Review of Generation IV Nuclear Energy Systems REPORT SUMMARY

Total Page:16

File Type:pdf, Size:1020Kb

Review of Generation IV Nuclear Energy Systems REPORT SUMMARY REPORT Review of Generation IV Nuclear Energy Systems REPORT SUMMARY According to many energy foresight studies carried out in the late 1990s, a shortage of uranium can be expected during the 21st century. This spurred the United States Department of Energy (DOE) to set up the Generation IV International Forum (GIF) in 2000, for the purpose of coordinating research and development work aimed at deploying Generation IV nuclear energy systems (reactors and the related fuel cycle facilities), by the second half of this century. Member countries, including France, proposed more than a hundred such systems, of which GIF selected six, considered the most promising in light of various criteria based on the following objectives: continuation of the progress made by Generation III water reactors in terms of competitiveness and safety; more effective use of uranium resources; less radioactive waste, especially high-level, long-lived waste; greater protection against malicious acts and the diversion or theft of nuclear materials. The six systems selected by GIF are: Sodium-cooled Fast Reactors (SFR); Very High Temperature Reactors (VHTR); Gas-cooled Fast Reactors (GFR); Lead-cooled or Lead-Bismuth Eutectic (LBE) cooled Fast Reactors (LFR); Molten Salt Reactors (MSR); SuperCritical Water Reactors (SCWR). GIF selected several fast neutron spectrum systems as they facilitate the transmutation of fertile material into fissile material and, in some configurations, are capable of breeding fissile material. SFR, LFR, GFR and MSR systems are in this category. These characteristics could lead to improved use of energy resources. Furthermore, high-temperature coolants can be used to improve the energy efficiency of nuclear power plants as well as nuclear facilities, such as the VHTR, that could be used to generate process heat for industry. French industry has opted for the development of a Generation IV reactor prototype based on the SFR concept by 2020, via ASTRID, the Advanced Sodium Technological Reactor for Industrial Demonstration project. ASN, the French Nuclear Safety Authority, stressed that the choice of one system over another selected by GIF should be based on demonstrated safety and radiation protection performance. In this respect, it considers that the system selected for the development of Generation IV reactors in France should provide significantly more protection for the interests mentioned in Article L593-1 of the French Environmental Code1 than currently offered by 1 Public security, health and safety, protection of the nature and the environment 2/239 Generation III reactors2. ASN therefore wished to obtain the opinion of the Advisory Committee for Reactors (GPR) on the safety and radiation protection characteristics of the six systems studied by GIF. IRSN would first like to draw attention to the difficulties of performing a “balanced” safety and radiation protection review of the nuclear systems selected by GIF, as some concepts have already been partially tried and tested, while others are still in the early stages of development. Consequently, some technologies benefit from substantial operating experience feedback and in-depth studies, while others are only at the project stage. The safety of a nuclear facility depends both on the intrinsic characteristics of the facility in question and the design and operating provisions implemented. For that reason, it is impossible to make a comprehensive assessment of the different systems at this point in time and designs currently under consideration may not necessarily be those ultimately selected for Generation IV reactors and the related fuel cycle. IRSN’s assessment thus seeks to measure the “safety potential” of the systems in question as far as can be determined on the basis of current knowledge. To this end, IRSN focused on reviewing the intrinsic characteristics of each system and the related design and operating constraints, including aspects specific to fuel cycle facilities. In particular, it considers that the future generation of nuclear facilities would benefit from the development of “tolerant” concepts that are not highly sensitive to events liable to occur inside or outside the facility. Sodium-cooled Fast Reactors (SFR) Based on its assessment, IRSN considers the SFR system to be the only one of the various nuclear systems considered to date to have reached a degree of maturity compatible with the construction of a Generation IV reactor prototype during the first half of the 21st century. Furthermore, the scenario in which PWRs would be phased out and replaced by SFRs by the end of the century is plausible given the ready supply of plutonium in the initial stages of the deployment scenario and the use of a closed nuclear fuel cycle with proven oxide fuel. Before this scenario can be rolled out, however, further progress must be made in research and technological development in areas that are, for the most part, already identified. Metal fuel is another option that could be considered, albeit it in the longer term as its use would involve extensive changes to current reprocessing methods and require a significant R&D effort. Investment on this scale would only appear justified if the use of metal fuel brought about a significant improvement in reactor safety. The main advantage of SFR technology in terms of safety is the use of low-pressure liquid coolant. The normal operating temperature of this coolant is significantly lower than its boiling point (margin of about 300°C), allowing a grace period of several hours during loss-of-cooling events. The advantage gained from the high boiling point of sodium, however, must be weighed against the fact that the structural integrity of the reactor cannot be guaranteed near this temperature. The use of sodium also comes with a number of drawbacks due to its high reactivity not only with water and air, but also with MOX fuel. Design provisions must be made to mitigate the related risks. While it seems possible for SFR technology to guarantee a safety level at least equivalent to that targeted for EPR- type pressurised-water reactors, IRSN is unable to determine whether it could significantly exceed this level, in view of design differences and the current state of knowledge and research. The nuclear system associated with the SFR has been the focus of considerable R&D, both in France and elsewhere. One example is the ASTRID reactor 2 In other words, meeting safety objectives on a par with those defined for the Flamanville 3 EPR currently under construction. 3/239 should lead to a more accurate assessment of the various technological solutions studied in terms of feasibility and safety. Very High Temperature Reactors (VHTR) The VHTR benefits from the operating experience feedback obtained from High Temperature Reactors (HTR). Although it aims at higher technical performance levels than the HTR, it does not offer any progress in terms of safety. Nonetheless, the safety level of the last HTRs developed in the 1980s is already an improvement compared with the other systems selected by GIF. In particular, this technology is intrinsically safe with respect to loss of cooling, which means that it could be used to design a reactor that does not require an active decay heat removal system. The VHTR system could therefore bring about significant safety improvements compared with Generation III reactors, especially regarding core melt prevention. The feasibility of the system, however, has yet to be determined and will chiefly depend on the development of fuels and materials capable of withstanding high temperatures; the currently considered operating temperature of around 1000°C is close to the transformation temperature of materials commonly used in the nuclear industry. A precise assessment of risks relating to graphite dust would also be required if this option was selected. As it stands, this system does not optimise natural resource and waste management in the long term; storing structural waste and spent fuel without conditioning is not a viable permanent solution. Alternative management solutions are being explored, however, to limit the quantities of graphite for disposal. Although it was contemplated in the past, the use of a closed fuel cycle for the VHTR system is not feasible at present. Demonstrating that VHTR waste can be safely managed and determining the long-term behaviour of waste after disposal (and defining how it should be conditioned) are therefore two key factors in decision-making. The closed cycle option could, however, become more credible in the longer term if thorium fuel (233U-Th) were to be used, although substantial R&D would be required to demonstrate feasibility of the concept. Whatever the case, managing this type of fuel cycle would be a long and complex task. It is clear that VHTR safety performance can only be guaranteed by significantly limiting unit power, which makes it very unlikely that VHTRs will one day replace French nuclear power plants. In view of the above, IRSN sees the VHTR more as a way of consuming plutonium to back up the PWR fleet, for example, and reducing plutonium inventory in the fuel cycle - even significantly so within the context of a nuclear phase-out. No operating experience feedback from the other four systems studied can be put to direct use. The technological difficulties involved rule out any industrial deployment of these systems within the time frame considered. Nevertheless, a distinction can be made between the LFR and GFR systems on the one hand, for which small reactors could be built during the first half of this century, and the MSR and SCWR systems on the other, where it seems hard to imagine any reactor being built before the end of the century. 4/239 Lead-cooled Fast Reactors (LFR) Lead has some useful neutron properties and, unlike sodium, does not react violently with water or air. The thermal inertia associated with the large volume of lead used and its very high density results in long grace periods in the event of loss of cooling.
Recommended publications
  • Introduction to GE Hitachi
    Overview of ABWR Safety Features INPRO Dialogue Forum November 19-23, 2013 J. Alan Beard Principal Engineer Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved GE Hitachi nuclear alliance and businesses Wilmington, NC Tokyo, Japan Wilmington, NC Wilmington, NC Peterborough, ON USA USA Yokosuka, Japan Canada •Nuclear Power Plants: ABWR, •Uranium •Nuclear Fuel Fabrication ESBWR and PRISM Enrichment ….BWR and CANDU •Nuclear Services … Third •CANDU Services •Advanced Programs … Generation •Fuel Engineering and Support Recycling Technology Services •GENUSA European Fuel Joint Venture Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 2 BWR legacy around the world Dodewaard - Netherlands KKM - Switzerland K6/K7 - Japan Dresden 1 – USA KRB - Germany Lungmen - Taiwan Santa María de Garoña - Spain Vallecitos – USA Garigliano - Italy Laguna Verde - Mexico Tarapur 1&2 – India Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 3 Recent project experience Kashiwazaki-Kariwa 6/7 ABWR COD 1996/1997 Hamaoka-5 ABWR COD 2005 Shika-2 ABWR Continuously building for 58 years COD 2006 Images copyright TEPCO, Hokuriku Electric Power, Chugoku Electric Power, and J-Power; Provided by Hitachi GE Nuclear Energy Copyright 2013 GE Hitachi Nuclear Energy International, LLC - All rights reserved 4 Current project status Ohma ABWR Ohma 1 • 38% complete Shimane 3 • 94% complete Under Construction • Approaching fuel load Shimane-3 ABWR Lungmen 1&2 • 94% complete • Startup and Pre-Op
    [Show full text]
  • KINETIC ANALYSIS of SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES Hy S Das Theoretical Physics Division
    BARC/1992/E/011 O 1 "o KINETIC ANALYSIS OF SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES hy S Das Theoretical Physics Division 1992 BARC/1992/E/011 o UJ GOVERNMENT OF INDIA - AATOMIT C ENERGY COMMISSION U KINETIC ANALYSIS OF SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES by S. Das Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1992 BARC/1992/E/011 BIBLIOBRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as par IS i 94BNB - 1980) 01 Security classification i Unclassified 02 Distribution t External 03 Report status i New 04 Series i BARC External 05 Report type i Technical Report 06 Report No. i BARC/1992/E/011 07 Part No. or Volume No. i 08 Contract No. i 10 Title and subtitle i Kinetic analysis of sub-prompt- critical reactor assemblies 11 Collation i 14 p.f 4 figs., 1 tab. IS Project No. i 20 Personal author<s> i S. Das 21 Affiliation of author(s) i Theoretical Physics Division, Bhabha Atomic Research Centre, Bombay 22 Corporate author(s) i Bhabha Atomic Research Centre, Bombay - 400 085 23 Originating unit i Theoretical Physics Division, BARC, Bombay 24 Sponsor(s) Name i Department of Atomic Energy Type i Government 30 Date of submission i May 1992 31 Publication/Issue date i June 1992 Contd... (ii) 1 40 Publ i»h»r/Distributor t Head, Library and Information Division, Bhabha Atomic Rasaarch Contra, Bombay 42 Form of distribution t Hard Copy 50 Languaga of taxt i English 51 Languaga o-f summary i English 92 No. of references i % rafs. 53 Givas data on i 60 Abstract x Nautronic analysis of safaty-ralatad kinetics problams in experimental neutron multiplying assemblies has bean carried out using a sub-prompt-critical reactor model.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
    The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID
    [Show full text]
  • Uranium Pyrophoricity Phenomena and Prediction
    SNF-6192-FP URANIUM PYROPHORICITY PHENOMENA AND PREDICTION Martin G. Plys, Michael Epstein, and Boro Malinovic Fauske & Associates, Inc. 16W070 W. 83rd St. Burr Ridge, Illinois 60521 USA (630) 323-8750 [email protected] ABSTRACT We have compiled a topical reference on the phenomena, experiences, experiments, and prediction of uranium pyrophoricity for the Hanford Spent Nuclear Fuel Project (SNFP) with specific applications to SNFP process and situations. The purpose of the compilation is to create a reference to integrate and preserve this knowledge. Decades ago, uranium and zirconium fires were commonplace at Atomic Energy Commission facilities, and good documentation of experiences is surprisingly sparse. Today, these phenomena are important to site remediation and analysis of packaging, transportation, and processing of unirradiated metal scrap and spent nuclear fuel. Our document, bearing the same title as this paper, will soon be available in the Hanford document system [Plys, et al., 2000]. This paper explains general content of our topical reference and provides examples useful throughout the DOE complex. Moreover, the methods described here can be applied to analysis of potentially pyrophoric plutonium, metal, or metal hydride compounds provided that kinetic data are available. A key feature of this paper is a set of straightforward equations and values that are immediately applicable to safety analysis. 1.0 BACKGROUND AND PURPOSE The phenomenon of pyrophoricity has been studied for chemical process safety and its mathematical formulation, ignition theory, is well established. We have applied ignition theory to experiments conducted with uranium powders and foils using recently available kinetic rate laws, and found that results can be explained and understood, where before these results were not quantified and were on occasion misinterpreted [Epstein, et al., 1996].
    [Show full text]
  • Presentation Title (On One Or Two Lines)
    Energy Business Technology Strategy Yukihiko Kazao Executive Officer and Corporate Senior Vice President Energy Systems & Solutions Company Chief Technology Executive Toshiba Corporation October 18, 2016 © 2016 Toshiba Corporation Energy Business Technology Strategy Pursue clean energy and the related management system グリーンエネルギーの追求とそのマネジメントシステムでand aim to realize sustainable energy for society 持続可能なエネルギー社会の実現を目指す Variable power sources Generate Low carbon Nuclear Hydro- Geothermal Solar Hydrogen thermal power power power power Wind power Transmit Store ・Hydropower ・variable speed Rechargeable batteries Hydrogen water pumps Transformers Short-term Long-term storage storage Transmission Substations Storage and distribution systems Smart use Factories Transport Homes Buildings © 2016 Toshiba Corporation 2 Advancing Toward a Society Supported by Sustainable Energy I. Green energy ・ That pursues the world‘s highest level of safety in nuclear power ・ That aims for zero emissions by introducing high efficiency systems and carbon capture technologies in thermal power ・ That contributes to the stabilization of the power system with hydropower II. Energy management ・ Use next-generation technologies to pursue optimal control of the supply and demand balance Ⅲ. Cutting-edge technologies ・ Lead the world in cutting-edge technologies © 2016 Toshiba Corporation 3 Toshiba Group’s Nuclear Power Plants Global expansion with two reactors offering the world's highest safety levels High capacity BWR: ABWR Innovative PWR: AP1000™ ・ Dynamic + static safety
    [Show full text]
  • WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? a Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development
    WHAT WILL ADVANCED NUCLEAR POWER PLANTS COST? A Standardized Cost Analysis of Advanced Nuclear Technologies in Commercial Development AN ENERGY INNOVATION REFORM PROJECT REPORT PREPARED BY THE ENERGY OPTIONS NETWORK TABLE OF CONTENTS Executive Summary 1 1. Study Motivation and Objectives 6 Why Care about Advanced Nuclear Costs? 7 Origins of This Study 8 A Standardized Framework for Cost Analysis 8 2. Results 9 3. Study Methodology 14 EON Model 15 Company Preparedness and Strategies 19 Limits of This Analysis 20 Certainty Levels for Advanced Nuclear Cost Estimates 20 Realistic Considerations That May Influence Cost 21 4. Advanced Nuclear’s Design and Delivery Innovations 22 Context: The Cost of Conventional Nuclear 23 Design Considerations for Conventional Nuclear Reactors 24 Safety Enhancements of Advanced Nuclear 24 Overview of Reactor Designs 25 Delivery Issues with Conventional Nuclear Power 27 Innovations in the Delivery of Advanced Nuclear Technologies 28 Design Factors That Could Increase Advanced Nuclear Costs 30 5. Conclusions 31 6. References 32 Appendix A: Nuclear Plant Cost Categories 34 Appendix B: Operating Costs for a Nuclear Plant 35 Appendix C: Cost Category Details and Modeling Methodology 36 Appendix D: External Expert Review of Draft Report 43 THE FUTURE OF NUCLEAR TECHNOLOGY: A STANDARDIZED COST ANALYSIS EXECUTIVE SUMMARY Advanced nuclear technologies are controversial. Many people believe they could be a panacea for the world’s energy problems, while others claim that they are still decades away from reality and much more complicated and costly than conventional nuclear technologies. Resolving this debate requires an accurate and current understanding of the increasing movement of technology development out of national nuclear laboratories and into private industry.
    [Show full text]
  • Progress in Nuclear Energy 105 (2018) 83–98
    Progress in Nuclear Energy 105 (2018) 83–98 Contents lists available at ScienceDirect Progress in Nuclear Energy journal homepage: www.elsevier.com/locate/pnucene Technology perspectives from 1950 to 2100 and policy implications for the T global nuclear power industry Victor Nian Energy Studies Institute, National University of Singapore, Singapore ARTICLE INFO ABSTRACT Keywords: There have been two completed phases of developments in nuclear reactor technologies. The first phase is the Nuclear industry trends demonstration of exploratory Generation I reactors. The second phase is the rapid scale-up of Generation II Nuclear energy policy reactors in North America and Western Europe followed by East Asia. We are in the third phase, which is the ff Technology di usion construction of evolutionary Generation III/III+ reactors. Driven by the need for safer and more affordable New user state nuclear reactors post-Fukushima, the nuclear industry has, in parallel, entered the fourth phase, which is the International cooperation development of innovative Generation IV reactors. Through a comprehensive review of the historical reactor Advanced reactor development technology developments in major nuclear states, namely, USA, Russia, France, Japan, South Korea, and China, this study presents a projection on the future potentials of advanced reactor technologies, with particular focus on pressurized water reactors, high temperature reactors, and fast reactors, by 2100. The projected potentials provide alternative scenarios to develop insights that complement the established technology roadmaps. Findings suggest that there is no clear winner among these technologies, but fast reactors could demonstrate a new and important decision factor for emerging markets. Findings also suggest small modular reactors, espe- cially those belonging to Generation IV, as a transitional technology for developing domestic market and in- digenous technology competence for emerging nuclear states.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • MICROREVIEW Reactivity of Polar Organometallic Compounds In
    MICROREVIEW Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities Joaquin García-Álvarez,*[a] Eva Hevia,*[b] and Vito Capriati*[c] This paper is gratefully dedicated to the memory of Dr. Guy Lavigne Abstract: Developing new green solvents in designing chemical chemicals in chemical transformations is, indeed, solvents used products and processes or successfully employing the already as reaction media, which account for 80–90% of mass utilization existing ones is one of the key subjects in Green Chemistry and is in a typical pharmaceutical/fine chemical operational process. especially important in Organometallic Chemistry, which is an Thus, the solvent itself is often a critical parameter especially in interdisciplinary field. Can we advantageously use unconventional drug product manufacturing and is as well responsible for most reaction media in place of current harsh organic solvents also for waste generated in the chemical industries and laboratories.[3] polar organometallic compounds? This Microreview critically Following these considerations, some of the most critical analyses the state-of-the-art on this topic and showcases recent and intriguing questions that arise are: Can we get traditional developments and breakthroughs which are becoming new research organic solvents out of organometallic reactions?[4] Can we use directions in this field. Because metals cover a vast swath of the protic, recyclable, biodegradable, and cheap unconventional periodic table, the content is organised into three Sections solvents also for highly reactive organometallic compounds? discussing the reactivity of organometallic compounds of s-, p- and Answering these questions would not only mean to break new d-block elements in unconventional solvents.
    [Show full text]
  • 2019 ANS Annual Meeting Official Program
    Annual Meeting 2019 Official Program THE VALUE OF NUCLEAR June 9-13, 2019 Minneapolis, MN, USA Hyatt Regency Minneapolis Annual 2019 THE VALUE OF NUCLEAR Our most sincere thanks to our sponsors for their support of the 2019 Annual Meeting. ELITE SPONSORSHIP GOLD SPONSORSHIP SILVER SPONSORSHIP BRONZE SPONSORSHIP Table of Contents GENERAL MEETING INFORMATION Meeting Officials ..............................................................................2 Daily Schedule .................................................................................3-6 General Information .........................................................................7-10 PLENARY, SPECIAL SESSIONS & EVENTS ANS President’s Opening Reception ..................................................11 Opening Plenary Session ..................................................................11 OPD Dinner .....................................................................................11 ANS President’s Special Session .......................................................12 New-Supply Chain Special Session .....................................................12 General Chair’s Special Session ........................................................13 Focus on Communications Workshop .................................................13 ANS Annual Business Meeting ..........................................................13 Technical Tour: Monticello Nuclear Generating Plant ............................13 Technical Tour: Prairie Island Nuclear Generating Station ....................13
    [Show full text]
  • Regulatory Guide 3.35, Revision 1
    Revision 1 U.S. NUCLEAR REGULATORY COMMISSION July 1979 :*REGULATORY GUIDE OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 335 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF ACCIDENTAL NUCLEAR CRITICALITY IN A PLUTONIUM PROCESSING AND FUEL FABRICATION PLANT A. INTRODUCTION will review the proposal and approve its use, if found acceptable. Section 70.22, "Contents of Applications," of 10 CFR Part 70, "Domestic Licensing of Special B. DISCUSSION Nuclear Materials," requires, that each appli- cation for a license to possess and use special In the process of reviewing applications for nuclear material in a plutonium processing and permits and licenses authorizing the construc- fuel fabrication plant contain a description and tion or operation of plutonium processing and safety assessment of the design bases of the fuel fabrication plants, the NRC staff has principal structures, systems, and components developed a number of appropriately conser- of the plant. Section 70.23(a)(3) states that vative assumptions that are used by the staff applications will be approved if the Commission to evaluate an estimate of the radiological determines that, among other factors, the consequences of various postulated accidents. applicant's proposed equipment and facilities These assumptions are based on previous are adequate to protect health and minimize accident experience, engineering judgment, danger to life and property, and Sec- and on the analysis of applicable experimental tion 70.23(b) states that the Commission will results from safety research programs. This approve construction of the principal struc- guide lists assumptions used by the staff to tures, systems, and components of the plant evaluate the magnitude and radiological conse- when the Commission has determined that the quences of a criticality accident in a plutonium design bases of the principal structures, sys- processing and fuel fabrication plant.
    [Show full text]