Santa Cruz Summer Workshops in Astronomy and Astrophysics S.M

Total Page:16

File Type:pdf, Size:1020Kb

Santa Cruz Summer Workshops in Astronomy and Astrophysics S.M Santa Cruz Summer Workshops in Astronomy and Astrophysics S.M. Faber Editor Nearly Nonnal Galaxies From the Planck Time to the Present The Eighth Santa Cruz Summer Workshop in Astronomy and Astrophysies July 21-August 1, 1986, Liek Observatory With 133 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo S. M. Faber Department of Astronomy University of California Santa Cruz, CA 95064, USA Library of Congress Cataloging-in-Publication Data Santa Cruz Summer Workshop in Astronomy and Astrophysics (8th: 1986) Nearly normal galaxies. (Santa Cruz summer workshops in astrophysics) I. Galaxies-Congresses. 2. Astrophysics- Congresses. I. Faber, Sandra M. 11. Title. 111. Series. Q8856.S26 1986 523.1' 12 87-9559 © 1987 by Springer-Verlag New York Inc. Softcover reprint ofthe hardcover 1st edition 1987 All rights reserved. This work may not be translated or copied in whole or in part without the written permission ofthe publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, USA), except for bI1ef excerpts in connection with reviews or scholarly analysis. U se in connection with any form of information storage and retrieval. electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Permission to photocopy for internal or personal use, or the internal or personal use of specific c1ients, is granted by Springer-Verlag New York Inc. for libraries registered with the Copyright Clearance Center (CCC), provided that the base fee of $0.00 per copy, plus $0.20 per page is paid directly to CCC, 21 Congress Street, Salem, MA 01970. U.S.A. Special requests should be addressed directly to Springer-Verlag New York, 175 Fifth Avenue, New York, New York 10010, U.S.A. 96521-1/1987 $0.00 + .20 987654321 ISBN-13:978-1-4612-9145-9 e-ISBN-13978-1-4612-4762-3 DOI: 10.1007/978-1-4612-4762-3 ALBERT EDWARD WHITFORD On October 22, 1985, Albert Whitford celebrated his eightieth birthday. Whitford is honored as one of the founding fathers of photoelectric photometry, the technique that transformed twentieth-century astronomy from a qualitative to a quantitative science. Together with collaborator and mentor Joel Stebbins, Whit­ ford began, in the early 1930s, a systematic survey of stellar and galaxy photometry that initiated the modern era of this subject. Concepts encountered in this early work included interstellar extinction, color excess, effective wavelengths, galaxy surface-brightness profiles, and K-corrections. Techniques developed by Whitford and Stebbins to deal with these have become such apart of the lore of observational astronomy that their origins to today's students are obscure. Whitford's own con­ tribut ion to this work lay principally in the perfection of the equipment, notably in low-noise amplification of the signal. Joining Stebbins as a junior collaborator and fresh Ph.D. (in physics from Wisconsin), Whitford exercised skills as an instru­ mentalist so outstanding that, within a short while, Stebbins came to regard hirn as indispensable. vi Albert Edward Whitford World War II intervened, and Whitford spent five years in war work at the MIT Radiation Laboratory. After the war, he returned to Washburn Observatory at Wisconsin, where he shortly became Director and Full Professor. In 1958 he moved west to become Director of the Liek Observatory. There his technieal acumen enabled hirn to take charge of the 120-inch telescope project when it was far behind schedule and get it rapidly back on track. Within little more than a year the telescope was in full operation and continues to this day as the mainstay of the optieal astronomy program of the University of California. At about this time Whitford wrote what is probably his most quoted paper setting forth a standard interstellar extinction curve, the so-called Whitford law. In the 1960s he was president of the Ameriean Astronomieal Society and chaired the first National Academy of Sciences review on the progress and needs of observa­ tional astronomy. Ground Based Astronomy: A Ten Year Program was so weil and wisely written that it became a model for N AS discipline reviews and has inspired two subsequent astronomie al reviews in a pattern that now threatens to become established custom. Rereading the Whitford Report, one finds that its recommen­ dations were closely followed and that its vision shaped the pattern for the technieal advancement of observational astronomy from the 19605 onward. In 1973, Albert Whitford became Emeritus Professor / Astronomer, but with retirement his scientific productivity if anything began to increase. In a pro­ fession renowned for the vigor of its older practitioners, Whiford's achievements after retirement inspire the greatest admiration. A major early impetus for the Stebbins-Whitford photoelectrie photometry program was an interest in galaxy stellar populations and in quantifying comparisons between galaxy spectral-energy Albert Edward Whitford Vll distributions and those of stars. In the 1970s Whitford realized that the nuclear bulge of the Galaxy provided a unique opportunity to study, star-by-star, a strong­ lined, old stellar population like that found in elliptical galaxies and spiral bulges. Since then, he and his collaborators Jay Frogel, Mike Rich, and Don Terndrup have been collecting fundamental data - colors, magnitudes, and spectra - of bulge stars. As in all great enterprises, this one has not been without its surprises, turning up giant branch stars that are simultaneously metal-rich but rather blue. The bulge studies are clearly yielding unique data on old stars of fundamental importance to population syntheses of external galaxies. In view of Whitford's age, it is not surprising that his recent collaborators are all younger than he, but it is significant that two of them - Rich and Terndrup - were graduate students. Albert Whitford seems to have had a special affinity for graduate students in his emeritus years. His office was and is a place students can go to find encouragement and a sympathetic ear. Several Lick students, including Alan Dressler, David Burstein, and Nick Suntzeff, remember Albert for the benign infiuence he has had on their graduate careers. In recognition of his lifetime of achievement in the areas of photoelectric photometry and galactic stellar populations, the first session of this year's Santa Cruz Workshop is enthusiastically dedicated to Albert Edward Whitford. S. M. Faber July 1986 Preface It is sometimes said that astronomy is the crossroads of physics. In the same spirit, it can forcefully be argued that galaxies are the crossroads of astronomy. Internal pro ces ses within galaxies involve all of the fundamental components of astrophysics: stellar evolution, star formation, low-density astrophysics, dynamics, hydrodynamics, and high-energy astrophysics. Indeed, one can hardly name an observational datum in any wavelength range on any kind of celestial object that does not provide a useful clue to galaxy formation and evolution. Although internal processes in galaxies until recently occupied most of our attention, we now know that it is also vital to relate galaxies to their environment. How galaxies congregate in larger structures and are in turn influenced by them are crucial questions for galactic evolution. On a grander level we have also come to regard galaxies as the basic building blocks of the universe, the basic units whereby the large­ scale structure of the universe is apprehended and quantified. On a grander level still, we also believe strongly that galaxies are the direct descendents of early density irregularities in the Big Bang. Galaxy properties are now viewed as providing a crucial constraint on the physics of the Big Bang and a vital link between the macroscopic and microscopic structure of the universe. A picture of galactic evolution as the crossroads of astronomy and cosmology thus emerges very strongly - a melding of basic physics and astrophysics, an eclectic borrowing of diverse observation al techniques, and the convergence of the very large with the very small. To understand galaxies in all their ramifications clearly entails a synthesis of the highest order. x Preface Such a synthesis was the avowed goal of this summer's Santa Cruz Summer Workshop on galaxies. The extended, two-week format allowed participants to cover essentially all of the major issues of current interest in galaxy formation and evolution - from stellar evolution to cosmic strings and virtually everything in between. It was the first time, to my knowledge, that an organized meeting of such long duration was devoted to the subject, and the result was a more comprehensive, unified view than could be had from the usual two- or three-day conference. This book, wh ich summarizes the morning talks by the invited speakers, is therefore of special value. The fifty-odd papers contained herein provide a remarkably complete snapshot of the field of galactic evolution as it exists in 1986. Most of the papers are excellent reviews that provide both student and professional alike with a convenient jumping-off place into the literature. Because of the wide range of topics covered, the volume mayaiso be useful as a collection of supplemental readings for graduate courses on galactic evolution. Special thanks are due to all the speakers for providing manuscripts of such uniformly high quality. Readers will note that the present volume is the first of a new series. Since the last three Santa Cruz Workshops have produced proceedings in response to public demand, it seems that this is an idea that has taken permanent root.
Recommended publications
  • 2016-2017 Year Book Www
    1 2016-2017 YEAR BOOK WWW. C A R N E G I E S C I E N C E . E D U Department of Embryology 3520 San Martin Dr. / Baltimore, MD 21218 410.246.3001 Geophysical Laboratory 5251 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8900 Department of Global Ecology 260 Panama St. / Stanford, CA 94305-4101 650.462.1047 The Carnegie Observatories 813 Santa Barbara St. / Pasadena, CA 91101-1292 626.577.1122 Las Campanas Observatory Casilla 601 / La Serena, Chile Department of Plant Biology 260 Panama St. / Stanford, CA 94305-4101 650.325.1521 Department of Terrestrial Magnetism 5241 Broad Branch Rd., N.W. / Washington, DC 20015-1305 202.478.8820 Office of Administration 1530 P St., N.W. / Washington, DC 20005-1910 202.387.6400 2 0 1 6 - 2 0 1 7 Y E A R B O O K The President’s Report July 1, 2016 - June 30, 2017 C A R N E G I E I N S T I T U T I O N F O R S C I E N C E Former Presidents Daniel C. Gilman, 1902–1904 Robert S. Woodward, 1904–1920 John C. Merriam, 1921–1938 Vannevar Bush, 1939–1955 Caryl P. Haskins, 1956–1971 Philip H. Abelson, 1971–1978 James D. Ebert, 1978–1987 Edward E. David, Jr. (Acting President, 1987–1988) Maxine F. Singer, 1988–2002 Michael E. Gellert (Acting President, Jan.–April 2003) Richard A. Meserve, 2003–2014 Former Trustees Philip H. Abelson, 1978–2004 Patrick E.
    [Show full text]
  • Illinois—Where Astronomical Photometry Grew Up
    Beaman and Svec, JAAVSO Volume 40, 2012 141 Illinois­—Where As­tronomical Photometry Grew Up Barry B. Beaman 6804 Alvina Road, Rockford, IL 61101; [email protected] Michael T. Svec Furman University, Department of Education, 3300 Poinsett Highway, Greenville SC 29613; Internet: [email protected] Presented at the 100th Annual Meeting of the AAVSO, October 7, 2011; received January 21, 2012; revised February 2, 2012; accepted February 6, 2012 Abs­tract In 1903 Dr. Joel Stebbins joined the University of Illinois faculty as an astronomy instructor and Director of the University of Illinois Observatory. In 1905 he and F. C. Brown began experimenting with selenium sell photometry and developed the equipment and many of the photometric practices used then. Those practices formed the foundation on which present day photometry processes are based. This paper will trace the history of Stebbins’ career and his development of photoelectric photometry from 1903 to 1922. This story explains how Stebbins’ wife, May, caused a change in astronomical observing that continues today. 1. Introduction The prairies of central Illinois may seem an unlikely place to begin a photometric revolution. Illinois is a flat land state with only about 100 clear nights per year, the average elevation is only 600 feet above sea level, and the highest point is only at 1,500 feet. Yet, Illinois has produced its share of prominent and innovative astronomers. George Ellery Hale built his Kenwood Observatory in the heart of Chicago. Edwin Hubble spent his teen years in the Chicago suburbs and was educated at University of Chicago. Grote Reber built the World’s first parabolic-steerable radio telescope.
    [Show full text]
  • Table of Contents
    AAS Newsletter September/October 2012, Issue 166 - Published for the Members of the American Astronomical Society Table of Contents 2 President’s Column 17 Committee on the Status of Women in 4 From the Executive Office Astronomy 5 What Makes an Astronomy Story 18 News from NSF Division of Astronomical Newsworthy? Sciences (AST) 6 Journals Update 20 JWST Update 9 Secretary's Corner 21 HAD News 9 Council Actions 21 Honored Elsewhere 10 The AAS Heeds the Call of the Wild 22 Announcements 16 Committee on Employment 23 Calendar of Events 25 Washington News A A S American Astronomical Society AAS Officers President's Column David J. Helfand, President Debra M. Elmegreen, Past President David J. Helfand, [email protected] Nicholas B. Suntzeff, Vice-President Edward B. Churchwell, Vice-President Paula Szkody, Vice-President Hervey (Peter) Stockman, Treasurer G. Fritz Benedict, Secretary Anne P. Cowley, Publications Board Chair Edward E. Prather, Education Officer At 1:32AM Eastern time on 6 Councilors August, the Mars Science Laboratory Bruce Balick Nancy S. Brickhouse and its charmingly named rover, Eileen D. Friel Curiosity, executed a perfect landing Edward F. Guinan Todd J. Henry in Gale Crater. President Obama Steven D. Kawaler called the highly complex landing Patricia Knezek Robert Mathieu procedure “an unprecedented feat of Angela Speck technology that will stand as a point Executive Office Staff of pride far into the future.” While Kevin B. Marvel, Executive Officer we certainly hope Curiosity’s lifetime Tracy Beale, Registrar & Meeting Coordinator Chris Biemesderfer, Director of Publishing on Mars is a long one, we must all Sherri Brown, Membership Services continue to make the case that we Coordinator Kelly E.
    [Show full text]
  • Asian Nobel Prize' for Mapping the Universe 27 May 2010
    Scientists win 'Asian Nobel Prize' for mapping the universe 27 May 2010 Three US scientists whose work helped map the category. universe are among the recipients of the one- million-US-dollar Shaw Prize, known as the "Asian (c) 2010 AFP Nobel," the competition's organisers said Thursday. Princeton University professors Lyman Page and David Spergel and Charles Bennett of Johns Hopkins University, won the award for an experiment that helped to determine the "geometry, age and composition of the universe to unprecedented precision." The trio will share the Shaw Prize's award for astronomy, with one-million-US-dollar prizes also awarded in the categories for mathematical sciences and life sciences and medicine. The University of California's David Julius won the award for life sciences and medicine for his "seminal discoveries" of how the skin senses pain and temperature, the organisers' statement said. "(Julius's) work has provided insights into fundamental mechanisms underlying the sense of touch as well as knowledge that opens the door to rational drug design for the treatment of chronic pain," the statement said. Princeton's Jean Bourgain won an award for his "profound work" in mathematical sciences, it said. The Shaw Prize, funded by Hong Kong film producer and philanthropist Run Run Shaw and first awarded in 2004, honours exceptional contributions "to the advancement of civilization and the well-being of humankind." The awards will be presented at a ceremony in Hong Kong on September 28. Last year, two scientists whose work challenged the assumption that obesity is caused by a lack of will power won the life sciences and medicine 1 / 2 APA citation: Scientists win 'Asian Nobel Prize' for mapping the universe (2010, May 27) retrieved 27 September 2021 from https://phys.org/news/2010-05-scientists-asian-nobel-prize-universe.html This document is subject to copyright.
    [Show full text]
  • Primack-Phys205-Feb2
    Physics 205 6 February 2017 Comparing Observed Galaxies with Simulations Joel R. Primack UCSC Hubble Space Telescope Ultra Deep Field - ACS This picture is beautiful but misleading, since it only shows about 0.5% of the cosmic density. The other 99.5% of the universe is invisible. Matter and Energy Content of the Universe Imagine that the entire universe is an ocean of dark energy. On that ocean sail billions of ghostly ships made of dark matter... Matter and Energy Content of the Dark Universe Matter Ships on a ΛCDM Dark Double Energy Dark Ocean Imagine that the entire universe is an ocean of dark Theory energy. On that ocean sail billions of ghostly ships made of dark matter... Matter Distribution Agrees with Double Dark Theory! Planck Collaboration: Cosmological parameters PlanckPlanck Collaboration: Collaboration: The ThePlanckPlanckmissionmission Planck Collaboration: The Planck mission 6000 6000 Angular scale 5000 90◦ 500018◦ 1◦ 0.2◦ 0.1◦ 0.07◦ Planck Collaboration: The Planck mission European 6000 ] 4000 2 ] 4000 2 K Double K µ [ µ 3000 [ 3000Dark TT Space TT 5000 D D 2000 2000Theory Agency 1000 1000 ] 4000 2 Cosmic 0 K 0 PLANCK 600 Variance600 60 µ 60 [ 3000 300300 30 TT 30 TT 0 0 Satellite D 0 0 D ∆ D Fig. 7. Maximum posterior CMB intensity map at 50 resolution derived from the joint baseline-30 analysis of Planck, WMAP, and ∆ -300 -300 408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by-30 a constrained realization that has the same statistical properties as the rest of the sky.
    [Show full text]
  • Hydrodynamic Simulation of Active Galactic Nuclei in Galaxy Cluster
    Hydrodynamic Simulation of Active Galactic Nuclei in Galaxy Cluster christoph becker January 2017 Christoph Becker: Hydrodynamic Simulation of Active Galactic Nuclei in Galaxy Clus- ter, Kinetic Feedback Mode, © January 2017 Hydrodynamische Simulation von Aktiven Galaxie Kernen in Galaxienhaufen Hydrodynamic Simulation of Active Galactic Nuclei in Galaxy Cluster Master Arbeit Master Thesis zur Erlangung des Master of Science for the Master of Science degree in natural science an der Fakultät für Physik at the Faculty for Physics der Ludwig-Maximilians-Universität (LMU), München of the Ludwig-Maximilians-University (LMU) of Munich vorgelegt von presented by Christoph Becker aus Berlin, Deutschland from Berlin, Germany München, August 10, 2017 Supervisors: Prof. Dr. Klaus Dolag, (USM, LMU) Prof. Dr. Giuseppe Murante (INAF, Trieste) Prof. Dr. Stefano Borgani (INAF, Trieste) iv ... Also the astronomers surely will not have to continue to exercise the patience which is required for computation... For it is unworthy of excellent men to lose hours like slaves in the labor of calculation which could safely be relegated to anyone else if the machine were used. — Leibnitz 1674 ABSTRACT Active galactic nuclei (AGN) are among the brightest objects in universe and the least understood. They interact with their environment through several en- ergy feedback mechanisms such as radiation, winds, and jets. Even though many details of these feedback processes are still to be worked out, it is certain that they strongly influence the evolutionary history of their host galaxy and galaxy clusters. Furthermore can AGNs hold the answers to open standing questions of observational measurements such as star formation rate quenching in galaxies and the cooling catastrophe of the intra-cluster medium.
    [Show full text]
  • Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind.
    [Show full text]
  • David Spergel Is the Director of the Center for Computational Astrophysics and the Charles Young Professor of Astronomy at Princeton University
    David Spergel is the director of the Center for Computational Astrophysics and the Charles Young Professor of Astronomy at Princeton University. He is the former chair of the Space Studies Board. Using microwave background observations from the Wilkinson Microwave Anisotropy Probe (WMAP) and the Atacama Cosmology Telescope, Spergel has measured the age, shape and composition of the universe. These observations have played a significant role in establishing the standard model of cosmology. He is one of the leaders of the Simons Observatory, which will include a planned millimeter-wave telescope that will allow us to take the next step in studying the microwave sky and probing the history of the universe. Spergel is currently co-chair of the Wide Field Infrared Survey Telescope (WFIRST) science team. WFIRST will study the nature of dark energy, complete the demographic survey of extrasolar planets, characterize the atmospheres of nearby planets and survey the universe with more than 100 times the field of view of the Hubble Space Telescope. Spergel has played a significant role in designing the coronagraph and in shaping the overall mission. Since completing my Ph.D. work, Spergel has been interested in using laboratory experiments and astronomical observations to probe the nature of dark matter and look for new physics. Recently, Spergel has been active in the exploration of data from the Gaia satellite and observations made by Subaru’s Hyper Suprime-Cam. Spergel serves as co-chair of the Global Coordination of Ground and Space Astrophysics working group of the International Astronomical Union. At Princeton, Spergel was department chair for a decade.
    [Show full text]
  • COMPUTER EXPERIMENTS on the STRUCTURE and DYNAMICS of SPIRAL GALAXIES by Frank Hob1 Langley Research Center Hamptopz, Va
    .: I. NASA TECHNICAL NOTE B LOAN COPY: RETURN k COMPUTER EXPERIMENTS ON THE STRUCTURE AND DYNAMICS OF SPIRAL GALAXIES by Frank Hob1 Langley Research Center Hamptopz, Va. 23365 TECH LIBRARY KAFB. NM 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. NASA TN D-6630 5. Report Date March 1972 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Frank Hohl L-8109 10. Work Unit No. 9. Performing Organization Name and Address 112-02-22-01 NASA Langley Research Center 11. Contract or Grant No. Hampton, Va. 23365 13. Type of Report and Period Covered 2. Sponsoring Agency Name and Address Technical Note National ,Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D.C. 20546 5. Supplementary Notes 6. Abstract The evolution of an initially balanced rotating disk of stars with an initial velocity dis- persion given by Toomre's local criterion is investigated by means of a computer model for isolated disks of stars. It is found that the disk is unstable against very large-scale modes. After about two rotations the central portion of the disk tends to assume a bar-shaped struc- ture. A stable axisymmetric disk with a velocity dispersion much larger than that given by Toomre's criterion is generated. The final mass distribution for the disk gives a high-density central core and a disk population of stars that is closely approximated by an exponential variation. Various methods and rates of cooling the hot axisymmetric disks were investigated. It was found that the cooling resulted in the development of two-arm spiral structures which per- sisted as long as the cooling continued.
    [Show full text]
  • U.S. Astronomy and Astrophysics
    U.S. Astronomy and Astrophysics Managing an Integrated Program Committee on the Organization and Management of Research in Astronomy and Astrophysics National Research Council NATIONAL ACADEMY PRESS Washington, D.C. Prepublication Manuscript NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. This project was supported jointly by the National Science Foundation and the National Aeronautics and Space Administration under Grant No. NASW-96013. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the sponsors. Front Cover TBD International Standard Book Number X-XXX-XXXXX-X Additional copies of this report are available from: National Academy Press, 2101 Constitution Avenue, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet <http://www.nap.edu>; and Space Studies Board, National Research Council, HA 584, 2101 Constitution Avenue, N.W., Washington, DC 20418; Internet <http://www.national-academies.org/ssb>; and Board on Physics and Astronomy, National Research Council, HA 562, 2101 Constitution Avenue, N.W., Washington, DC 20418; Internet <http://www.national-academies.org/bpa>. Copyright 2001 by the National Academy of Sciences. All rights reserved. Printed in the United States of America ii Prepublication Manuscript The National Academy of Sciences is a private, nonprofit, self-perpetuating society of distinguished scholars engaged in scientific and engineering research, dedicated to the furtherance of science and technology and to their use for the general welfare.
    [Show full text]
  • Investigations of the Interstellar Medium at Washburn Observatory, 1930-58
    Journal of Astronomical History andheritage 7(2):85-94 2004 Investigations of the interstellar medium at Washburn Observatory, 1930-58 David S Liebl* University of Wisconsin- College of Engineering, 432 North Lake Street, Rm. 311, Madison, Wisconsin 53706, USA E-mail: [email protected] Christopher Fluke Centre for Astrophysics and Supercomputing, Swinbume University ofTeclmo/ogy, PO Box 218, Victoria 3122, Australia E-mail: [email protected] Abstract Behveen 1930 and 1958, the Washburn Observatory of the University of Wisconsin-Madison was home to pioneering photometric research into the interstellar medium by Joel Stebbins and Albert Whitford. Between 1933 and 1941, Stebbins and Whitford published seminal research on the photometry of stellar reddening, using the Washburn 15-inch refractor and the 60- and 100-inch reflectors at Mount Wilson Observatory. Many factors were responsible for the Washburn Observatory's pre-eminence in this area. l11is paper reviews their research on interstellar dust during the years 1922 58, the observational teclmology and scientific methods that were developed at the Washburn Observatory during that time and the scientific discoveries that originated there. We discuss the factors that enabled WashburnObservatory to become a leader in photometry during the first half of the twentieth century. We also draw on the recollections of past and present Washburn Observatory scientists1 to understand how Washburn's standing led to a subsequent programme of research into the interstellar medium at the University of Wisconsin-Madison. The resulting portrayal of Washburn Observatory provides insights into the evolution of astronomical research in America, from the beginning of the hventieth cenh1ry until today.
    [Show full text]
  • Introduction to Astronomical Photometry, Second Edition
    This page intentionally left blank Introduction to Astronomical Photometry, Second Edition Completely updated, this Second Edition gives a broad review of astronomical photometry to provide an understanding of astrophysics from a data-based perspective. It explains the underlying principles of the instruments used, and the applications and inferences derived from measurements. Each chapter has been fully revised to account for the latest developments, including the use of CCDs. Highly illustrated, this book provides an overview and historical background of the subject before reviewing the main themes within astronomical photometry. The central chapters focus on the practical design of the instruments and methodology used. The book concludes by discussing specialized topics in stellar astronomy, concentrating on the information that can be derived from the analysis of the light curves of variable stars and close binary systems. This new edition includes numerous bibliographic notes and a glossary of terms. It is ideal for graduate students, academic researchers and advanced amateurs interested in practical and observational astronomy. Edwin Budding is a research fellow at the Carter Observatory, New Zealand, and a visiting professor at the Çanakkale University, Turkey. Osman Demircan is Director of the Ulupınar Observatory of Çanakkale University, Turkey. Cambridge Observing Handbooks for Research Astronomers Today’s professional astronomers must be able to adapt to use telescopes and interpret data at all wavelengths. This series is designed to provide them with a collection of concise, self-contained handbooks, which covers the basic principles peculiar to observing in a particular spectral region, or to using a special technique or type of instrument. The books can be used as an introduction to the subject and as a handy reference for use at the telescope, or in the office.
    [Show full text]