (LHC), the world’s largest and most powerful particle accelerator. The LHC is part of CERN's accelerator complex in Geneva, Switzerland. The detector is located 100 meters underground near Cessy, France, at the opposite end of the LHC from ATLAS detector. It is 15 meters high and 21 meters long, and it weighs 14,000 tonnes. This 120:1 scale model shows CMS' most important components. It is based on the original Technical Design Reports and the SketchUpCMS project. It was originally modeled by James Wetzel, W.G. Wetzel and Nick Arevalo with a grant from Don Lincoln. Objective of CMS CMS is a general-purpose detector with a broad physics programme ranging from studying the Standard Model (including the Higgs boson) to searching for extra dimensions and particles that could make up dark matter. Components The CMS detector is shaped like a cylindrical onion, with several concentric layers of components. These components help prepare “photographs” of each collision event by determining the properties of the particles produced in that particular collision. Particle collisions occur at the very center of the detector, within the LHC accelerator's beam pipes. Inside the accelerator, two high-energy particle beams travel at close to the speed of light before they are made to collide. The beams travel in opposite directions in separate beam pipes – two tubes kept at ultrahigh vacuum.
    [Show full text]
  • The Weak Charge of the Proton Via Parity Violating Electron Scattering
    The Weak Charge of the Proton via Parity Violating Electron Scattering Dave “Dawei” Mack (TJNAF) SPIN2014 Beijing, China Oct 20, 2014 DOE, NSF, NSERC SPIN2014 All Spin Measurements Single Spin Asymmetries PV You are here … … where experiments are unusually difficult, but we don’t annoy everyone by publishing frequently. 2 Motivation 3 The Standard Model (a great achievement, but not a theory of everything) Too many free parameters (masses, mixing angles, etc.). No explanation for the 3 generations of leptons, etc. Not enough CP violation to get from the Big Bang to today’s world No gravity. (dominates dynamics at planetary scales) No dark matter. (essential for understanding galactic-scale dynamics) No dark energy. (essential for understanding expansion of the universe) What we call the SM is only +gravity part of a larger model. +dark matter +dark energy The astrophysical observations are compelling, but only hint at the nature of dark matter and energy. We can look but not touch! To extend the SM, we need more BSM evidence (or tight constraints) from controlled experiments4 . The Quark Weak Vector Charges p Qw is the neutral-weak analog of the proton’s electric charge Note the traditional roles of the proton and neutron are almost reversed: ie, neutron weak charge is dominant, proton weak charge is almost zero. This suppression of the proton weak charge in the SM makes it a sensitive way to: 2 •measure sin θW at low energies, and •search for evidence of new PV interactions between electrons and light quarks. 5 2 Running of sin θW 2 But sin θW is determined much better at the Z pole.
    [Show full text]
  • PDF Version for Printing
    Fermilab Today Thursday, Feb. 11, 2010 Calendar Photo of the Day Fermilab Result of the Week Have a safe day! Fermilab kicks off lab's Seeing clearly with photons Thursday, Feb. 11 Engineers Week 2010 1:30-4 p.m. Special LPC lecture - One West Speaker: Dan Green, Fermilab Title:Early LHC Data 2:30 p.m. Theoretical Physics Seminar - Curia II Speaker: Elvira Gamiz, Fermilab Title: Phenomenology of Fermilab's engineers gather for a group photo in Neutral B-Meson Mixing and celebration of Engineers Week 2010. Decays Constants To kick off Engineers Week at Fermilab on 3:30 p.m. Wednesday, Feb. 10, Director Pier Oddone Events in which two photons are produced are DIRECTOR'S COFFEE addressed all engineers at a talk in Ramsey natural laboratories in which to study collisions Auditorium. BREAK - 2nd Flr X-Over between quarks. These studies can unambiguously 4 p.m. rule out certain theoretical calculations. Accelerator Physics and Oddone gave an overview of Fermilab's future projects and highlighted how crucial engineers With Valentine’s Day just around the corner, this Technology Seminar - One are to the laboratory. Result of the Week draws what might seem an West unlikely analogy between physics and dating. Speaker: Eliana Gianfelice- "All the big dreams we can cook up would not Wendt, Fermilab be realized if we didn't have your help," he Contrary to Mom’s best advice, some people on Title: Abort Gap Cleaning at said. a first date might try to appear smarter, richer or LHC better than they really are. Indeed, a big point of Fermilab's Engineers Week celebration will dating is to see through the façade to get a Friday, Feb.
    [Show full text]
  • TRIUMF & Canadian Scientists Help Measure Proton's Weak Charge
    Canada’s national laboratory for particle and nuclear physics Laboratoire national canadien pour la recherche en physique nucléaire et en physique des particules News Release | For Immediate Release | 17 Sep 2013, 5:00 p.m. PDT TRIUMF & Canadian Scientists Help Measure Proton’s Weak Charge (Newport News, VA, USA) --- An international team including Canadian researchers at TRIUMF has reported first results for the proton’s weak charge in Physical Review Letters (to appear in the October 18, 2013 issue) based on precise new data from Jefferson Laboratory, the premier U.S. electron-beam facility for nuclear and particle physics in Newport News, Virginia. The Q-weak experiment used a high-energy electron beam to measure the weak charge of the proton—a fundamental property that sets the scale of its interactions via the weak nuclear force. This is distinct from but analogous to its more familiar electric charge (Q), hence, the experiment’s name: ‘Q-weak.’ Following a decade of design and construction, Q-weak had a successful experimental run in 2010–12 in Hall C at Jefferson Laboratory. Data analysis has been underway ever since. “Nobody has ever attempted a measurement of the proton’s weak charge before,” says Roger Carlini, Q- weak’s spokesperson at Jefferson Laboratory, “due to the extreme technical challenges to reach the required sensitivity. The first 4% of the data have now been fully analyzed and already have an important scientific impact, although the ultimate sensitivity awaits analysis of the complete experiment.” The first result, based on Q-weak’s commissioning data set, is Q_W^p= 0.064 ± 0.012.
    [Show full text]
  • The Theory of Everything: the Quest to Explain All Reality
    Topic Subtopic Science & Mathematics Physics The Theory of Everything The Quest to Explain All Reality Course Guidebook Professor Don Lincoln Fermi National Accelerator Laboratory topaudiobooks.ir PUBLISHED BY: THE GREAT COURSES Corporate Headquarters 4840 Westfields Boulevard, Suite 500 Chantilly, Virginia 20151-2299 Phone: 1-800-832-2412 Fax: 703-378-3819 www.thegreatcourses.com Copyright © The Teaching Company, 2017 Printed in the United States of America This book is in copyright. All rights reserved. Without limiting the rights under copyright reserved above, no part of this publication may be reproduced, stored in topaudiobooks.iror introduced into a retrieval system, or transmitted, in any form, or by any means (electronic, mechanical, photocopying, recording, or otherwise), without the prior written permission of The Teaching Company. DON LINCOLN, PH.D. SENIOR SCIENTIST FERMI NATIONAL ACCELERATOR LABORATORY on Lincoln is a Senior Scientist at Fermi National Accelerator Laboratory. His research time has been divided between studying Ddata from the Tevatron Collider (until it closed in 2011) and data from the CERN Large Hadron Collider, located outside of Geneva, Switzerland. Dr. Lincoln is also a Guest Professor of High Energy Physics at the University of Notre Dame. He received his Ph.D. in Experimental Particle Physics from Rice University. Dr. Lincoln is the coauthor of more than 1000 scientific publications that range over subjects from microscopic black holes and extra dimensions to the elusive Higgs boson. His most noteworthy scientific accomplishments include being part of the teams that discovered the top quark in 1995 and confirmed the Higgs boson in 2012. Dr. Lincoln is interested in everything about particle physics and cosmology, but his most burning interest is in understanding the reasons for why there are so many known subatomic building blocks.topaudiobooks.ir He searches for possible constituents of the quarks and leptons, which are treated in the standard model of particle physics as featureless and point-like particles.
    [Show full text]
  • Neutrino Masses-How to Add Them to the Standard Model
    he Oscillating Neutrino The Oscillating Neutrino of spatial coordinates) has the property of interchanging the two states eR and eL. Neutrino Masses What about the neutrino? The right-handed neutrino has never been observed, How to add them to the Standard Model and it is not known whether that particle state and the left-handed antineutrino c exist. In the Standard Model, the field ne , which would create those states, is not Stuart Raby and Richard Slansky included. Instead, the neutrino is associated with only two types of ripples (particle states) and is defined by a single field ne: n annihilates a left-handed electron neutrino n or creates a right-handed he Standard Model includes a set of particles—the quarks and leptons e eL electron antineutrino n . —and their interactions. The quarks and leptons are spin-1/2 particles, or weR fermions. They fall into three families that differ only in the masses of the T The left-handed electron neutrino has fermion number N = +1, and the right- member particles. The origin of those masses is one of the greatest unsolved handed electron antineutrino has fermion number N = 21. This description of the mysteries of particle physics. The greatest success of the Standard Model is the neutrino is not invariant under the parity operation. Parity interchanges left-handed description of the forces of nature in terms of local symmetries. The three families and right-handed particles, but we just said that, in the Standard Model, the right- of quarks and leptons transform identically under these local symmetries, and thus handed neutrino does not exist.
    [Show full text]
  • The Search for Supersymmetry
    The Search for Supersymmetry • Introduction the Standard Model of Particle Physics • Introduction to Collider Physics • Successes of the Standard Model • What the Standard Model Does Not Do • Physics Beyond the Standard Model • Introduction to Supersymmetry • Searching for Supersymmetry • Dark Matter Searches • Future Prospects • Other Scenarios • Summary Peter Krieger, Carleton University, August 2000 Force Unifications Standard Model does NOT account magnetism for gravitational interactions Maxwell electromagnetism electricity electroweak S T A Planck Scale (or Planck Mass) weak interactions N D A is defined as the energy scale at R GUT D which gravitational interactions M O become of the same strength as D E SM interactions strong interactions L TOE celestial movement gravitation Newton terrestrial movement - - - MEW MGUT Mplanck The Standard Model Describes the FUNDAMENTAL PARTICLES and their INTERACTIONS All known FORCES are mediated by PARTICLE EXCHANGE a a Effective strength of an interaction depends on X • the coupling strength at the vertex αα • the mass of the exchanged particle MX a a Force Effective Strength Process Strong 100 Nuclear binding Electromagnetic 10-2 Electron-nucleus binding Weak 10-5 Radioactive β decay The Standard Model SPIN-½ MATTER PARTICLES interact via the exchange of SPIN-1 BOSONS MATTER PARTICLES – three generations of quarks and leptons |Q| m < m < m ⎛ e ⎞ ⎛ µ ⎞ ⎛ τ ⎞ 1 e µ τ Mass increases with generation: ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ m = 0 ⎜ ⎟ ⎜ν ⎟ ⎜ ⎟ ν ⎝ν e ⎠ ⎝ µ ⎠ ⎝ν τ ⎠ 0 Mu,d ~ 0.3 GeV ⎛u⎞ ⎛c⎞ ⎛ t ⎞ 2 ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ 3 Each quark comes in 1 three ‘colour’ changes Mt ~ 170 GeV ⎝d⎠ ⎝s⎠ ⎝b⎠ 3 GAUGE BOSONS – mediate the interaction of the fundamental fermions γ 1 Gauge particle of electromagnetism (carries no electric charge) W ± ,Z 0 3 Gauge particles of the weak interaction (each carries weak charge) g 8 Gauge particles of the strong interaction (each gluon carries a colour and an anti-colour charge charge) All Standard Model fermions and gauge bosons have been experimentally observed There is one more particle in the SM – the Higgs Boson.
    [Show full text]
  • Introducing the Large Hadron Collider to Its Stakeholders
    Metascience DOI 10.1007/s11016-015-0012-2 BOOK REVIEW Introducing the world’s most famous particle accelerator to its stakeholders Don Lincoln: The Large Hadron Collider: The extraordinary story of the Higgs Boson and other stuff that will blow your mind. Baltimore: John Hopkins University Press, 2014, xii+223pp, $29.95 HB Naomi Pasachoff1 Ó Springer Science+Business Media Dordrecht 2015 Don Lincoln, author of this introduction to the Large Hadron Collider, has written other books bent on clarifying concepts of particle physics to the general reader. An experimental particle physicist at both Fermilab and CERN, he knows whereof he speaks. Lincoln’s explanatory skills earned him the 2013 European Physical Society’s High Energy Particle Physics Board’s Outreach Award ‘‘for communi- cating in multiple media the excitement of High Energy Physics to high-school students and teachers, and the public at large.’’ Knowing these things, when picking up this compact book of eight chapters, the reader should expect to find it written in accessible language and an engaging manner. I regret to report, however, that, while every page conveys the author’s enthusiasm for what he does, the book’s reading level is very uneven. Marketed as a trade book and not as a textbook, much of the book is perfectly comprehensible to the average reader of, say, The New York Times or New Scientist. The second half of the book, however, has enough very technical sections to scare off less dedicated general readers. Lincoln’s awareness of the issue ‘‘of having a diverse readership’’ (23) is not hidden.
    [Show full text]
  • Weak Interactioninteraction
    WeakWeak InteractionInteraction OutlineOutline Introduction to weak interactions Charged current (CC) interactions Neutral current (NC) Weak vector bosons W± and Z0 Weak charged interactions Beta decay Flavour changing charged current W± boson propagator Fermi coupling constant Parity violation Muon decay Decay rate /lifetime Lepton Universality W± boson couplings for leptons Tau decays Weak quark decays W± boson couplings for quarks Cabibbo angle, CKM mechanism Spectator model Nuclear and Particle Physics Franz Muheim 1 IntroductionIntroduction Weak Interactions Account for large variety of physical processes Muon and Tau decays, Neutrino interactions Decays of lightest mesons and baryons Z0 and W± boson production at √s ~ O(100 GeV) Natural radioactivity, fission, fusion (sun) Major Characteristics Long lifetimes Small cross sections (not always) “Quantum Flavour Dynamics” Charged Current (CC) Neutral Current (NC) mediated by exchange of W± boson Z0 boson Intermediate vector bosons MW = 80.4 GeV ± 0 W and Z have mass MZ = 91.2 GeV Self Interactions of W± and Z0 also W± and γ Nuclear and Particle Physics Franz Muheim 2 BetaBeta DecayDecay Weak Nuclear Decays See also Nuclear Physics Recall β+ = e+ β- = e- Continuous energy spectrum of e- or e+ Î 3-body decay, Pauli postulates neutrino, 1930 Interpretation Fermi, 1932 Bound n or p decay − n → pe ν e ⎛ − t ⎞ N(t) = N(0)exp⎜ ⎟ ⎝ τ n ⎠ p → ne +ν (bound p) τ n = 885.7 ± 0.8 s e 32 τ 1 = τ n ln 2 = 613.9 ± 0.6 s τ p > 10 y (p stable) 2 Modern quark level picture Weak charged current mediated
    [Show full text]
  • Supersymmetry Lecture Notes for FYS5190/FYS9190
    Supersymmetry Lecture notes for FYS5190/FYS9190 Paul Batzing and Are Raklev December 4, 2015 2 Contents 1 Introduction 7 2 Groups and algebras 9 2.1 Whatisagroup?.................................. 9 2.2 Representations................................. 12 2.3 Liegroups...................................... 13 2.4 Liealgebras..................................... 15 2.5 Exercises ...................................... 16 3 The Poincar´ealgebra and its extensions 19 3.1 TheLorentzGroup................................. 19 3.2 ThePoincar´egroup ............................... 20 3.3 The Casimir operators of the Poincar´egroup . ........ 20 3.4 The no-go theorem and graded Lie algebras . ...... 22 3.5 Weylspinors .................................... 23 3.6 The Casimir operators of the super-Poincar´ealgebra . ............ 25 3.7 Representations of the superalgebra . ....... 26 3.8 Exercises ...................................... 28 4 Superspace 31 4.1 Superspacecalculus .............................. 31 4.2 Superspacedefinition.. .. .. .. .. .. .. .. 33 4.3 Covariantderivatives. 35 4.4 Superfields ..................................... 35 4.4.1 Scalarsuperfields.............................. 36 4.4.2 Vectorsuperfields. .. .. .. .. .. .. .. .. 37 4.5 Supergauge ..................................... 38 4.6 Exercises ...................................... 39 5 Construction of a low-energy SUSY Lagrangian 41 5.1 Supersymmetry invariant Lagrangians . ....... 41 5.2 Albaniangaugetheories . 42 5.3 Non-Abelian gauge theories . 43 5.4 Supersymmetricfieldstrength.
    [Show full text]