Fundamentals of Power Reactors Module One Science & Engineering Fundamentals

Total Page:16

File Type:pdf, Size:1020Kb

Fundamentals of Power Reactors Module One Science & Engineering Fundamentals Training Centre / Centre de formation Fundamentals of Power Reactors Module One Science & Engineering Fundamentals Copyright Notice ©HER MAJESTY THE QUEEN IN RIGHT OF CANADA (1993) as represented by the Atomic Energy Control Board All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical photocopying, recording or otherwise, without permission from the Atomic Energy Control Board of Canada. Training Centre / Centre de formation Training Centre / Centre de formation Basis of Nuclear Structure and Fission Training Objectives The participant will be able to describe or understand: 1 the atomic and nuclear structure, 2 the basic vocabulary of nuclear energy: typical length scales, mass and energy units, etc., 3 the atomic and nuclear phenomena, 4 the fission and energy release processes, 5 the types of radiation, 6 the concept of neutron spectrum, 7 the conecpt of cross section 8 the concept of irradiation Nuc Struc & Fission Training Centre / Centre de formation Nuc Struc & Fission Training Centre / Centre de formation Basis of Nuclear Structure and Fission Table of Contents 1 Introduction ...............................................................................................3 2 Basics of Nuclear Physics ........................................................................4 2.1 Structure of the atom and nucleus ................................................4 2.1.1 Nuclear structure ..........................................................................4 2.1.2 Isotopes ...........................................................................................5 2.1.3 Nuclear stability ............................................................................6 2.2 Binding energy and excited states of the nucleus .......................8 2.2.1 Energy and mass units .................................................................8 2.2.2 Binding energy of the nucleus .....................................................9 2.2.3 Comparison of chemical and nuclear energies .........................9 2.2.4 Excited state of the nucleus .........................................................10 2.3 Radioactivity .....................................................................................10 3 Fundamentals of Reactor Physics ...........................................................13 3.1 Fast and thermal neutrons ...............................................................13 3.1.1 Fast neutrons ..................................................................................13 3.1.2 Thermal Neutrons ..........................................................................14 3.2 Neutron-nucleus reactions ..............................................................15 3.3 Concept of nuclear cross section .....................................................15 3.3.1 Macroscopic and microscopic cross section ...............................15 3.3.2 Beam intensity ................................................................................17 3.3.3 Mean free path ................................................................................18 3.4 Rates of neutron reactions ...............................................................18 3.4.1 Reactions rates ................................................................................18 3.4.2 Neutron flux ...................................................................................19 3.4.3 Concept of the neutron current.....................................................20 3.5 Concept of irradiation ......................................................................21 3.6 Fuel burnup .......................................................................................21 Nuc Struc & Fission - Page 1 Training Centre / Centre de formation 4 Fission ..........................................................................................................21 4.1 Mechanism of nuclear fission ..........................................................21 4.2 Energy release in fission ...................................................................23 4.3 Neutron-energy considerations ......................................................24 4.4 Thermal reactors ...............................................................................26 Nuc Struc & Fission - Page 2 December 1995 Training Centre / Centre de formation 1 Introduction The nuclear energy is a powerful energy source related to the strength and stability of the atomic nucleus. It may be available in two different ways, either by fusion of light elements or by fission of heavy nuclei. The process called nucleosynthesis is taking place in stars and uses the fusion reaction to create heavy weight atomic nuclei. In this process, the fusion reaction brings together protons, neutrons and energy. They become bound by strong interactions in the nucleus. It is unlikely that the fusion reaction will be used in an industrial process of energy production in the near future. The major problem is that a tremendous amount of energy (of the order of magnitude of the temperature in stars, 100 millions degrees) is required to initiate the fusion reaction. Below is a list of various fusion reactions with their energy balance: 22→++3 1 1D + 1D 2He(0.82MeV)0 n(2.45MeV) 3.27Mev 22→++3 1 1D + 1D 1T(1.01MeV)1 p(3.02MeV) 4.03Mev 2 3→++4 1 1D + 1T 2He(3.56MeV)0 n(14.03MeV) 17.59Mev 3 3 →++4 1 1T + 1T 2He 20n 17.59Mev To date, the only macroscopic application of the fusion reaction is the H bomb (the third of the above equations). Figure 1.1 below illustrates the fusion reaction between deuterium and tritium. Fig. 1.1: Fusion reaction between deuterium and tritium Intermediate compound nucleus Deuterium Tritium 4He γ n n n n V V D T p p n p p High n Energy Collision In comparison, the fission reaction is “easier” to produce; it is the source of energy in a nuclear reactor: neutron-induced fission of uranium and plutonium nuclei. As it is the process of interest for nuclear energy production, it will be treated in greater details in this lesson. The fission reaction can liberate part of the binding energy by breaking the nuclear structure. According to the concept of equivalence of mass and energy established by Einstein, the amount of energy ∆E released is given by the following equation: ∆E = ∆m c2 where c is the speed of light and ∆m is the mass defect. The determination of Nuc Struc & Fission - Page 3 Training Centre / Centre de formation nuclear masses has shown that the mass of a heavy nucleus is higher than the sum of the individual masses of its constituent nucleons. It is called the mass defect. Figure 1.2 below illustrates the neutron-induced fission reaction of uranium. Fig. 1.2: Uranium fission reaction 235U Intermediate 92 compound nucleus n 236 95Kr 92 U 36 n 139 56 Ba γ n Reactor physics is the study of the fission chain reaction and its dependence on the materials in the reactor core and their geometrical configuration. The reactor physicist area of interest is in core neutronics: the distribution in space, time and energy of the neutron population. Reactor physics shares methods and results with thermohydraulics, safety, fuel management and operation. Fig. 1.3: Relations between reactor physics and other disciplines Operation Fuel Management Reactor Physics Safety Thermal- Hydraulics 2 Basics of Nuclear Physics 2.1 Structure of the atom and nucleus 2.1.1 Nuclear structure An atom of a chemical element consists of a small, positively charged, massive nucleus surrounded by a large, negatively charged, light electron cloud. The radius of the atom is of the order of 10-8 cm (≈1Å (ångström)), whereas the radius of the nucleus is of the order of only 10-13-10-12 cm (about 10 thousands times smaller). In spite of this, more than 99.9% of the mass (and therefore of the energy) of the atom resides in the nucleus. Nuc Struc & Fission - Page 4 December 1995 Training Centre / Centre de formation The nucleus consists of positively charged protons and uncharged neutrons. Protons and neutrons are collectively called nucleons. The mass of a proton is about 1836 times, while that of a neutron is about 1838 times, the mass of an electron. The number of protons in the nucleus - denoted by Z - (or, equivalently, the number of electrons in the neutral atom) is called the atomic number and determines the chemical element. For instance, Z = 1 (one proton) corresponds to hydrogen, Z = 8 corresponds to oxygen, Z = 92 corresponds to uranium. The number of neutrons in the nucleus is denoted by N. The total number of nucleons in the nucleus is the mass number, A ≡ Z+N. A given combination of a specific Z and a specific N is a specific “nuclide”, X. Thus any two of Z, N and A are sufficient to specify the nuclide, and it is represented by the symbol X. Figure 2.1 shows the atomic structure of various nuclides. 2.1.2 Isotopes The atomic number determines the chemical nature of an element because the chemical properties depend on the (orbital) electrons surrounding the nucleus, and their number must be equal to the number of protons, since the atom as a whole is electrically neutral. Consequently, atoms with nuclei containing the same number of protons, i.e., with the same atomic number, but with different mass numbers, are identical chemically, although they frequently exhibit marked differences in their nuclear characteristics. Such species, having the same atomic numbers but different
Recommended publications
  • KINETIC ANALYSIS of SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES Hy S Das Theoretical Physics Division
    BARC/1992/E/011 O 1 "o KINETIC ANALYSIS OF SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES hy S Das Theoretical Physics Division 1992 BARC/1992/E/011 o UJ GOVERNMENT OF INDIA - AATOMIT C ENERGY COMMISSION U KINETIC ANALYSIS OF SUB-PROMPT-CRITICAL REACTOR ASSEMBLIES by S. Das Theoretical Physics Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1992 BARC/1992/E/011 BIBLIOBRAPHIC DESCRIPTION SHEET FOR TECHNICAL REPORT (as par IS i 94BNB - 1980) 01 Security classification i Unclassified 02 Distribution t External 03 Report status i New 04 Series i BARC External 05 Report type i Technical Report 06 Report No. i BARC/1992/E/011 07 Part No. or Volume No. i 08 Contract No. i 10 Title and subtitle i Kinetic analysis of sub-prompt- critical reactor assemblies 11 Collation i 14 p.f 4 figs., 1 tab. IS Project No. i 20 Personal author<s> i S. Das 21 Affiliation of author(s) i Theoretical Physics Division, Bhabha Atomic Research Centre, Bombay 22 Corporate author(s) i Bhabha Atomic Research Centre, Bombay - 400 085 23 Originating unit i Theoretical Physics Division, BARC, Bombay 24 Sponsor(s) Name i Department of Atomic Energy Type i Government 30 Date of submission i May 1992 31 Publication/Issue date i June 1992 Contd... (ii) 1 40 Publ i»h»r/Distributor t Head, Library and Information Division, Bhabha Atomic Rasaarch Contra, Bombay 42 Form of distribution t Hard Copy 50 Languaga of taxt i English 51 Languaga o-f summary i English 92 No. of references i % rafs. 53 Givas data on i 60 Abstract x Nautronic analysis of safaty-ralatad kinetics problams in experimental neutron multiplying assemblies has bean carried out using a sub-prompt-critical reactor model.
    [Show full text]
  • Regulatory Guide 3.35, Revision 1
    Revision 1 U.S. NUCLEAR REGULATORY COMMISSION July 1979 :*REGULATORY GUIDE OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 335 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF ACCIDENTAL NUCLEAR CRITICALITY IN A PLUTONIUM PROCESSING AND FUEL FABRICATION PLANT A. INTRODUCTION will review the proposal and approve its use, if found acceptable. Section 70.22, "Contents of Applications," of 10 CFR Part 70, "Domestic Licensing of Special B. DISCUSSION Nuclear Materials," requires, that each appli- cation for a license to possess and use special In the process of reviewing applications for nuclear material in a plutonium processing and permits and licenses authorizing the construc- fuel fabrication plant contain a description and tion or operation of plutonium processing and safety assessment of the design bases of the fuel fabrication plants, the NRC staff has principal structures, systems, and components developed a number of appropriately conser- of the plant. Section 70.23(a)(3) states that vative assumptions that are used by the staff applications will be approved if the Commission to evaluate an estimate of the radiological determines that, among other factors, the consequences of various postulated accidents. applicant's proposed equipment and facilities These assumptions are based on previous are adequate to protect health and minimize accident experience, engineering judgment, danger to life and property, and Sec- and on the analysis of applicable experimental tion 70.23(b) states that the Commission will results from safety research programs. This approve construction of the principal struc- guide lists assumptions used by the staff to tures, systems, and components of the plant evaluate the magnitude and radiological conse- when the Commission has determined that the quences of a criticality accident in a plutonium design bases of the principal structures, sys- processing and fuel fabrication plant.
    [Show full text]
  • Introductory Nuclear Physics Problem Set 05
    UNIVERSITY OF CAPE TOWN EEE4106Z: Introductory Nuclear Physics Problem Set 05 Due 1400 Tuesday 2 June 2015 This problem set should prove valuable in preparation for the final examination. The questions allow you to possibly gain a fuller understanding of important concepts that were not familiar to you at the time of preparing your answers to the preceding problem set. At Koeberg hand in to Z Isaacs. At UCT place in Aschman mailslot in mailboxes opposite room 508, top floor RW James Building UCT. Late answers will incur a penalty. Students may work together on the problems, and discuss the results together, but a handed-in script must be each student's own work. Copied work gets zero. Discuss the problems before tackling them! 1) Explain how the fuel temperature coefficient of reactivity is largely determined by the resonances in the cross-section for the 238U(n; γ) capture of neutrons. Provide a clear explanation of the Doppler broadening of the resonance peaks. SOLUTION: At higher temperatures there is greater thermal motion of the fuel nuclei, in particular U-238 nuclei. This increases the spread in the velocities, and hence the energies, with with the neutrons approach the U-238 nuclei. This causes Doppler broadening of the neutron capture resonances in the 238U(n; γ) cross-section in the epi-thermal energy region, so there is a greater chance of the a neutron being captured in the fuel as the neutron energy gets stepped down, from fast to thermal, by the moderator. This reduces the resonance escape factor p, and hence k.
    [Show full text]
  • Reactor Physics
    REACTOR PHYSICS COURSE INTRODUCTION This Training Manual assumes prior knowledge of Nuclear Theory. It extends this information into a discussion of Reactor Physics, particularly as it relates to CANDU reactors. The course begins with the general principles of reactor configuration required to maintain a self- sustaining chain reaction. It continues with reactor dynamics (in both the critical and subcritical core), reactivity feedback effects (temperature effects, fission product poisoning, and fuel burnup), and ends with operational considerations (at low and high power). The material covers four main areas, subdivided into eight major sections as follows: • The Critical Reactor at Steady Power Output (Section 1) • The Dynamic Reactor (Sections 2 and 3) • Reactivity Feedback Effects (Sections 4, 5, and 6) • Reactor Operations (Sections 7 and 8) CNSC i Science and Reactor Fundamentals – Reactor Physics Technical Training Group TABLE OF CONTENTS Objectives 1 The Critical Reactor at Steady Power Output 9 1.0 INTRODUCTION 9 1.1 Fission 9 1.2 Harnessing Fission 15 1.3 Movement of Neutrons Through the CANDU lattice Lattice 18 1.4 The Finite Reactor 26 Response of The Critical Reactor to a Reactivity Change 31 2.0 INTRODUCTION 31 2.1 Exponential Power Rise 31 2.2 Corrections to Exponential Reactor Response 33 2.3 The Effect of Delayed Neutrons 36 2.4 Prompt Criticality 40 2.5 Power Rundown: The Prompt Drop 42 Responsiveness of The Subcritical Reactor 45 3.0 INTRODUCTION 45 3.1 Neutron Flux in a “Shut Down” Reactor 45 3.2 Dynamics in the Subcritical
    [Show full text]
  • Accelerator-Driven Systems: Safety and Kinetics
    Accelerator-driven Systems: Safety and Kinetics Marcus Eriksson Doctoral Thesis Department of Nuclear and Reactor Physics Royal Institute of Technology Stockholm 2005 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen fredagen den 18 mars 2004 kl. 10.00 i sal FA32, Albanova universitetscentrum, Roslagstullsbacken 21, Stockholm. ISBN 91-7283-988-0 TRITA-FYS 2005:13 ISSN 0280-316X ISRN KTH/FYS/--05:13—SE Copyright Marcus Eriksson Tryckeri: Universitetsservice US-AB, Stockholm 2005 2 Abstract The accelerator-driven system (ADS) is recognized as a promising system for the purpose of nuclear waste transmutation and minimization of spent fuel radiotoxicity. The primary cause for this derives from its accelerator-driven, sub-critical operating state, which introduces beneficial safety-related features allowing for application of cores employing fuel systems containing pure transuranics or minor actinides, thereby offering increased incineration rate of waste products and minimal deployment of advanced (and expensive) partitioning and transmutation technologies. The main theme of the thesis is safety and kinetics performance of accelerator-driven nuclear reactors. The studies are confined to the examination of ADS design proposals employing fast neutron spectrum, uranium-free lattice fuels, and liquid- metal cooling, with emphasis on lead-bismuth coolant. The thesis consists of computational studies under normal operation and hypothetical accidents, and of evaluation and identification of safety design features. By itself, subcritical operation provides a distinct safety advantage over critical reactor operation, distinguished by high operational stability and additional margins for positive reactivity insertion. For a uranium-free minor actinide based fuel important safety parameters deteriorate.
    [Show full text]
  • Regulatory Guide 3.34, Revision 1, Assumptions Used for Evaluating
    Revision I U.S. NUCLEAR REGULATORY COMMISSION July 1979 'PA' S t REGULATORY GUIDE "** OFFICE OF STANDARDS DEVELOPMENT REGULATORY GUIDE 334 ASSUMPTIONS USED FOR EVALUATING THE POTENTIAL RADIOLOGICAL CONSEQUENCES OF ACCIDENTAL NUCLEAR CRITICALITY IN A URANIUM FUEL FABRICATION PLANT A. INTRODUCTION B. DISCUSSION Section 70.23, "Requirements for the ap In the process of reviewing applications for proval of applications," of 10 CFR Part 70, licenses to operate uranium fuel fabrication "Domestic Licensing of Special Nuclear Mate plants, the NRC staff has developed appro rials," requires, among other things, that the priately conservative assumptions that are used applicant's proposed equipment and facilities be by the staff to evaluate an estimate of the adequate to protect health and minimize danger radiological consequences of various postulated to life or property. In order to demonstrate the accidents. These assumptions are based on adequacy of the facility, the applicant must previous accident experience, engineering provide an analysis and evaluation of the judgment, and the analysis of applicable design and performance* of structures, sys,' experimental results from safety research tems, and components of the facility. The programs. This guide lists assumptions used to objective of this analysis and evaluation is to evaluate the magnitude and radiological con assess the risk to public health and safety: sequences of a criticality accident in a uranium resulting from operation of the facility, includ fuel fabrication plant. ing determination of the adequacy of struc tures, systems, and components provided for A criticality accident is an accident resulting the prevention of accidents and the mitigation in the uncontrolled release of energy from an of the consequences of accidents.
    [Show full text]
  • Predicted Radionuclide Release from Marine Reactors Dumped in the Kara Sea
    IAEA-TECDOC-938 Predicted radionuclide release from marine reactors dumped in the Kara Sea ReportSourcethe of Term Working Groupthe of International Arctic Seas Assessment Project (IASAP) INTERNATIONAL ATOMIC ENERGY AGENCY The IAEA does not normally maintain stocks of reports in this series. However, microfiche copies of these reports can be obtained from ClearinghousS I N I e International Atomic Energy Agency Wagramerstrasse 5 P.O. Box 100 A-1400 Vienna, Austria Orders shoul accompaniee db prepaymeny db f Austriao t n Schillings 100, in the form of a cheque or in the form of IAEA microfiche service coupons which may be ordered separately from the INIS Clearinghouse. The originating Section of this publication in the IAEA was: Waste Safety Section International Atomic Energy Agency Wagramer Strasse5 0 10 x P.OBo . A-1400 Vienna, Austria PREDICTED RADIONUCLIDE RELEASE FROM MARINE REACTORS DUMPE KARE A TH ASE DN I IAEA, VIENNA, 1997 IAEA-TECDOC-938 ISSN 1011-4289 © IAEA, 1997 Printed by the IAEA in Austria April 1997 FOREWORD In 1992 the news that the former Soviet Union had, for over three decades, dumped high level radioactive wasteshalloe th n i s w waterKare a causeth Se af o s d widespread concern, especialln yi countries with Arctic coastlines. The IAEA responded by launching an international study, the International Arctic Seas Assessment Project (IASAP) orden i , asseso t r e potentiath s l healtd han environmental implications of the dumping and to examine the feasibility of remedial actions related to the dumped wastes. 199y Russiae Ith 3nMa n Federation provided informatio IAEe th Ao nt w aboulo hige d th t han level radioactive waste dumped in the Arctic Seas ("White Book-93").
    [Show full text]
  • Using ORGEN to Help Probe Gamma-Ray Burst Mysteries
    Using ORIGEN to Help Probe Gamma-Ray Burst Mysteries Robert B. Hayes, PhD, CHP, PE Associate Professor of Nuclear Engineering North Carolina State University SCALE workshop Introduction • The model presented here has the potential to explain some of the highly varied nature of a portion of measured gamma ray bursts (GRBs). – These include the random nature of the events in terms of their parametric values and ranges. – Specifically many measured values of energy and time distributions, pulsing, and afterglows appear to fit those attainable with the proposed criticality model. Oklo • The Oklo uranium mine in South Africa is a place where the natural abundance of U235 was found to be consistently less than the 0.72 % found everywhere else on the planet • Because the half life of U235 is almost an order of magnitude smaller than that of U238, the ratio of U235 to U238 increases in reverse time. Oklo burn up • By going back far enough in time, the abundance of the U nuclides would become comparable allowing rainwater to provide the moderation needed for criticality – The critical state would then drive out the water until more rainwater would allow the system to go critical again. – This probably continued many times over. – Kenneth Krane; Introductory Nuclear Physics; John Wiley and Sons Oklo in space • Just after the Super Novae (SN) (or other source) creation of the uranium and transuranic isotopes, most of the already radioactive elements created will quickly decay into stable atoms leaving these fissile and fissionable isotopes close to their original abundance. • A fast reactor is possible • Plentiful H makes a thermal system likely TRU isotopes from SN (or other) • Even if a large fraction of the Pu239 (which is fissile with a moderately long half life of just over 24 ka) were to decay away, there would still be almost the initial amount of U233 .
    [Show full text]
  • NUCLEAR CRITICALITY SAFETY:^ R'
    LA-12387-M Manual UC-714 Issued: November 1992 Revised: June 1993 NUCLEAR CRITICALITY SAFETY:^ r' 3-DAY TRAINING COURSE Offered at The Los Alamos National Laboratory Edited and Compiled by John A. Schlesser MASTER Los Alamos NATIONAL LABORATORY Los Alamos, New Mexico 87545 DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED An Affirmative Action/Equal Opportunity Employer The Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. The illustration on the cover was designed by John Schlesser and Gary Webb and drawn by AnnMarie Dyson. It depicts one ofthe course's two critical experiments. DISCLAIMER This manuscript was prepared as an account of work sponsored by an agency of the United States Government. Neither the usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. ABSTRACT This compilation of notes is presented as a source reference for the criticality safety course. It represents the contribution? of many people, particularly Tom McLaughlin, the course's primary instructor. INTRODUCTION The 3-Day Training Course in an intensive course in criticality safety consisting of lectures and laboratory sessions, including active student participation in actual critical experiments, a visit to a plutonium processing facility, and in-depth discussions on safety philosophy.
    [Show full text]
  • Dynamics of Ramp-Lnitiated Reactor Transients
    KfK 5352 Juni 1994 Dynamics of Ramp-lnitiated Reactor Transients G. Kußmaul Institut für Neutronenphysik und Reaktorphysik Projekt Nukleare Sicherheitsforschung Kernforschungszentrum Karlsruhe Kernforschungszentrum Karlsruhe Institut für Neutronenphysik und Reaktortechnik Projekt Nukleare Sicherheitsforschung KfK 5352 DYNAMICS OF RAMP-INITIATED REACTOR TRANSIENTS Günter Kußmaul Kernforschungszentrum Karlsruhe GmbH, Karlsruhe Als Manuskript gedruckt Für diesen Bericht behalten wir uns alle Rechte vor Kernforschungszentrum Karlsruhe GmbH Postfach 3640, 76021 Karlsruhe ISSN 0303-4003 Abstract Transients in nuclear systems induced by reactivity ramps develop different types of power traces - exponential, single-pulse, oscillating - depending an the ramp rates and the neutron lifetime of the system. Starting from the kinetics equations of the point reactor and using a model of energy-dependent feedback reactivity, based an the prompt and inherent Doppler effect, simple relations for the de­ pendence of energy release and power shape on ramp rate, energy coefficient and neutron lifetime are derived. Depending on neutron lifetime of the nuclear system the ranges of ramp rate are determined, which define the type of power trace. ln the regime of superprompt-critical transients, the models of step and ramp insertions are especially investigated. The ranges of applicability have been checked by comparison with calculations using the dynamics code system DYANA2 which solves numerically the set of kinetics and thermal-hydraulics equations describing
    [Show full text]
  • Point Kinetic Model of the Early Phase of a Spherically Symmetric Nuclear Explosion
    Point kinetic model of the early phase of a spherically symmetric nuclear explosion Andreas Walter Aste Department of Physics, University of Basel, 4056 Basel, Switzerland June 6, 2016 Abstract A concise point kinetic model of the explosion of a prompt supercritical sphere driven by a nu- clear fission chain reaction is presented. The findings are in good agreement with the data available for Trinity, the first detonation of a nuclear weapon conducted by the United States Army as part of the Manhattan project. Results are presented for an implosion device containing pure plutonium- 239, although the model can be easily applied to, e.g., uranium-235. The fizzle probability and cor- responding yield of a fission bomb containing plutonium recovered from reactor fuel and therefore containing significant amounts of spontaneously fissioning plutonium-240 which can induce a pre- detonation of the device is illustrated by adding a corresponding source term in the presented model. Related questions whether a bomb could be made by developing countries or terrorist organizations can be tackled this way. Although the information needed to answer such questions is in the public domain, it is difficult to extract a consistent picture of the subject for members of organizations who are concerned about the proliferation of nuclear explosives. Physics and Astronomy Classification Scheme (2010). 28.20.-v Neutron physics; 25.85.Ec Neutron-induced fission; 28.70.+y Nuclear explosions. 1 Introduction Despite the terrifying fact that numerous operational fission or even thermonuclear bombs exist on our planet, there is a great interest in the basic principles and physics underlying the concept of nuclear weapons.
    [Show full text]
  • A Review of Criticality Accidents a Review of Criticality Accidents
    LA-13638 Approved for public release; distribution is unlimited. A Review of Criticality Accidents 2000 Revision ENERGY POWER TIME Los Alamos NATIONAL LABORATORY Los Alamos, New Mexico 87545 Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36. Printing coordination by Jerry Halladay and Guadalupe Archuleta, Group CIC-9 Photocomposition by Wendy Burditt, Group CIC-1 Cover Design by Kelly Parker, Group CIC-1 Cover Illustration: Power and energy traces representative of a typical criticality excursion in solution - from the SILENE experimental report, reference # 4. An Affirmative Action/Equal Opportunity Employer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither The Regents of the University of California, the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by The Regents of the University of California, the United States Government, or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of The Regents of the University of California, the United States Government, or any agency thereof.Los Alamos National Laboratory strongly supports academic freedom and a researcherÕs right to publish; as an institution, however, the Laboratory oesd not endorse the viewpoint of a publication or guarantee its technical correctness.
    [Show full text]