Stress, Sex Hormones, Inflammation, and Major Depressive Disorder

Total Page:16

File Type:pdf, Size:1020Kb

Stress, Sex Hormones, Inflammation, and Major Depressive Disorder Psychopharmacology (2019) 236:3063–3079 https://doi.org/10.1007/s00213-019-05326-9 REVIEW Stress, sex hormones, inflammation, and major depressive disorder: Extending Social Signal Transduction Theory of Depression to account for sex differences in mood disorders George M. Slavich1 & Julia Sacher2 Received: 10 October 2018 /Accepted: 8 July 2019 /Published online: 29 July 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Social Signal Transduction Theory of Depression is a biologically plausible, multi-level theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental adversity with internal biological processes that drive depression pathogenesis, maintenance, and recurrence. Central to this theory is the hypothesis that interpersonal stressors involving social threat (e.g., social conflict, evaluation, rejection, isolation, and exclusion) upregulate inflammatory processes that can induce several depressive symptoms, including sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. The original article describing this formulation (Psychol Bull 140:774–815, 2014) addressed critical questions involving depression onset and recurrence, as well as why depression is strongly predicted by early life stress and comorbid with anxiety disorders and certain physical disease conditions, such as asthma, rheumatoid arthritis, chronic pain, and cardiovascular disease. Here, we extend the theory to help explain sex differences in depression prevalence, which is a defining feature of this disorder. Central to this extension is research demonstrating that ovarian hormone fluctuations modulate women’s susceptibility to stress, brain structure and function, and inflammatory activity and reactivity. These effects are evident at multiple levels and are highly context- dependent, varying as a function of several factors including sex, age, reproductive state, endogenous versus exogenous hormones, and hormone administration mode and dose. Together, these effects help explain why women are at greater risk for developing inflammation-related depressed mood and other neuropsychiatric, neurodevelopmental, and neurodegenerative disorders during the reproductive years, especially for those already at heightened risk for depression or in the midst of a hormonal transition period. Keywords Life stress . Social threat . Cytokines . Inflammation . Sex differences . Sex hormones . Neuroinflammation . Risk . Depression . Disease Introduction economic impact on society that exceeds $200 billion per year in the USA alone (Greenberg et al. 2015). Nearly Depression is a serious psychiatric condition that often 17% of all men and 25% of all women experience a major emerges early in life and exerts a substantial social and depressive episode during their lifetime (Kessler et al. 2010), and although not all individuals develop multiple This article belongs to a Special Issue on Neuroimmune Signaling in episodes, recurrence is common with up to 60% of people Psychiatric Disease. experiencing more than one lifetime depressive episode (Monroe et al. 2014b). This impact is further compounded * George M. Slavich by the fact that depression is associated with increased [email protected] risk for several somatic health conditions that have an immunologic basis and can greatly affect wellbeing, in- 1 Cousins Center for Psychoneuroimmunology and Department of cluding asthma, rheumatoid arthritis, chronic pain, cardio- Psychiatry and Biobehavioral Sciences, University of California, vascular disease, certain cancers, and neurodegenerative Los Angeles, UCLA Medical Plaza 300, Room 3156, Los Angeles, CA 90095-7076, USA disorders (Slavich in press). Given the serious implications of depression for overall 2 Emotion NeuroimaGinG (EGG)-Lab and Department of Neurology, Max Planck Institute for Cognitive and Brain Sciences, health, one might expect that researchers have long pos- Stephanstrasse 1a, 04103 Leipzig, Germany sessed biologically plausible theories of major depressive 3064 Psychopharmacology (2019) 236:3063–3079 disorder (MDD) that could be used to develop effective Social Signal Transduction Theory treatments. Progress on this front has been slow, though, of Depression due in part to the high cost historically associated with assessing neural, immunologic, genetic, and genomic pro- Several contemporary theories have attempted to explain how cesses underlying depression in humans. However, these life stress increases risk for depression by affecting social- methods have become considerably more affordable in re- environmental (e.g., Brown and Harris 1978), psychodynamic cent years, leading to a proliferation of exciting new data (e.g., Blatt 2004), and cognitive (e.g., Beck 1967)processes. revealing how social-environmental adversity influences Although these formulations have served as invaluable blue- biological processes that promote risk for depression and prints for studying factors that contribute to and affect depres- related diseases. sion, their ability to provide a complete biopsychosocial pic- One of the most recent and important insights from this ture of the disorder has been limited by three main issues. work has involved the realization that psychological stress First, these theories have accounted for some symptoms and can strongly upregulate components of the immune system features of MDD—particularly those involving social, psy- involved in inflammation (Segerstrom and Miller 2004; chological, and cognitive processes—but they have not pro- Steptoe et al. 2007). Inflammation, in turn, is known to induce vided satisfactory explanations for somatic or neurovegetative depression-like behavior in animals and several symptoms of aspects of the disorder. Second, they have not typically includ- depression in many (although not all) individuals (Dantzer ed biological data and, consequently, have not described et al. 2008;Milleret al. 2009 ). Inflammatory mediators, par- mechanisms that are most proximally responsible for generat- ticularly pro-inflammatory cytokines, can also promote anxi- ing depressive symptoms, let alone the full clinical and biobe- ety symptoms and increase risk for the types of physical health havioral phenotype. Finally, these theories have generally problems that frequently co-occur with MDD (O’Donovan characterized depression at one major level of analysis (e.g., et al. 2013), thus making a focus on inflammation critically cognition) but have not drawn convincing links with other up- important for developing a more complete understanding of or down-stream processes that are implicated in this disorder. the full range of clinical symptoms and somatic ailments that Social Signal Transduction Theory of Depression ad- frequently accompany this disorder. dresses these issues by spanning several major levels of anal- Although studies on stress and inflammation, and ysis to generate a biologically plausible explanation for both inflammation and depression, have largely represented cognitive and somatic symptoms of MDD, as well as several distinct lines of enquiry, Slavich and Irwin (2014) recently other clinical phenomena that are frequently experienced by integrated these literatures to describe how experiences of many depressed individuals (e.g., anxiety, chronic pain) but life stress influence neural, physiologic, molecular, and ge- not presently regarded as symptoms of the disorder. The the- nomic processes that drive depression pathogenesis, main- ory is grounded in the basic understanding that the primary tenance, and recurrence. The resulting Social Signal purpose of the human brain and immune system is to keep the Transduction Theory of Depression represents the first bio- body safe from physical and biological threats that could logically plausible, multi-level theory of MDD. In the orig- cause illness or death if left unaddressed (Slavich in press; inal article describing this formulation, the authors ad- Slavich and Auerbach 2018). To accomplish this task, the dressed several important questions in depression research, brain continually surveys the social environment for threats including how depression develops, why it frequently re- that historically increased an individual’sriskofphysicalharm curs, why it is strongly predicted by early life stress, and or wounding. These social-environmental stressors, which in- why it often co-occurs with symptoms of anxiety and with clude things like social conflict, isolation, rejection, and ex- certain physical disease conditions. In the present paper, we clusion, get represented in brain regions that play a role in extend this discussion to help explain one of the most strik- processing experiences of social and physical threat, pain, ing features of depression—namely, the dramatic increase and interoceptive cues. These brain regions in turn project to in risk for MDD in women relative to men following the lower-level regions that upregulate systemic inflammatory ac- pubertal transition in adolescence. To accomplish this goal, tivity via several non-mutually exclusive pathways, including we first summarize Social Signal Transduction Theory of the sympathetic nervous system (SNS), hypothalamic- Depression and existing research supporting this theory. pituitary-adrenal (HPA) axis, vagus nerve, and meningeal Second, we describe known sex differences in depression lymphatic vessels (Irwin and Cole 2011; Slavich and Cole and inflammation, and how sex hormones influence
Recommended publications
  • Addiction and the Female Brain by Jeffrey Georgi, M.Div., MAH, LCAS, CGP Consulting Associate Div
    Addiction and the female brain by Jeffrey Georgi, M.Div., MAH, LCAS, CGP Consulting Associate Div. of Addiction Research and Translation Duke University Medical Center Georgi Educational and Counseling Services [email protected] 919-286-1600 and the end of all our exploring will be to arrive where we started and know the place for the first time TSE © GECS Biological+Psychological+Social+Spiritual Vulnerability Liability Context Bankruptcy plus experience/relationships equals woman © GECS 1 Women’s brains the obvious Women’s brains are part of women’s bodies Women’s bodies are supported by a complex web interconnected relationships Women’s relationships fall within a social and historical context The complexity of the female brain’s neural net and it’s virtually infinite relational and cultural tapestry defies definition Our task this week is inherently reductionistic © GECS Biological+Psychological+Social+Spiritual Vulnerability Liability Context Bankruptcy plus experience/relationships equals Addiction © GECS © GECS 2 © GECS © GECS © GECS 3 X © GECS © GECS 4 © GECS Other Suggestions Disease makes good people make mistakes – they still are good people but need to be held accountable Willpower will not work over time The limbic system is not reasonable Addiction is not a choice Addiction makes almost any psychiatric disorder more difficult and more dangerous © GECS prefrontal cortex orbitofrontal cortex (OFC) © GECS 5 Corpus callosum Anterior cingulate cortex frontal frontal cortex - Nucleus accumbens Hypothalamus Pre Olfactory bulb Amygdala Hippocampus © GECS Women’s brains general principles Structurally the differences between the male and female brain are real but they are subtle and important. Areas where there are differences matter and need to be addressed clinically.
    [Show full text]
  • Suggested Biomarkers for Major Depressive Disorder
    280 Arch Neuropsychiatry 2018;55:280−290 REVIEW https://doi.org/10.5152/npa.2017.19482 Suggested Biomarkers for Major Depressive Disorder Yunus HACIMUSALAR1 , Ertuğrul EŞEL2 1Department of Psychiatry, Kayseri Training and Research Hospital, Kayseri, Turkey 2Department of Psychiatry, Erciyes University Faculty of Medicine, Kayseri, Turkey ABSTRACT Currently, the diagnosis of major depressive disorder (MDD) mainly the hypothalamo-pituitary-adrenal axis, cytokines, and neuroimaging relies on clinical examination and subjective evaluation of depressive may be strong candidates for being biomarkers MDD, and may provide symptoms. There is no non-invasive, quantitative test available today critical information in understanding biological etiology of depression. for the diagnosis of MDD. In MDD, exploration of biomarkers will be Although the findings are not sufficient yet, we think that the results of helpful in diagnosing the disorder as well as in choosing a treatment, epigenetic studies will also provide very important contributions to the and predicting the treatment response. In this article, it is aimed to biomarker research in MDD. review the findings of suggested biomarkers such as growth factors, cytokines and other inflammatory markers, oxidative stress markers, The availability of biomarkers in MDD will be an advancement that will endocrine markers, energy balance hormones, genetic and epigenetic facilitate the diagnosis of the disorder, treatment choices in the early features, and neuroimaging in MDD and to evaluate how these findings stages, and prediction of the course of the disorder. contribute to the pathophysiology of MDD, the prediction of treatment response, severity of the disorder, and identification of subtypes. Among Keywords: Depression, biomarkers, brain-derived neurotrophic factor, these, the findings related to the brain-derived neurotrophic factor, cytokines, genetics, neuroimaging Cite this article as: Hacımusalar Y, Eşel E.
    [Show full text]
  • Exploring the Activity of an Inhibitory Neurosteroid at GABAA Receptors
    1 Exploring the activity of an inhibitory neurosteroid at GABAA receptors Sandra Seljeset A thesis submitted to University College London for the Degree of Doctor of Philosophy November 2016 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street WC1E 6BT 2 Declaration I, Sandra Seljeset, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I can confirm that this has been indicated in the thesis. 3 Abstract The GABAA receptor is the main mediator of inhibitory neurotransmission in the central nervous system. Its activity is regulated by various endogenous molecules that act either by directly modulating the receptor or by affecting the presynaptic release of GABA. Neurosteroids are an important class of endogenous modulators, and can either potentiate or inhibit GABAA receptor function. Whereas the binding site and physiological roles of the potentiating neurosteroids are well characterised, less is known about the role of inhibitory neurosteroids in modulating GABAA receptors. Using hippocampal cultures and recombinant GABAA receptors expressed in HEK cells, the binding and functional profile of the inhibitory neurosteroid pregnenolone sulphate (PS) were studied using whole-cell patch-clamp recordings. In HEK cells, PS inhibited steady-state GABA currents more than peak currents. Receptor subtype selectivity was minimal, except that the ρ1 receptor was largely insensitive. PS showed state-dependence but little voltage-sensitivity and did not compete with the open-channel blocker picrotoxinin for binding, suggesting that the channel pore is an unlikely binding site. By using ρ1-α1/β2/γ2L receptor chimeras and point mutations, the binding site for PS was probed.
    [Show full text]
  • Antinociceptive Activity of a Neurosteroid Tetrahydrodeoxycorticosterone (5Cx-Pregnan-3Cx-21-Diol-20-One) and Its Possible Mechanism(S) of Action
    Indian Journal of Experimental Biology Vol. 39, December 2001, pp. 1299-1301 Antinociceptive activity of a neurosteroid tetrahydrodeoxycorticosterone (5cx-pregnan-3cx-21-diol-20-one) and its possible mechanism(s) of action P K Mediratta, M Gambhir, K K Sharma & M Ray Department of Pharmacology, University College of Medical Sciences and GTB Hospital, Delhi II 0095, India Fax: 91-11-2299495; E-mail: [email protected]/[email protected] Received 9 Apri/2001; revised 2 July 2001 The present study investigates the effects of a neurosteroid tetrahydrodeoxycorticosterone (5a-pregnan-3a-21-diol-20- one) in two experimental models of pain sensitivity in mice. Tetrahydrodeoxycorticosterone (2.5, 5 mg!kg, ip) dose dependently decreased the licking response in formalin test and increased the tail flick latency (TFL) in tail flick test. Bicuculline (2 mg/kg, ip), a GABAA receptor antagonist blocked the antinociceptive effect of tetrahydrodeoxy­ corticosterone in TFL test but failed to modulate licking response in formalin test. Naloxone (I mglkg, ip), an opioid antagonist effectively attenuated the analgesic effect of tetrahydrodeoxycorticosterone in both the models. Tetrahydrodeoxycorticosterone pretreatment potentiated the anti nociceptive response of morphine, an opioid compound and nimodipine, a calcium channel blocker in formalin as well as TFL test. Thus, tetrahydrodeoxycorticosterone exerts an analgesic effect, which may be mediated by modulating GABA-ergic and/or opioid-ergic mechanisms and voltage-gated calcium channels. It is now well known that some of the steroids like Allopregnanolone has been shown to exhibit progesterone can act on central nervous system (CNS) antinociceptive effect against an aversive thermal to produce a number of endocrine and behavioral stimulus 10 and in a rat mechanical visceral pain 11 effects.
    [Show full text]
  • Information Sheet: Critically Thinking About the Brain and Gender Differences
    Davison, Ryan C. (2012) Critically Thinking About the Brain and Gender Differences. In B. Bogue & E. Cady (Eds.). Apply Research to Practice (ARP) Resources. Retrieved <Month Day, Year> from http://www.engr.psu.edu/AWE/ARPResources.aspx. Information Sheet: Critically Thinking About the Brain and Gender Differences By Ryan C. Davison, American Chemical Society In January 2005 the president of Harvard University, Larry Summers, spoke at the Conference on Diversifying the Science & Engineering Workforce. In this now famous speech, Dr. Summers suggested that the reason fewer women succeed in science and math careers may be due to innate gender differences. Educators were stunned that such a credible and prominent academic authority would make these statements. They could easily imagine a situation where a female grade school student, or her teacher, hears Dr. Summers’ comments and accepts them as true because they come from the president of an Ivy League institution. These remarks demonstrate that well-educated people can be ignorant about fields outside their own and exemplify the need to apply critical thinking to the source of information before considering an idea as valid. Of the many questions that Dr. Summers’ statements provoke, none is more important than asking what scientific data, if any, his claim is based upon. Summers supported his opinion with only anecdotal information, which is a poor scientific practice. In his talk he cited “a woman he worked with at the Treasury Department” who said that only three of the 22 women in her graduate school class were working full time. He also mentioned his twin daughters, who when given trucks to play with pretended the trucks were dolls saying, “Look, the daddy truck is carrying the baby truck.” Additionally, Summers stated that his conclusions were based on “a fair amount of reading the literature and a lot of talking to people.” Obviously, developing a theory based on the behavior of your friends, children, and other acquaintances does not allow generalization to the rest of the population.
    [Show full text]
  • Debating Sex Differences in Cognition: We Can Do Better What I Learnt Teaching Cordelia Fine’S “Delusions of Gender”
    Debating sex differences in cognition: we can do better What I learnt teaching Cordelia Fine’s “Delusions of Gender” Tom Stafford, @tomstafford University of Sheffield The graduate class PSY6316 ‘Current Issues in Cognitive Neuroscience’. MSc course, ~15 people. Stafford, T. (2008), A fire to be lighted: a case-study in enquiry-based learning, Practice and Evidence of Scholarship of Teaching and Learning in Higher Education, Vol. 3, No. 1, April 2008, pp.20-42. “There are sex differences in the brain” Fine (Delusions, Introduction, p xxvii) “Anti-sex difference” investigators? Cahill (2014) http://www.dana.org/Cerebrum/2014/Equal_%E2%89%A0_The_Same__Sex_Differences_in_the_Hu man_Brain/ https://whyevolutionistrue.wordpress.com/2017/01/20/are-male-and-female-brains-absolutely-identical/ Sarah Ditum, The Guardian, 18th January 2017 Not what Fine thinks. Not what Ditum thinks. Headline chosen by subeditor Original: http://web.archive.org/web/20170118081437/www.theguardian.com/books/2017/jan/18/testosterone- rex-review-cordelia-fine Current: https://www.theguardian.com/books/2017/jan/18/testosterone-rex-review-cordelia-fine We can do better We can quantify the size of differences Interpreting Cohen's d effect size an interactive visualization by Kristoffer Magnusson http://rpsychologist.com/d3/cohend/ Sex differences in cognition are small https://mindhacks.com/2017/02/14/sex-differences-in-cognition-are-small/ The Gender similarities hypothesis “The differences model, which argues that males and females are vastly different psychologically, dominates the popular media. Here, the author advances a very different view, the gender similarities hypothesis, which holds that males and females are similar on most, but not all, psychological variables” Hyde, J.
    [Show full text]
  • Models of Insomnia Michael Perlis, Paul Shaw, Georgina Cano, and Colin Espie 78
    Chapter Models of Insomnia Michael Perlis, Paul Shaw, Georgina Cano, and Colin Espie 78 Up until the late 1990s there were only two models regard- history. A simple conditioning history, wherein a stimulus ing the etiology and pathophysiology of insomnia. The is always paired with a single behavior, yields a high prob- relative lack of theoretical perspectives was due to at least ability that the stimulus will yield only one response. A three factors. First, the widespread conceptualization of complex conditioning history, wherein a stimulus is paired insomnia as owing directly to hyperarousal may have made with a variety of behaviors, yields a low probability that it appear that further explanation was not necessary. the stimulus will yield only one response. In persons with Second, the long-time characterization of insomnia as a insomnia, the normal cues associated with sleep (e.g., bed, symptom carried with it the clear implication that insom- bedroom, bedtime, etc.) are often paired with activities nia was not itself worth modeling as a disorder or disease other than sleep. For instance, in an effort to cope with state. Third, for those inclined toward theory, the accep- insomnia, the patient might spend a large amount of time tance of the behavioral models (i.e., the 3P behavioral in the bed and bedroom awake and engaging in activities model and the stimulus control model1,2), and the treat- other than sleep. The coping behavior appears to the ments that were derived from them, might have had the patient to be both reasonable (e.g., staying in bed at least untoward effect of discouraging the development of alter- permits the patients to rest) and reasonably successful native or elaborative models.
    [Show full text]
  • Neurosteroid Metabolism in the Human Brain
    European Journal of Endocrinology (2001) 145 669±679 ISSN 0804-4643 REVIEW Neurosteroid metabolism in the human brain Birgit Stoffel-Wagner Department of Clinical Biochemistry, University of Bonn, 53127 Bonn, Germany (Correspondence should be addressed to Birgit Stoffel-Wagner, Institut fuÈr Klinische Biochemie, Universitaet Bonn, Sigmund-Freud-Strasse 25, D-53127 Bonn, Germany; Email: [email protected]) Abstract This review summarizes the current knowledge of the biosynthesis of neurosteroids in the human brain, the enzymes mediating these reactions, their localization and the putative effects of neurosteroids. Molecular biological and biochemical studies have now ®rmly established the presence of the steroidogenic enzymes cytochrome P450 cholesterol side-chain cleavage (P450SCC), aromatase, 5a-reductase, 3a-hydroxysteroid dehydrogenase and 17b-hydroxysteroid dehydrogenase in human brain. The functions attributed to speci®c neurosteroids include modulation of g-aminobutyric acid A (GABAA), N-methyl-d-aspartate (NMDA), nicotinic, muscarinic, serotonin (5-HT3), kainate, glycine and sigma receptors, neuroprotection and induction of neurite outgrowth, dendritic spines and synaptogenesis. The ®rst clinical investigations in humans produced evidence for an involvement of neuroactive steroids in conditions such as fatigue during pregnancy, premenstrual syndrome, post partum depression, catamenial epilepsy, depressive disorders and dementia disorders. Better knowledge of the biochemical pathways of neurosteroidogenesis and
    [Show full text]
  • The Female Brain Conceptual Advances in Brain Research a Series of Books Focusing on Brain Dynamics and Information Processing Systems of the Brain
    The Female Brain Conceptual Advances in Brain Research A series of books focusing on brain dynamics and information processing systems of the brain. Edited by Robert Miller, Otago Centre for Theoretical Studies in Psychiatry and Neuro- science, New Zealand (Editor-in-chief), Günther Palm, University of Ulm, Germany and Gordon Shaw, University of California at Irvine, USA. Volume 1 Brain Dynamics and the Striatal Complex edited by R. Miller and J.R. Wickens Volume 2 Complex Brain Functions: Conceptual Advances in Russian Neuroscience edited by R. Miller, A.M. Ivanitsky and P.M. Balaban Volume 3 Time and the Brain edited by R. Miller Volume 4 Sex Differences in Lateralization in the Animal Brain by V.L. Bianki and E.B. Filippova Volume 5 Cortical Areas: Unity and Diversity edited by A. Schüz and R. Miller Volume 6 The Female Brain by C. Darlington This book is part of a series. The publisher will accept continuation orders which may be cancelled at any time and which provide for automatic billing and shipping of each title in the series upon publication. Please write for details. The Female Brain Cynthia Darlington University of Otago, Dunedin, New Zealand London and New York First published 2002 by Taylor & Francis 11 New Fetter Lane, London EC4P 4EE Simultaneously published in the USA and Canada by Taylor & Francis Inc, 29 West 35th Street, New York, NY 10001 Taylor & Francis is an imprint of the Taylor & Francis Group This edition published in the Taylor & Francis e-Library, 2003. © 2002 Taylor & Francis All rights reserved. No part of this book may be reprinted or reproduced or utilised in any form or by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying and recording, or in any information storage or retrieval system, without permission in writing from the publishers.
    [Show full text]
  • Site-Specific Effects of Neurosteroids on GABA(A) Receptor Activation and Desensitization
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2020 Site-specific effects of neurosteroids on GABA(A) receptor activation and desensitization Yusuke Sugasawa Washington University School of Medicine in St. Louis Wayland W.L. Cheng Washington University School of Medicine in St. Louis John R. Bracamontes Washington University School of Medicine in St. Louis Zi-Wei Chen Washington University School of Medicine in St. Louis Lei Wang Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Sugasawa, Yusuke; Cheng, Wayland W.L.; Bracamontes, John R.; Chen, Zi-Wei; Wang, Lei; Germann, Allison L.; Pierce, Spencer R.; Senneff, Thomas C.; Krishnan, Kathiresan; Reichert, David E.; Covey, Douglas F.; Akk, Gustav; and Evers, Alex S., ,"Site-specific effects of neurosteroids on GABA(A) receptor activation and desensitization." Elife.,. (2020). https://digitalcommons.wustl.edu/open_access_pubs/9682 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Yusuke Sugasawa, Wayland W.L. Cheng, John R. Bracamontes, Zi-Wei Chen, Lei Wang, Allison L. Germann, Spencer R. Pierce, Thomas C. Senneff, Kathiresan Krishnan, David E. Reichert, Douglas F. Covey,
    [Show full text]
  • Physiological Roles of Endogenous Neurosteroids at Α2 Subunit-Containing GABAA Receptors
    Physiological roles of endogenous neurosteroids at α2 subunit-containing GABAA receptors Elizabeth Jane Durkin A thesis submitted to University College London for the degree of Doctor of Philosophy October 2012 Department of Neuroscience, Physiology and Pharmacology University College London Gower Street London WC1E 6BT Declaration 2 Declaration I, Elizabeth Durkin, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis Abstract 3 Abstract Neurosteroids are important endogenous modulators of the major inhibitory neurotransmitter receptor in the brain, the γ-amino-butyric acid type A (GABAA) receptor. They are involved in numerous physiological processes, and are linked to several central nervous system disorders, including depression and anxiety. The neurosteroids allopregnanolone and allo-tetrahydro-deoxy-corticosterone (THDOC) have many effects in animal models (anxiolysis, analgesia, sedation, anticonvulsion, antidepressive), suggesting they could be useful therapeutic agents, for example in anxiety, stress and mood disorders. Neurosteroids potentiate GABA-activated currents by binding to a conserved site within α subunits. Potentiation can be eliminated by hydrophobic substitution of the α1Q241 residue (or equivalent in other α isoforms). Previous studies suggest that α2 subunits are key components in neural circuits affecting anxiety and depression, and that neurosteroids are endogenous anxiolytics. It is therefore possible that this anxiolysis occurs via potentiation at α2 subunit-containing receptors. To examine this hypothesis, α2Q241M knock-in mice were generated, and used to define the roles of α2 subunits in mediating effects of endogenous and injected neurosteroids. Biochemical and imaging analyses indicated that relative expression levels and localization of GABAA receptor α1-α5 subunits were unaffected, suggesting the knock- in had not caused any compensatory effects.
    [Show full text]
  • Premenstrual Dysphoric Disorder: How to Alleviate Her Suffering
    Premenstrual dysphoric disorder: How to alleviate her suffering Accurate diagnosis, tailored treatments can greatly improve women’s quality of life pproximately 75% of women experience a premen- strual change in emotional or physical symptoms Acommonly referred to as premenstrual syndrome (PMS). These symptoms—including increased irritability, tension, depressed mood, and somatic complaints such as breast tenderness and bloating—often are mild to moder- ate and cause minimal distress.1 However, approximately 3% to 9% of women experience moderate to severe premen- strual mood symptoms that meet criteria for premenstrual dysphoric disorder (PMDD).2 PMDD includes depressed or labile mood, anxiety, irri- tability, anger, insomnia, difficulty concentrating, and other © IMAGES.COM/CORBIS symptoms that occur exclusively during the 2 weeks before menses and cause significant deterioration in daily func- Laura Wakil, MD tioning. Women with PMDD use general and mental health Third-Year Psychiatry Resident services more often than women without the condition.3 Samantha Meltzer-Brody, MD, MPH They may experience impairment in marital and parental Director, Perinatal Psychiatry Program relationships as severe as that experienced by women with University of North Carolina Center for Women’s 2 Mood Disorders recurrent or chronic major depression. PMDD often responds to treatment. Unfortunately, Susan Girdler, PhD Director, UNC Stress and Health Research Program many women with PMDD do not seek treatment, and up Menstrually Related Mood Disorders Program to 90% may go undiagnosed.4 In this article, we review the University of North Carolina Center for Women’s prevalence, etiology, diagnosis, and treatment of PMDD. Mood Disorders • • • • Department of Psychiatry A complex disorder University of North Carolina at Chapel Hill A distinguishing characteristic of PMDD is the timing of Chapel Hill, NC symptom onset.
    [Show full text]