Solar Active Longitudes and Their Rotation

Total Page:16

File Type:pdf, Size:1020Kb

Solar Active Longitudes and Their Rotation SOLAR ACTIVE LONGITUDES AND THEIR ROTATION LIYUN ZHANG Department of Physics University of Oulu Finland Academic dissertation to be presented, with the permission of the Faculty of Science of the University of Oulu, for public discussion in the Auditorium L6, Linnanmaa, on 30th November, 2012, at 12 o’clock noon. REPORT SERIES IN PHYSICAL SCIENCES Report No. 78 OULU 2012 ● UNIVERSITY OF OULU Supervisors Prof. Kalevi Mursula University of Oulu, Finland Prof. Ilya Usoskin Sodankylä Geophysical Observatory, University of Oulu, Finland Opponent Dr. Rainer Arlt Leibniz-Institut für Astrophysik Potsdam, Germany Reviewers Prof. Roman Brajša Hvar Observatory, Faculty of Geodesy, University of Zagreb, Croatia Assoc. Prof. Dmitri Ivanovitch Ponyavin St. Petersburg State University, St. Petergoff, Russia Custos Prof. Kalevi Mursula University of Oulu, Finland ISBN 978-952-62-0025-5 ISBN 978-952-62-0026-2 (PDF) ISSN 1239-4327 Oulu University Press Oulu 2012 Zhang, Liyun: Solar active longitudes and their rotation Department of Physical Sciences, University of Oulu, Finland. Report No. 78 (2012) Abstract In this thesis solar active longitudes of X-ray flares and sunspots are studied. The fact that solar activity does not occur uniformly at all heliographic longitudes was noticed by Carrington as early as in 1843. The longitude ranges where solar activity occurs preferentially are called active longitudes. Active longitudes have been found in various manifestations of solar activity, such as sunspots, flares, radio emission bursts, surface and heliospheric magnetic fields, and coronal emissions. However, the active longitudes found when using different rigidly rotating reference frames differ significantly from each other. One reason is that the whole Sun does not rotate rigidly but differentially at different layers and different latitudes. The other reason is that the rotation of the Sun also varies with time. Earlier studies used a dynamic rotation frame for the differential rotation of the Sun and found two persistent active longitudes of sunspots in 1878-1996. However, the migra- tion of active longitudes with respect to the Carrington rotation was treated there rather coarsely. We improved the accuracy of migration to less than one hour. Accordingly, not only the rotation parameters for each class of solar flares and sunspots are found to agree well with each other, but also the non-axisymmetry of flares and sunspots is systematically increased. We also studied the long-term variation of solar surface rotation. Using the improved analysis, the spatial distribution of sunspots in 1876-2008 is analyzed. The statistical evidence for different rotation in the northern and southern hemispheres is greatly im- proved by the revised treatment. Moreover, we have given consistent evidence for the periodicity of about one century in the north-south difference. Keywords: Solar activity, sunspots, X-ray flares, solar rotation, active longitudes. This thesis is dedicated to my biological parents and my adoptive parents for all their love and support! They have been and will always be great sources of encouragement and inspiration throughout my life! 3 Acknowledgements This work has been carried out in the Department of Physics at the University of Oulu, Finland. First, I would like to express my deepest gratitude to Prof. Ilya Usoskin. He very enthusiastically answered my questions at our first meet during the Beijing COSPAR 2006. He has been supporting me with my study and work ever since. He also guided me to write my first scientific paper in 2006. He encouraged me to come to Oulu to get valuable work experience under the guidance of Prof. Kalevi Mursula and himself. In the beginning of my first visit to Oulu, Ilya offered me plenty of help and guidance for managing the new daily life, including how to wait for a bus and how to use the knife and fork at lunch, too much to mention. Next, I wish to express my greatest gratitude to my principal supervisor, Prof. Kalevi Mursula who always has open mind and new ideas. He has always been giving me plenty of support and encouragement to deal with the problems I have had during doing the thesis. Accordingly, the scientific significance of the thesis has been greatly improved. I also sincerely appreciate his fatherly advices on my life. I would like to express my deepest gratitude to my Beijing chief Prof. Huaning Wang, a great scientist in solar physics and solar activity prediction. He has been guiding me through my science career since the very beginning and giving me continuous support. He always reminds me to find out what is the physics behind the phenomenon that I see. The other members of my Beijing group are also deeply acknowledged, especially Prof. Zhanle Du, Xin Huang, Jian Gao, Yanmei Cui and Rong Li, who greatly share my study, work and life. I am very grateful for the funding from the Department of Physics of the Uni- versity of Oulu, the Academy of Finland, the European Commission's Seventh Framework Programme for eHeroes project, and the Key Laboratory of Solar Ac- tivity, National Astronomical Observatories, Chinese Academy of Sciences. I fully acknowledge the pre-examiners of my thesis Prof. Roman Brajˇsaand Assoc. Prof. Dimitri Ponyavin for their valuable comments and advice. I would 5 also like to express my sincere appreciation to Dr. Rainer Arlt who agreed to spare his time to be the opponent. I wish to express my warmest gratitude to all the other members in the Space Physics group for their friendship and help, Reijo Rasinkangas, Leena Kalliopuska, Olesya Yakovchouk, Alessandra Pacini, three Virtanen brothers, Timo Asikainen, Petri Kalliom¨aki,Tomi Karppinen, Lauri Holappa, Ville Maliniemi, Anita Aikio, Ritva Kuula, Tuomo Nygr´en,Kari Kalla, Timo Pitk¨anen,Lei Cai, Perttu Kantola and Raisa Leussu. Members of the Geophysics group are also acknowledged for their warm companionship during the coffee break. In the end I would like to thank my dear sister and brother for their constant support and love during my study and my life. I definitely must thank my beloved husband Ari Ronkainen for everything. He has been strongly supporting me for my work and for my hobbies. I would also like to thank my husband's parents and relatives for their love and support. Oulu, November 30, 2012 Liyun Zhang Original publications This thesis consists of an introduction and four original papers. I L. Zhang, K. Mursula, I. G. Usoskin, and H. N. Wang, Global analysis of active longitudes of solar X-ray flares, J. Atmos. Sol. Terr. Phys., 73, 258- 263, 2011. II L. Zhang, K. Mursula, I. G. Usoskin, and H. N. Wang, Global analysis of active longitudes of sunspots, Astron. Astrophys., 529, A23, 2011. III L. Zhang, K. Mursula, I. Usoskin, H. Wang, and Z. Du, Long-term variation of solar surface differential rotation, Bulletin of Astronomical Society of India, ASI Conference Series, 2, 175, 2011. IV L. Zhang, K. Mursula, and I. Usoskin, Consistent long-term variation in the hemispheric asymmetry of solar rotation, Astron. Astrophys., submitted. In the text, original papers are referred to using roman numerals I-IV. Contents Abstract . 1 Acknowledgements . 5 Original publications . 7 1. Introduction . 11 2. Solar activity . 15 2.1. Sunspots . 15 2.1.1. Wolf sunspot numbers . 17 2.1.2. Group sunspot numbers . 19 2.1.3. Sunspot areas and positions . 20 2.1.4. Cyclicities in solar activity . 21 2.1.5. Grand minima and maxima . 25 2.2. Solar flares . 28 2.2.1. Classification of solar flares . 29 2.2.2. Phases of a typical flare . 31 2.2.3. Radio emissions during solar flares . 34 2.2.4. Flare models . 36 2.3. Coronal mass ejections . 39 2.4. Solar energetic particles acceleration . 41 3. Solar rotation . 43 3.1. Heliographic coordinates . 43 3.2. Surface rotation . 43 3.3. Internal rotation . 45 3.4. Torsional oscillation . 48 3.5. Meridional circulation . 51 4. Active latitudes . 55 5. Active longitudes . 58 5.1. History of active longitude research . 58 5.2. Flip-flop phenomenon . 69 5.3. Dynamo models . 70 5.4. North-South asymmetry . 74 5.4.1. N-S asymmetry in solar activity . 75 5.4.2. N-S asymmetry in solar rotation . 77 6. Summary . 82 1. Introduction As is well known, the Sun is the source of energy that supports the existence of life on the Earth through radiation, which was originally recognized as visible sunlight, while solar electromagnetic radiation covers infrared, visible, and ultraviolet light. Most of the time the Sun appears as a quiet star to the naked-eye, but it is far more active when observed through telescopes, especially through the modern space-borne instruments with high temporal and spatial resolution. Even the quiet Sun appears very active in the observations of the newest space solar telescope - Solar Dynamics Observatory (SDO). Small scale tornadoes or cyclones are found to occur all over the quiet Sun with rotating magnetic fields [Zhang and Liu, 2011] (see the left panel of Fig. 1.1). Later phases of cyclones are observed to be associated with microflares. A huge tornado can be observed before a coronal mass ejection (CME) (see the right panel of Fig. 1.1). There are gradually changing activities and bursting activities on the Sun. The former refer to activities which vary gradually in size and energy and last a rel- atively long time. These include sunspots, plages, faculae, quiet filaments and prominences, coronal holes and streamers, solar wind, and the general radiation. The latter refer to explosive events with sudden and huge energy release. These events include, e.g., flares, CMEs, and explosive filaments and prominences. Solar activity affects the near-Earth space in many different ways. Variation in solar conditions at short time scales, e.g., from a few seconds to days is involved with space weather, while the long-term conditions, from several months to one solar cycle and longer, relate to space climate.
Recommended publications
  • Centennial Variations in Sunspot Number, Open Solar Flux and Streamer Belt Width: 2
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Central Archive at the University of Reading Centennial variations in sunspot number, open solar flux and streamer belt width: 2. Comparison with the geomagnetic data Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open Access Lockwood, M., Owens, M. J. and Barnard, L. (2014) Centennial variations in sunspot number, open solar flux and streamer belt width: 2. Comparison with the geomagnetic data. Journal of Geophysical Research: Space Physics, 119 (7). pp. 5183-5192. ISSN 2169-9402 doi: https://doi.org/10.1002/2014JA019972 Available at http://centaur.reading.ac.uk/36855/ It is advisable to refer to the publisher's version if you intend to cite from the work. Published version at: http://onlinelibrary.wiley.com/doi/10.1002/2014JA019972/abstract To link to this article DOI: http://dx.doi.org/10.1002/2014JA019972 Publisher: American Geophysical Union All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading's research outputs online PUBLICATIONS Journal of Geophysical Research: Space Physics RESEARCH ARTICLE Centennial variations in sunspot number, open solar 10.1002/2014JA019972 flux, and streamer belt width: 2. Comparison This article is a companion to Lockwood with the geomagnetic data et al. [2014] doi:10.1002/2014JA019970 and Lockwood and Owens [2014] M.
    [Show full text]
  • Effect of Solar Variability on the Earth's Climate Patterns
    Advances in Space Research 40 (2007) 1146–1151 www.elsevier.com/locate/asr Effect of solar variability on the Earth’s climate patterns Alexander Ruzmaikin Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA Received 30 October 2006; received in revised form 8 January 2007; accepted 8 January 2007 Abstract We discuss effects of solar variability on the Earth’s large-scale climate patterns. These patterns are naturally excited as deviations (anomalies) from the mean state of the Earth’s atmosphere-ocean system. We consider in detail an example of such a pattern, the North Annular Mode (NAM), a climate anomaly with two states corresponding to higher pressure at high latitudes with a band of lower pres- sure at lower latitudes and the other way round. We discuss a mechanism by which solar variability can influence this pattern and for- mulate an updated general conjecture of how external influences on Earth’s dynamics can affect climate patterns. Ó 2007 COSPAR. Published by Elsevier Ltd. All rights reserved. Keywords: Solar irradiance; Climate and inter-annual variability; Solar variability impact; Climate dynamics 1. Introduction in solar irradiance. The solar cycle variations in total solar irradiance are small, 0.1%. However the magnitude of The center of attention of this paper is the response of irradiance variations strongly depends on the wavelength the Earth to solar variability on Space Climate time scales. and increases for the shorter wavelengths. Thus solar UV, In the context of Space Climate, the Earth can respond to which amounts to only a few percentage of the total irradi- solar variability on the 27-day solar rotation time scale, the ance, contributes 15% to the change in total irradiance 11-year solar cycle, the century scale Grand Minima, and (Lean et al., 2005).
    [Show full text]
  • Statistical Properties of Superactive Regions During Solar Cycles 19–23⋆
    A&A 534, A47 (2011) Astronomy DOI: 10.1051/0004-6361/201116790 & c ESO 2011 Astrophysics Statistical properties of superactive regions during solar cycles 19–23 A. Q. Chen1,2,J.X.Wang1,J.W.Li2,J.Feynman3, and J. Zhang1 1 Key Laboratory of Solar Activity of Chinese Academy of Sciences, National Astronomical Observatories, Chinese Academy of Sciences, PR China e-mail: [email protected]; [email protected] 2 National Center for Space Weather, China Meteorological Administration, PR China 3 Helio research, 5212 Maryland Avenue, La Crescenta, USA Received 26 February 2011 / Accepted 20 August 2011 ABSTRACT Context. Each solar activity cycle is characterized by a small number of superactive regions (SARs) that produce the most violent of space weather events with the greatest disastrous influence on our living environment. Aims. We aim to re-parameterize the SARs and study the latitudinal and longitudinal distributions of SARs. Methods. We select 45 SARs in solar cycles 21–23, according to the following four parameters: 1) the maximum area of sunspot group, 2) the soft X-ray flare index, 3) the 10.7 cm radio peak flux, and 4) the variation in the total solar irradiance. Another 120 SARs given by previous studies of solar cycles 19–23 are also included. The latitudinal and longitudinal distributions of the 165 SARs in both the Carrington frame and the dynamic reference frame during solar cycles 19–23 are studied statistically. Results. Our results indicate that these 45 SARs produced 44% of all the X class X-ray flares during solar cycles 21–23, and that all the SARs are likely to produce a very fast CME.
    [Show full text]
  • The TRAPPIST-1 JWST Community Initiative
    Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative Michaël Gillon1, Victoria Meadows2, Eric Agol2, Adam J. Burgasser3, Drake Deming4, René Doyon5, Jonathan Fortney6, Laura Kreidberg7, James Owen8, Franck Selsis9, Julien de Wit10, Jacob Lustig-Yaeger11, Benjamin V. Rackham10 1Astrobiology Research Unit, University of Liège, Belgium, 2Department of Astronomy, University of Washington, USA, 3Department of Physics, University of California San Diego, USA, 4Department of Astronomy, University of Maryland at College Park, USA, 5Institute for Research in Exoplanets, University of Montreal, Canada, 6Other Worlds Laboratory, University of California Santa Cruz, USA, 7Center for Astrophysics | Harvard and Smithsonian, USA, 8Department of Physics, Imperial College London, United Kingdom, 9Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, France, 10Department of Earth, Atmospheric, and Planetary Sciences, MIT, USA, 11Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA Published on: Dec 02, 2020 License: Creative Commons Attribution 4.0 International License (CC-BY 4.0) Bulletin of the AAS • Vol. 52, Issue 2 The TRAPPIST-1 JWST Community Initiative ABSTRACT The upcoming launch of the James Webb Space Telescope (JWST) combined with the unique features of the TRAPPIST-1 planetary system should enable the young field of exoplanetology to enter into the realm of temperate Earth-sized worlds. Indeed, the proximity of the system (12pc) and the small size (0.12 R ) and luminosity (0.05% L ) of its host star should make the comparative atmospheric characterization of its seven transiting planets within reach of an ambitious JWST program. Given the limited lifetime of JWST, the ecliptic location of the star that limits its visibility to 100d per year, the large number of observational time required by this study, and the numerous observational and theoretical challenges awaiting it, its full success will critically depend on a large level of coordination between the involved teams and on the support of a large community.
    [Show full text]
  • Connection Between Solar Activity Cycles and Grand Minima Generation A
    A&A 599, A58 (2017) Astronomy DOI: 10.1051/0004-6361/201629758 & c ESO 2017 Astrophysics Connection between solar activity cycles and grand minima generation A. Vecchio1, F. Lepreti2, M. Laurenza3, T. Alberti2, and V. Carbone2 1 LESIA – Observatoire de Paris, 5 place Jules Janssen, 92190 Meudon, France e-mail: [email protected] 2 Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci Cubo 31C, 87036 Rende (CS), Italy 3 INAF–IAPS, via Fosso del Cavaliere 100, 00133 Roma, Italy Received 20 September 2016 / Accepted 28 November 2016 ABSTRACT Aims. The revised dataset of sunspot and group numbers (released by WDC-SILSO) and the sunspot number reconstruction based on dendrochronologically dated radiocarbon concentrations have been analyzed to provide a deeper characterization of the solar activity main periodicities and to investigate the role of the Gleissberg and Suess cycles in the grand minima occurrence. Methods. Empirical mode decomposition (EMD) has been used to isolate the time behavior of the different solar activity periodicities. A general consistency among the results from all the analyzed datasets verifies the reliability of the EMD approach. Results. The analysis on the revised sunspot data indicates that the highest energy content is associated with the Schwabe cycle. In correspondence with the grand minima (Maunder and Dalton), the frequency of this cycle changes to longer timescales of ∼14 yr. The Gleissberg and Suess cycles, with timescales of 60−120 yr and ∼200−300 yr, respectively, represent the most energetic contribution to sunspot number reconstruction records and are both found to be characterized by multiple scales of oscillation.
    [Show full text]
  • Properties of the Solar Velocity Field Indicated by Motions of Sunspot Groups and Coronal Bright Points
    DISSERTATION zur Erlangung des Doktorgrades an der Naturwissenschaflichen Fakultät der Karl-Franzens-Universität Graz Properties of the solar velocity field indicated by motions of sunspot groups and coronal bright points Ivana Poljančić Beljan begutachtet von Univ.-Prof. Dr. Arnold Hanslmeier Institut für Physik Karl-Franzens-Universität Graz und Dr. Roman Brajša, scientific advisor Hvar Observatory, Faculty of Geodesy University of Zagreb 2018 Thesis advisor: Univ.-Prof. Dr. Hanslmeier Arnold Ivana Poljančić Beljan Properties of the solar velocity field indicated by motions of sunspot groups and coronal bright points Abstract The solar dynamo is a consequence of the interaction of the solar magnetic field with the large scale plasma motions, namely differential rotation and meridional flows. The main aims of the dissertation are to present precise measurements of the solar differential rotation, to improve insights in the relationship between the solar rotation and activity, to clarify the cause of the existence of a whole range of different results obtained for meridional flows and to clarify that the observed transfer of the angular momentum to- wards the solar equator mainly depends on horizontal Reynolds stress. For each of the mentioned topics positions of sunspot groups and coronal bright points (CBPs) from five different sources have been used. Synodic angular rotation velocities have been calculated using the daily shift or linear least-square fit methods. After the conversion to sidereal values, differential rotation profiles have been calculated by the least-square fitting. Covariance of the calculated rotational and meridional velocities was used to de- rive the horizontal Reynolds stress. The analysis of the differential rotation in general has shown that Kanzelhöhe Observatory for Solar and Environmental research (KSO) provides a valuable data set with a satisfactory accuracy suitable for the investigation of differential rotation and similar studies.
    [Show full text]
  • On Polar Magnetic Field Reversal in Solar Cycles 21, 22, 23, and 24
    On Polar Magnetic Field Reversal in Solar Cycles 21, 22, 23, and 24 Mykola I. Pishkalo Main Astronomical Observatory, National Academy of Sciences, 27 Zabolotnogo vul., Kyiv, 03680, Ukraine [email protected] Abstract The Sun’s polar magnetic fields change their polarity near the maximum of sunspot activity. We analyzed the polarity reversal epochs in Solar Cycles 21 to 24. There were a triple reversal in the N-hemisphere in Solar Cycle 24 and single reversals in the rest of cases. Epochs of the polarity reversal from measurements of the Wilcox Solar Observatory (WSO) are compared with ones when the reversals were completed in the N- and S-hemispheres. The reversal times were compared with hemispherical sunspot activity and with the Heliospheric Current Sheet (HCS) tilts, too. It was found that reversals occurred at the epoch of the sunspot activity maximum in Cycles 21 and 23, and after the corresponding maxima in Cycles 22 and 24, and one-two years after maximal HCS tilts calculated in WSO. Reversals in Solar Cycles 21, 22, 23, and 24 were completed first in the N-hemisphere and then in the S-hemisphere after 0.6, 1.1, 0.7, and 0.9 years, respectively. The polarity inversion in the near-polar latitude range ±(55–90)˚ occurred from 0.5 to 2.0 years earlier that the times when the reversals were completed in corresponding hemisphere. Using the maximal smoothed WSO polar field as precursor we estimated that amplitude of Solar Cycle 25 will reach 116±12 in values of smoothed monthly sunspot numbers and will be comparable with the current cycle amplitude equaled to 116.4.
    [Show full text]
  • Physics-Based Approach to Predict the Solar Activity Cycles Irina N
    Physics-Based Approach to Predict the Solar Activity Cycles Irina N. Kitiashvili1,2 1NASA Ames Research Center, 2Bay Area Environmental Research Institute; [email protected] Observations of the complex highly non-linear dynamics of global turbulent flows and magnetic fields are currently available only from Earth-side observations. Recent progress in helioseismology has provided us some additional information about the subsurface dynamics, but its relation to the magnetic field evolution is not yet understood. These limitations cause uncertainties that are difficult take into account, and perform proper calibration of dynamo models. The current dynamo models have also uncertainties due to the complicated turbulent physics of magnetic field generation, transport and dissipation. Because of the uncertainties in both observations and theory, the data assimilation approach is natural way for the solar cycle prediction and estimating uncertainties of this prediction. I will discuss the prediction results for the upcoming Solar Cycle 25 and their uncertainties and affect of Ensemble Kalman Filter parameters to resulting predictions. Data Assimilation Methodology Effect of the Ensemble Kalman Filter Parameters on predictive capabilities of Solar Cycles Observations Dynamo model SolarSC23: Cycle EnKF, 30members, 23 prediction: start 1997.5 SC23: EnKF, 50members, start 1997.5 SC23: EnKF, 150members, start 1997.5 SC23: EnKF, 300members, start 1997.5 SC23: EnKF, 400members, start 1997.5 SC23: EnKF, 500members, start 1997.5 Parker 1955,
    [Show full text]
  • Determining the Rotation Period of the Sun
    SOLAR PHYSICS AND TERRESTRIAL EFFECTS 2+ Activity 8 4= Activity 8 Determining the Rotation Period of the Sun Relevant Reading Chapter 2, section 3 Purpose Determine the rotation period of the Sun. Although numerous methods for accurate measurement are used in solar research, the method described here, using photographs taken over several days, will allow determination to within an Earth-day. Materials Photo set that shows at least one solar feature that can be followed over a several-day period. For real challenge, take the photos yourself, or make a simple projection sketch of sunspots over several days. 1 sheet of clear plastic used for overhead transparencies or viewgraphs, or something similar such as a clear plastic report folder a mm ruler, compass and protractor a fine-tipped marking pen suitable for plastic graph paper with 1-mm squares Procedures 1. Measure, to the nearest millimeter, the diameter of the Sun on the photo taken near the middle of the data period. 2. Use a compass and draw a circle with the same diameter on the transpar- ent sheet. 3. With the circle aligned over the photo on the date used for the diameter, trace the axis orientation marks onto the transparency. 4. Pick a solar feature that traverses the solar disk for as many days as pos- sible. Align the circle on the transparency over each successive photo and carefully mark the position of the chosen solar feature along with its date. 5. Carefully draw the best fitting straight line through the marked positions and measure its length across the circle as accurately as possible.
    [Show full text]
  • IAU Symp 269, POST MEETING REPORTS
    IAU Symp 269, POST MEETING REPORTS C.Barbieri, University of Padua, Italy Content (i) a copy of the final scientific program, listing invited review speakers and session chairs; (ii) a list of participants, including their distribution on gender (iii) a list of recipients of IAU grants, stating amount, country, and gender; (iv) receipts signed by the recipients of IAU Grants (done); (v) a report to the IAU EC summarizing the scientific highlights of the meeting (1-2 pages). (vi) a form for "Women in Astronomy" statistics. (i) Final program Conference: Galileo's Medicean Moons: their Impact on 400 years of Discovery (IAU Symposium 269) Padova, Jan 6-9, 201 Program Wednesday 6, location: Centro San Gaetano, via Altinate 16.0 0 – 18.00 meeting of Scientific Committee (last details on the Symp 269; information on the IYA closing ceremony program) 18.00 – 20.00 welcome reception Thursday 7, morning: Aula Magna University 8:30 – late registrations 09.00 – 09.30 Welcome Addresses (Rector of University, President of COSPAR, Representative of ESA, President of IAU, Mayor of Padova, Barbieri) Session 1, The discovery of the Medicean Moons, the history, the influence on human sciences Chair: R. Williams Speaker Title 09.30 – 09.55 (1) G. Coyne Galileo's telescopic observations: the marvel and meaning of discovery 09.55 – 10.20 (2) D. Sobel Popular Perceptions of Galileo 10.20 – 10.45 (3) T. Owen The slow growth of human humility (read by Scott Bolton) 10.45 – 11.10 (4) G. Peruzzi A new Physics to support the Copernican system. Gleanings from Galileo's works 11.10 – 11.35 Coffee break Session 1b Chair: T.
    [Show full text]
  • A Method for the Prediction of Relative Sunspot Number for the Remainder of a Progressing Cycle with Application to Cycle 23
    A&A 392, 301–307 (2002) Astronomy DOI: 10.1051/0004-6361:20020616 & c ESO 2002 Astrophysics A method for the prediction of relative sunspot number for the remainder of a progressing cycle with application to cycle 23 K. J. Li1;2,L.S.Zhan1;2;3;4,J.X.Wang2,X.H.Liu5,H.S.Yun6,S.Y.Xiong7,H.F.Liang1;2, and H. Z. Zhao1;2 1 Yunnan Observatory, YN650011, China 2 National Astronomical Observatories, CAS, China 3 Academy of Graduates, CAS, Beijing, China 4 Department of Physics, Jingdezhen Comprehensive College, Jiangxi, China 5 Department of Physics, Jiaozuo Educational College, Henan, China 6 Astronomy Program, SEES, Seoul National University, Seoul, Korea 7 Library, Yunnan Observatory, Yunnan, China Received 28 May 2001 / Accepted 18 April 2002 Abstract. In this paper, we investigate the prospect of using previously occurring sunspot cycle signatures to determine future behavior in an ongoing cycle, with specific application to cycle 23, the current sunspot cycle. We find that the gross level of solar activity (i.e., the sum of the total number of sunspots over the course of a sunspot cycle) associated with cycle 23, based on a comparison of its first several years of activity against similar periods of preceding cycles, is such that cycle 23 best compares to cycle 2. Compared to cycles 2 and 22, respectively, cycle 23 appears 1.08 times larger and 0.75 times as large. Because cycle 2 was of shorter period, we infer that cycle 23 also might be of shorter length (period less than 11 years), ending sometime in late 2006 or early 2007.
    [Show full text]
  • Sunspot Number Calculation Methods
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Advances in Space Research 40 (2007) 919–928 www.elsevier.com/locate/asr From the Wolf number to the International Sunspot Index: 25 years of SIDC Fre´de´ric Clette *, David Berghmans, Petra Vanlommel, Ronald A.M. Van der Linden, Andre´ Koeckelenbergh, Laurence Wauters Solar Influences Data Analysis Center, Royal Observatory of Belgium, 3, Avenue Circulaire, B-1180 Bruxelles, Belgium Received 10 October 2006; received in revised form 15 December 2006; accepted 19 December 2006 Abstract By encompassing four centuries of solar evolution, the sunspot number provides the longest available record of solar activity. Now- adays, it is widely used as the main reference solar index on which hundreds of published studies are based, in various fields of science. In this review, we will retrace the history of this crucial solar index, from its roots at the Zu¨rich Observatory up to the current multiple indices established and distributed by the Solar Influences Data Analysis Center (SIDC), World Data Center for the International Sun- spot Index, which was founded in 1981, exactly 25 years ago.
    [Show full text]