Measurement of the Volume Dependence of the Heat Capacity of Solid Neon Robert Quentin Fugate Iowa State University

Total Page:16

File Type:pdf, Size:1020Kb

Measurement of the Volume Dependence of the Heat Capacity of Solid Neon Robert Quentin Fugate Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1970 Measurement of the volume dependence of the heat capacity of solid neon Robert Quentin Fugate Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Condensed Matter Physics Commons Recommended Citation Fugate, Robert Quentin, "Measurement of the volume dependence of the heat capacity of solid neon " (1970). Retrospective Theses and Dissertations. 4837. https://lib.dr.iastate.edu/rtd/4837 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. I 71-14,225 FUGATE, Robert Quentin, 1943- MEASUREMENT OF THE VOLUME DEPENDENCE OF THE HEAT CAPACITY OF SOLID NEON. Iowa State University, Ph.D., 1970 Physics, solid state University Microfilms, A XEROX Company, Ann Arbor, Michigan MEASUREMENT OF THE VOLUME DEPENDENCE OF THE HEAT CAPACITY OF SOLID NEON by Robert Quentin Fugate A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Subject: Solid State Physics Approved ; Signature was redacted for privacy. Signature was redacted for privacy. or Department Signature was redacted for privacy. D n of ^aduate College Iowa State University Of Science and Technology Ames. Iowa 1970 PLEASE NOTE; Some pages have small and indistinct type. Filmed as received. University Microfilms I I TASLE OF CONTENTS CHAPTER 1. INTRODUCTION 1 Two-Body Potentials 3 Lattice Dynamical Models 5 Debye Model 9 Volume Effects 13 CHAPTER II. EXPERIMENTAL APPARATUS 19 Dewar and Cryostat 19 General features 19 Construction details 21 High Pressure Calorimeter 28 High Pressure System 31 Gas Recovery System 35 Electronics 37 Thermometer circuit 37 Bomb heater circuit 39 Neon Gas 4l CHAPTER III. EXPERIMENTAL PROCEDURES 43 Qualitative 43 Thermometry 44 Addenda Heat Capacity Measurements 46 Neon Sample Solidification 47 Dead Volume Effects and Sample Mass Determination 48 Specific Procedures in Data Collection 49 I I I Page CHAPTER IV. RESULTS 56 Data Anal ys is 5& Addenda Results 59 Solid Neon Results 60 CHAPTER V. DISCUSSION 75 T = 0 K Limit 75 T > 0 K Results 76 Comparison with Theory and Other Data 80 Concluding Remarks 83 FIGURES 85 BIBLIOGRAPHY 115 ACKNOWLEDGEMENTS 11 9 APPENDIX A 120 GR638 Thermometer Fit Constants 120 APPENDIX B 121 Individual Data Points for the Addenda and Neon Samples Ne4-Ne8 121 1 CHAPTER 1. INTRODUCTION The solidified noble gases (neon, argon, krypton, and xenon) form an important class of solids. They are characterized by closed-shell atoms in a cubic-close-packed structure, low melting points, and weak binding. They also represent a very interesting case where the quantum mechanical zero-point motion of the atoms has a very important effect on the elastic and thermal properties of the solid. Table 1, for instance, shows that the zero-point energy varies from 32% of the cohesive energy for neon to about 3% for xenon. Thus, zero-point energy plays an im­ portant role in the Rare Gas Solids (RGS) because of the weak interatomic forces. The zero-point energy of an ionic solid, for instance, may con­ stitute only a fraction of one percent of the cohesive energy which is of the order of 10 ev/atom (compared with 0.026 ev/atom for neon). As such, the RGS are nearly the ideal case for the comparison with experimentally determined thermodynamic properties of realistic theoretical calculations of the effects of zero-point motion on the lattice properties. Historically, the body of theoretical knowledge concerning the RGS has far exceeded experimental results. However, this situation has changed drastically during the past five years with systematic investi­ gations of heat capacity, neutron scattering, thermal expansion, com­ pressibility, and other properties being reported. The results of these experiments indicate a need for more sophisticated theoretical models and inHeeH have encouraaed theorists to improve their earlier, less complex ideas. 2 Table 1. Some properties of the Rare Gas Solids^ Nearest Parameters in the Zero- Neighbor MLJ potential (NN Cohesive Poi nt D istance interactions only) Energy Energy Sol id ao (%) a (A) c (ev) (ev/atom) (ev/atom) Ne 3.13 3.04 0.006 0.026 0.008 Ar 3.76 3.71 0.020 0.108 0.010 Kr 4.01 3.97 0.027 0.155 0.008 Xe 4.35 4.32 0.038 0.223 0.007 ^Taken from Reference k. The major trends in these developments are outlined in a series of review articles, in 1957 Dobbs and Jones (1) and in 1964 Pollack (2) gave extensive references to theoretical and experimental work. Boato (3) also has written a review article but with relatively few references. Morton (4) and Werthamer (5) recently have reviewed the current theo­ retical approaches used for the RGS. The present work represents a high precision experimental investi­ gation of the volume and temperature dependence of the heat capacity of solid neon. The types of considerations which are needed to interpret their significance are outlined below. In particular, solid neon interesting because of the relatively large size of the zero-point is CwCr^y 55 COi'ûparôd WtLn citc cnci yy y^iciuic i/f wiiiun icsuiL^ in large amplitude atomic vibrations even at absolute zero. The vibrations. 3 though of large amplitude (approximately 6% of the nearest neighbor dis­ tance), r-e considerably smaller than for helium and hence allow for more precise theoretical calculations. Two-Body Potentials Theoretical models of the RGS are made computationally tractable by the assumption of a relatively simple two-body potential function com­ posed of long range attractive and short range repulsive terms. A widely used starting point for the attractive part of the potential is the Van der Waal s r ^ potential which arises from the dipole-dipole interactions between the fluctuating charge distributions of the atoms. The repulsive term arises from the Pauli exclusion principle and its exact mathematical form is not well founded but is probably an exponential of the form exp(-Àr). The Mie-Lennard-Jones (MLJ) potential, which is one of the most popular of several ad-hoc potentials used to describe RGS, has the form (1-1) where r is the separation between two atoms, e is the depth of the potential well at the minimum, a is the location of the minimum, and n is a number of the order of 12. Values of a and e for the MLJ potential are listed In Table 1. The repulsive term is represented explicitly as an exponential in the Buckingham potential. V(r) = Gxp [-n(: - 1)] - Ç (7) i, (1-2) 4 where n Is 12 or 13. The Morse potential contains three explicit param­ eters and is written V(r) = Cjexp [-2c - 1)] -2 exp [-c (^ - 1)]j ^ (1-3) In both of these potentials € and a have the same meaning as for the MLJ potent ial. There has been much discussion concerning the values to be used for the potential parameters o and e. First principles calculations (6-9) have not yielded definitive results for the electronic interactions be­ tween rare-gas atoms in a lattice. It thus has been customary to obtain the parameters from either gas phase data such as transport properties, viscosity, diffusivity, the second virial coefficient, and atomic beam scattering (10-14) or from solid state properties-primarily the 0 K, P=0 lattice spacing, sublimation energy and bulk modulus in the case of the Morse potential (15-20). Although the gas phase data may give more realistic values for a true two body potential, the parameters derived from solid state data give better results when used in lattice dynam­ ical theories (21,22), since they represent an average of the properties of the atoms in the lattice. Other potential functions (such as the Munn-Smith and Polynomial potentials) are used in RGS calculations (4), but the MLJ and the Buck­ ingham are the most popular. There seems to be no definite advantage to either the MLJ or Buckingham potential as far as accounting for experi- mAnfal rACilf in a sinnifiranflv snnerinr fashinn. Indeed, both DO- tentials have their advocates (23,24) and both have been widely questioned 5 on the grounds that a simple two-body potential may be unreasonable in a discussion of the RGS. In fact, the role of many-body forces in the RGS is very much undecided with little experimental evidence to sub­ stantiate or disprove theoretical predictions (25,26,4). If there are appreciable many-body forces in the RGS then the ad-hoc two body param­ eters must compensate for these in some manner in order to adequately describe the crystal properties. Some information about the crystal potential can be deduced from pressure effects on the solid state properties. Changes in the volume require that the atomic motions be affected by different portions of the potential function thus yielding indirect information about its shape. Lattice Dynamical Models Modern lattice dynamical theories (27-32) are based on the ideas in­ troduced by Born and von Ka'rma'n in 1912. They considered the solid as a set of N (number of atoms) coupled harmonic oscillators having 3N normal modes of vibration. The allowed frequencies of vibration are the solu­ tion of a set of 3N coupled simultaneous equations in which the inter­ atomic potential is expanded in a Taylor series to second order (the harmonic approximation) in the atomic displacements.
Recommended publications
  • 7 Apr 2021 Thermodynamic Response Functions . L03–1 Review Of
    7 apr 2021 thermodynamic response functions . L03{1 Review of Thermodynamics. 3: Second-Order Quantities and Relationships Maxwell Relations • Idea: Each thermodynamic potential gives rise to several identities among its second derivatives, known as Maxwell relations, which express the integrability of the fundamental identity of thermodynamics for that potential, or equivalently the fact that the potential really is a thermodynamical state function. • Example: From the fundamental identity of thermodynamics written in terms of the Helmholtz free energy, dF = −S dT − p dV + :::, the fact that dF really is the differential of a state function implies that @ @F @ @F @S @p = ; or = : @V @T @T @V @V T;N @T V;N • Other Maxwell relations: From the same identity, if F = F (T; V; N) we get two more relations. Other potentials and/or pairs of variables can be used to obtain additional relations. For example, from the Gibbs free energy and the identity dG = −S dT + V dp + µ dN, we get three relations, including @ @G @ @G @S @V = ; or = − : @p @T @T @p @p T;N @T p;N • Applications: Some measurable quantities, response functions such as heat capacities and compressibilities, are second-order thermodynamical quantities (i.e., their definitions contain derivatives up to second order of thermodynamic potentials), and the Maxwell relations provide useful equations among them. Heat Capacities • Definitions: A heat capacity is a response function expressing how much a system's temperature changes when heat is transferred to it, or equivalently how much δQ is needed to obtain a given dT . The general definition is C = δQ=dT , where for any reversible transformation δQ = T dS, but the value of this quantity depends on the details of the transformation.
    [Show full text]
  • High Temperature and High Pressure Equation of State of Gold
    Journal of Physics: Conference Series OPEN ACCESS Related content - The equation of state of B2-type NaCl High temperature and high pressure equation of S Ono - Thermodynamics in high-temperature state of gold pressure scales on example of MgO Peter I Dorogokupets To cite this article: Masanori Matsui 2010 J. Phys.: Conf. Ser. 215 012197 - Equation of State of Tantalum up to 133 GPa Tang Ling-Yun, Liu Lei, Liu Jing et al. View the article online for updates and enhancements. Recent citations - Equation of State for Natural Almandine, Spessartine, Pyrope Garnet: Implications for Quartz-In-Garnet Elastic Geobarometry Suzanne R. Mulligan et al - High-Pressure Equation of State of 1,3,5- triamino-2,4,6-trinitrobenzene: Insights into the Monoclinic Phase Transition, Hydrogen Bonding, and Anharmonicity Brad A. Steele et al - High-enthalpy crystalline phases of cadmium telluride Adebayo O. Adeniyi et al This content was downloaded from IP address 170.106.202.8 on 25/09/2021 at 03:55 Joint AIRAPT-22 & HPCJ-50 IOP Publishing Journal of Physics: Conference Series 215 (2010) 012197 doi:10.1088/1742-6596/215/1/012197 High temperature and high pressure equation of state of gold Masanori Matsui School of Science, University of Hyogo, Kouto, Kamigori, Hyogo 678–1297, Japan E-mail: [email protected] Abstract. High-temperature and high-pressure equation of state (EOS) of Au has been developed using measured data from shock compression up to 240 GPa, volume thermal expansion between 100 and 1300 K and 0 GPa, and temperature dependence of bulk modulus at 0 GPa from ultrasonic measurements.
    [Show full text]
  • Calculation of Thermal Pressure Coefficient of Lithium Fluid by Data
    International Scholarly Research Network ISRN Physical Chemistry Volume 2012, Article ID 724230, 11 pages doi:10.5402/2012/724230 Research Article Calculation of Thermal Pressure Coefficient of Lithium Fluid by pVT Data Vahid Moeini Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran, Iran Correspondence should be addressed to Vahid Moeini, v [email protected] Received 20 September 2012; Accepted 9 October 2012 Academic Editors: F. M. Cabrerizo, H. Reis, and E. B. Starikov Copyright © 2012 Vahid Moeini. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For thermodynamic performance to be optimized, particular attention must be paid to the fluid’s thermal pressure coefficients and thermodynamics properties. A new analytical expression based on the statistical mechanics is derived for thermal pressure coefficients of dense fluids using the intermolecular forces theory to be valid for liquid lithium as well. The results are used to predict the parameters of some binary mixtures at different compositions and temperatures metal-nonmetal lithium fluid which agreement with experimental data. In this paper, we have used newly presented parameters of analytical expressions based on the statistical mechanics and predicted the metal-nonmetal transition for liquid lithium. The repulsion term of the effective pair potential for lithium shows well depth at 1600 K, and the position of well depth maximum is in agreement with X-ray diffraction and small-angle X-ray scattering. 1. Introduction would be observed if each pair was isolated.
    [Show full text]
  • Pressure—Volume—Temperature Equation of State
    Pressure—Volume—Temperature Equation of State S.-H. Dan Shim (심상헌) Acknowledgement: NSF-CSEDI, NSF-FESD, NSF-EAR, NASA-NExSS, Keck Equations relating state variables (pressure, temperature, volume, or energy). • Backgrounds • Equations • Limitations • Applications Ideal Gas Law PV = nRT Ideal Gas Law • Volume increases with temperature • VolumePV decreases= nRTwith pressure • Pressure increases with temperature Stress (σ) and Strain (�) Bridgmanite in the Mantle Strain in the Mantle 20-30% P—V—T EOS Bridgmanite Energy A Few Terms to Remember • Isothermal • Isobaric • Isochoric • Isentropic • Adiabatic Energy Thermodynamic Parameters Isothermal bulk modulus Thermodynamic Parameters Isothermal bulk modulus Thermal expansion parameter Thermodynamic Parameters Isothermal bulk modulus Thermal expansion parameter Grüneisen parameter ∂P 1 ∂P γ = V = ∂U ρC ∂T ✓ ◆V V ✓ ◆V P—V—T of EOS Bridgmanite • KT • α • γ P—V—T EOS Shape of EOS Shape of EOS Ptotal Shape of EOS Pst Pth Thermal Pressure Ftot = Fst + Fb + Feec P(V, T)=Pst(V, T0)+ΔPth(V, T) Isothermal EOS dP dP K = = − d ln V d ln ρ P V = V0 exp − K 0 Assumes that K does not change with P, T Murnaghan EOS K = K0 + K00 P dP dP K = = − d ln V d ln ρ K00 ρ = ρ0 1 + P Ç K0 å However, K increases nonlinearly with pressure Birch-Murnaghan EOS 2 3 F = + bƒ + cƒ + dƒ + ... V 0 3/2 =(1 + 2ƒ ) V F : Energy (U or F) f : Eulerian finite strain Birch (1978) Second Order BM EOS 2 F = + bƒ + cƒ 3K V 7/3 V 5/3 5/2 0 0 0 P = 3K0ƒ (1 + 2ƒ ) = 2 V V ñ✓ ◆ − ✓ ◆ ô dP K V 7/3 V 5/3 0 0 0 5/2 K = V = 7 5 = K0(1 + 7ƒ )(1 + 2ƒ ) dV 2 V V − ñ ✓ ◆ − ✓ ◆ ô Birch (1978) Third Order BM EOS 2 3 F = + bƒ + cƒ + dƒ 7/3 5/3 2/3 3K0 V0 V0 V0 P = 1 ξ 1 2 V V V ñ✓ ◆ − ✓ ◆ ô® − ñ✓ ◆ − ô´ 3 ξ = (4 K00 ) 4 − Birch (1978) Truncation Problem 2 3 F = + bƒ + cƒ + dƒ + ..
    [Show full text]
  • High Pressure and Temperature Dependence of Thermodynamic Properties of Model Food Solutions Obtained from in Situ Ultrasonic Measurements
    HIGH PRESSURE AND TEMPERATURE DEPENDENCE OF THERMODYNAMIC PROPERTIES OF MODEL FOOD SOLUTIONS OBTAINED FROM IN SITU ULTRASONIC MEASUREMENTS By ROGER DARROS BARBOSA A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Roger Darros Barbosa To Neila who made me feel reborn, and To my dearly loved children Marina, Carolina and especially Artur, the youngest, with whom enjoyable times were shared through this journey ACKNOWLEDGMENTS I would like to express my sincere gratitude to Dr. Murat Ö. Balaban and Dr. Arthur A. Teixeira for their valuable advice, help, encouragement, support and guidance throughout my graduate studies at the University of Florida. Special thanks go to Dr. Murat Ö. Balaban for giving me the opportunity to work in his lab and study the interesting subject of this research. I would also like to thank my committee members Dr. Gary Ihas, Dr. D. Julian McClements and Dr. Robert J. Braddock for their help, suggestions, and words of encouragement along this research. A special thank goes to Dr. D. Julian McClements for his valuable assistance and for receiving me in his lab at the University of Massachusetts. I am grateful to the Foundation for Support of Research of the State of São Paulo (FAPESP 97/07546-4) for financially supporting most part of this project. I also gratefully acknowledge the Institute of Food and Agricultural Sciences (IFAS) Research Dean, the chair of the Food Science and Human Nutrition Department, the chair of Department of Agricultural and Biological Engineering at the University of Florida, and the United States Department of Agriculture (through a research grant), for financially supporting parts of this research.
    [Show full text]
  • CHAPTER 17 Internal Pressure and Internal Energy of Saturated and Compressed Phases Ainstitute of Physics of the Dagestan Scient
    CHAPTER 17 Internal Pressure and Internal Energy of Saturated and Compressed Phases ILMUTDIN M. ABDULAGATOV,a,b JOSEPH W. MAGEE,c NIKOLAI G. POLIKHRONIDI,a RABIYAT G. BATYROVAa aInstitute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences, Makhachkala, Dagestan, Russia. E-mail: [email protected] bDagestan State University, Makhachkala, Dagestan, Russia cNational Institute of Standards and Technology, Boulder, Colorado 80305 USA. E- mail: [email protected] Abstract Following a critical review of the field, a comprehensive analysis is provided of the internal pressure of fluids and fluid mixtures and its determination in a wide range of temperatures and pressures. Further, the physical meaning is discussed of the internal pressure along with its microscopic interpretation by means of calorimetric experiments. A new relation is explored between the internal pressure and the isochoric heat capacity jump along the coexistence curve near the critical point. Various methods (direct and indirect) of internal pressure determination are discussed. Relationships are studied between the internal pressure and key thermodynamic properties, namely expansion coefficient, isothermal compressibility, speed of sound, enthalpy increments, and viscosity. Loci of isothermal, isobaric, and isochoric internal pressure maxima and minima were examined in addition to the locus of zero internal pressure. Details were discussed of the new method of direct internal pressure determination by a calorimetric experiment that involves simultaneous measurement of the thermal pressure coefficient (∂P / ∂T )V , i.e. internal pressure Pint = (∂U / ∂V )T and heat capacity cV = (∂U / ∂T )V . The dependence of internal pressure on external pressure, temperature and density for pure fluids, and on concentration for binary mixtures is considered on the basis of reference (NIST REFPROP) and crossover EOS.
    [Show full text]
  • Physics of Solids Under Strong Compression
    Rep. Prog. Phys. 59 (1996) 29–90. Printed in the UK Physics of solids under strong compression W B Holzapfel Universitat-GH¨ Paderborn, Fachbereich Physik, Warburger Strasse 100, D-33095 Paderborn, Germany Abstract Progress in high pressure physics is reviewed with special emphasis on recent developments in experimental techniques, pressure calibration, equations of state for simple substances and structural systematics of the elements. Short sections are also devoted to hydrogen under strong compression and general questions concerning new electronic ground states. This review was received in February 1995 0034-4885/96/010029+62$59.50 c 1996 IOP Publishing Ltd 29 30 W B Holzapfel Contents Page 1. Introduction 31 2. Experimental techniques 31 2.1. Overview 31 2.2. Large anvil cells (LACs) 33 2.3. Diamond anvil cells (DACs) 33 2.4. Shock wave techniques 39 3. Pressure sensors and scales 42 4. Equations of state (EOS) 44 4.1. General considerations 44 4.2. Equations of state for specific substances 51 4.3. EOS data for simple metals 52 4.4. EOS data for metals with special softness 55 4.5. EOS data for carbon group elements 58 4.6. EOS data for molecular solids 59 4.7. EOS data for noble gas solids 60 4.8. EOS data for hydrogen 62 4.9. EOS forms for compounds 63 5. Phase transitions and structural systematics 65 5.1. Alkali and alkaline-earth metals 66 5.2. Rare earth and actinide metals 66 5.3. Ti, Zr and Hf 68 5.4. sp-bonded metals 68 5.5.
    [Show full text]
  • Relationships Between Volume Thermal Expansion and Thermal Pressure Based on the Stacey Reciprocal K-Primed EOS
    Indian Journal of Pure & Applied Physics Vol. 49, February 2011, pp. 99-103 Relationships between volume thermal expansion and thermal pressure based on the Stacey reciprocal K-primed EOS S S Kushwah* & Y S Tomar Department of Physics, Rishi Galav College, Morena 476 001, MP, India *E-mail: [email protected] Received 25 February 2010; revised 22 December 2010; accepted 10 January 2011 It has been found that the Stacey reciprocal K-primed EOS is consistent with the experimental data for bulk modulus and thermal pressure as it yields correct values for volume expansion at high temperatures. The comparison of calculated values with the experimental data has been presented in case of NaCl, KCl, MgO, CaO, Al 2O3 and Mg 2SiO 4. It is also emphasized that the two equations mimicking the Stacey EOS recently used by Shrivastava [ Physica B , 404 (2009) 251] are in fact originally due to Kushwah et al . [ Physica B , 388 (2007) 20]. The results obtained for the thermal pressure using the Kushwah EOS are in good agreement for all the solids under study. Keywords : Equation of state; Bulk modulus; Thermal pressure; Thermal expansion 1 Introduction In writing Eqs (2 and 3), it has been assumed that Thermal pressure is a physical quantity of central the thermal pressure is a function of temperature importance 1 for investigating the thermoelastic only 1. At atmospheric pressure, i.e. at P(V,T) = 0, we properties of materials at high temperatures 2-7. The have: volume expansion of solids due to the rise in 8,9 temperature is directly related to thermal pressure .
    [Show full text]
  • Speed of Sound Measurements and Fundamental Equations of State for Octamethyltrisiloxane and Decamethyltetrasiloxane
    Speed of Sound Measurements and Fundamental Equations of State for Octamethyltrisiloxane and Decamethyltetrasiloxane Monika Thol1*, Frithjof H. Dubberke2, Elmar Baumhögger2, Jadran Vrabec2, Roland Span1 1Thermodynamics, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany 2Thermodynamics and Energy Technology, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany E-mail addresses: [email protected], Fax: +49 234 32 14163 (corresponding author) [email protected] [email protected] [email protected] [email protected] ABSTRACT Equations of state in terms of the Helmholtz energy are presented for octamethyltrisiloxane and decamethyltetrasiloxane. The restricted databases in the literature are augmented by speed of sound measurements, which are carried out by a pulse-echo method. The equations of state are valid in the fluid region up to approximately 600 K and 130 MPa and can be used to calculate all thermodynamic properties by combining the Helmholtz energy and its derivatives with respect to the natural variables. The accuracy of the equation is validated by comparison to experimental data and correct extrapolation behavior is ensured. Keywords: Bethe-Zel'dovich-Thompson fluids, decamethyltetrasiloxane, equation of state, Helmholtz energy, octamethyltrisiloxane, speed of sound, thermodynamic properties 1 INTRODUCTION The accurate description of thermodynamic properties of fluids is an important discipline in energy, process, and chemical engineering. For many applications in research and industry, these properties are mandatory for process simulation and the energetically but also economically efficient construction of plants. Nowadays, such information is provided by fundamental equations of state, whose parameters are adjusted to experimental data. Therefore, it is evident that the quality of the corresponding mathematical models is primarily dependent on the availability and the accuracy of experimental data.
    [Show full text]
  • Thermodynamics of Solids Under Pressure
    CHAPTER 1 Thermodynamics of Solids under Pressure AlbertoCopyrighted Otero de la Roza MALTA Consolider Team and National Institute for Nanotechnology, National Research Council of Canada, Edmonton, Canada Víctor Luaña MALTA Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain Manuel Flórez MALTA Consolider Team and Departamento de Química Física y Analítica, Universidad de Oviedo, Oviedo, Spain Material CONTENTS 1.1 Introduction to High-Pressure Science ::::::::::::::::::::::::::::::::: 3 1.2 Thermodynamics of Solids under Pressure- ::::::::::::::::::::::::::::: 6 1.2.1 Basic Thermodynamics :::::::::::::::::::::::::::::::::::::::::Taylor 6 1.2.2 Principle of Minimum Energy :::::::::::::::::::::::::::::::::: 14 1.2.3 Hydrostatic Pressure and Thermal Pressure ::::::::::::::::::: 15 1.2.4 Phase Equilibria ::::::::::::::::::::::::::::::::::::::::::::::::: 17 1.3 Equations of State :::::::::::::::::::::::::::::::::::::::::::::::::::::: 19 1.3.1 Birch–Murnaghan Family :::::::::::::::::::::::::::::::::::::::& 20 1.3.2 Polynomial Strain Families ::::::::::::::::::::::::::::::::::::: 21 1.4 Lattice Vibrations and Thermal Models :::::::::::::::::::::::::::::::Francis 23 1.4.1 Lattice Vibrations in Harmonic Approximation :::::::::::::::: 23 1.4.2 Static Approximation ::::::::::::::::::::::::::::::::::::::::::: 26 1.4.3 Quasiharmonic Approximation ::::::::::::::::::::::::::::::::: 29 1.4.4 Approximate Thermal Models :::::::::::::::::::::::::::::::::: 32 1.4.5 Anharmonicity and Other Approaches :::::::::::::::::::::::::
    [Show full text]
  • Molecular Dynamics Investigation on Tin
    Molecular dynamics investigation on tin Majid MASNAVI, Mitsuo NAKAJIMA and Kazuhiko HORIOKA Tokyo Institute of Technology Outline 1. Background & Motivation 2. Introduction: Laser-produced plasma (LPP) modeling Warm dense matter (WDM) Qualitative example 3. Results: Materials Studio code (MS) & Own program 4. Summary 5. Future investigations Acknowledgments to Gigaphoton Inc. 1 Background & Motivation Nakamura, J. Phys. D (2008) & Shimomura, Appl. Phys. Express (2008). LPP experiments (high heating /cooling rate): 1. Is really possible to control particle trajectory? 2. What is thermodynamic pathway? 3. What is equation of state (EOS)? 4. Time is not a thermodynamic coordinate. Is kinetic phase transition important? 1. Debris-mitigation including neutral Sn 2. Physics of laser ablation including condensation 3. EUV mirror contamination 4. Improving plasma radiation 2 LPP modeling & Warm dense matter Exact hydrodynamics modeling needs EOS (+ kinetic effects) on whole ablation pathways. • Binode & spinode: liquid-gas mixture . (1) Adiabatic expansion with droplets creation after a weak heating. (2) Adiabatic expansion with partial re- condensation after strong heating. (3) Adiabatic expansion with a transition into plasma and gas phases. Lescoute, Phys. Plasmas (2008). Initial stage pass through: WDM: 0.1 eV ≤ T ≤ 10 eV, 0.01 g/cc ≤ρ ≤ 10 g/cc Solid & Liquid Sn: ~ (5-7) g/cc • Warm + dense → rapid hydrodynamic → transient phenomena. • Evaporation & condensation kinetics are fast. • Laser absorption: not well-known. Typical density – temperature space. X: critical point. SHL: superheated liquid. SCG: supercooled gas. • Critical parameters: not well-known. ns & ps & fs : typical laser pulse in EUV source. 3 LPP modeling & Warm dense matter Superheating (supercooling) is demonstrated for solid and liquid.
    [Show full text]
  • Background on Property Behavior at High T and P(Revised) (Pdf)
    SIO 224 Thermodynamics and the behavior of materials at high temperatures and pressures 1. Debye theory and "high" temperatures It is interesting to try to infer the mineralogical, chemical, and thermal state of the deep Earth by using available experimental data and comparing models with the seismologically defined structure. Such a task would be relatively straightforward if we knew the equation of state of every possible mantle and core constituent (though, of course, our problem would probably be highly non-unique). Unfortunately, a lot of the experimental data is available only at low temperatures and/or pressures (e.g. ultrasonic measurements and static compression data) or pertain to temperature conditions very different from those in the Earth (shock wave data). We therefore need to be able to “correct” the experimental data to Earth conditions or, alternatively, we can “correct” the properties of the Earth to experimental conditions. In either case, we need to be able to predict how density, bulk modulus, etc. can reasonably change as a function of pressure and temperature (or volume and temperature). As you may know, thermodynamic properties change in quite a complicated way at low temperatures but at “high” temperatures, things get a little more simple. We illustrate the situation with some data on the heat capacity at constant volume for several minerals Figure 1 Cv for several minerals as a function of temperature at ambient pressure. Green=MgO, blue=olivine, orange=forsterite, black=corundum, brown =grossular garnet, purple=pyrope garnet, and red is CaO. At low temperatures, the heat capacity is a rapidly varying function of temperature.
    [Show full text]