APEX Calculus LT Pdf, Will Give Access to These Topics

Total Page:16

File Type:pdf, Size:1020Kb

APEX Calculus LT Pdf, Will Give Access to These Topics APEX CALCULUS II Late Transcendentals University of North Dakota Adapted from APEX Calculus by Gregory Hartman, Ph.D. Department of Applied Mathematics Virginia Military Institute Revised June 2021 Contributing Authors Troy Siemers, Ph.D. Michael Corral Department of Applied Mathematics Mathematics Virginia Military Institute Schoolcraft College Brian Heinold, Ph.D. Paul Dawkins, Ph.D. Department of Mathematics Department of Mathematics and Computer Science Lamar University Mount Saint Mary’s University Dimplekumar Chalishajar, Ph.D. Department of Applied Mathematics Virginia Military Institute Editor Jennifer Bowen, Ph.D. Department of Mathematics and Computer Science The College of Wooster Copyright © 2015 Gregory Hartman © 2021 Department of Mathematics, University of North Dakota This work is licensed under a Creative Commons Attribution‐NonCommercial 4.0 International License. Resale and reproduction restricted. CONTENTS Preface vii Calculus I 1 Limits 7 1.1 An Introduction To Limits .................... 8 1.2 Epsilon‐Delta Definition of a Limit ............... 16 1.3 Finding Limits Analytically .................... 25 1.4 One Sided Limits ........................ 39 1.5 Limits Involving Infinity ..................... 48 1.6 Continuity ............................ 60 2 Derivatives 79 2.1 Instantaneous Rates of Change: The Derivative ........ 79 2.2 Interpretations of the Derivative ................ 94 2.3 Basic Differentiation Rules ................... 101 2.4 The Product and Quotient Rules ................ 110 2.5 The Chain Rule ......................... 122 2.6 Implicit Differentiation ..................... 133 3 The Graphical Behavior of Functions 143 3.1 Extreme Values ......................... 143 3.2 The Mean Value Theorem .................... 152 3.3 Increasing and Decreasing Functions .............. 158 3.4 Concavity and the Second Derivative .............. 169 3.5 Curve Sketching ......................... 177 4 Applications of the Derivative 187 4.1 Related Rates .......................... 187 4.2 Optimization ........................... 195 4.3 Differentials ........................... 203 4.4 Newton’s Method ........................ 211 5 Integration 219 5.1 Antiderivatives and Indefinite Integration ........... 219 5.2 The Definite Integral ...................... 229 5.3 Riemann Sums ......................... 240 5.4 The Fundamental Theorem of Calculus ............. 261 5.5 Substitution ........................... 276 6 Applications of Integration 291 6.1 Area Between Curves ...................... 292 6.2 Volume by Cross‐Sectional Area; Disk and Washer Methods .. 300 6.3 The Shell Method ........................ 312 6.4 Work ............................... 322 6.5 Fluid Forces ........................... 332 Calculus II 7 Inverse Functions and L’Hôpital’s Rule 343 7.1 Inverse Functions ........................ 343 7.2 Derivatives of Inverse Functions ................ 349 7.3 Exponential and Logarithmic Functions ............. 355 7.4 Hyperbolic Functions ...................... 364 7.5 L’Hôpital’s Rule ......................... 375 8 Techniques of Integration 383 8.1 Integration by Parts ....................... 383 8.2 Trigonometric Integrals ..................... 394 8.3 Trigonometric Substitution ................... 407 8.4 Partial Fraction Decomposition ................. 416 8.5 Integration Strategies ...................... 426 8.6 Improper Integration ...................... 435 8.7 Numerical Integration ...................... 447 9 Sequences and Series 461 9.1 Sequences ............................ 461 9.2 Infinite Series .......................... 476 9.3 The Integral Test ......................... 490 9.4 Comparison Tests ........................ 496 9.5 Alternating Series and Absolute Convergence ......... 505 9.6 Ratio and Root Tests ....................... 517 9.7 Strategy for Testing Series .................... 523 9.8 Power Series ........................... 527 9.9 Taylor Polynomials ....................... 545 9.10 Taylor Series ........................... 555 10 Curves in the Plane 575 10.1 Arc Length and Surface Area .................. 575 10.2 Parametric Equations ...................... 585 10.3 Calculus and Parametric Equations ............... 597 10.4 Introduction to Polar Coordinates ............... 611 10.5 Calculus and Polar Functions .................. 624 Calculus III 11 Vectors 639 11.1 Introduction to Cartesian Coordinates in Space ........ 639 11.2 An Introduction to Vectors ................... 656 11.3 The Dot Product ......................... 670 11.4 The Cross Product ........................ 684 11.5 Lines ............................... 697 11.6 Planes .............................. 707 12 Vector Valued Functions 715 12.1 Vector‐Valued Functions .................... 715 12.2 Calculus and Vector‐Valued Functions ............. 722 12.3 The Calculus of Motion ..................... 735 12.4 Unit Tangent and Normal Vectors ................ 748 12.5 The Arc Length Parameter and Curvature ........... 758 13 Functions of Several Variables 769 13.1 Introduction to Multivariable Functions ............ 769 13.2 Limits and Continuity of Multivariable Functions ........ 777 13.3 Partial Derivatives ........................ 789 13.4 Differentiability and the Total Differential ........... 800 13.5 The Multivariable Chain Rule .................. 808 13.6 Directional Derivatives ..................... 817 13.7 Tangent Lines, Normal Lines, and Tangent Planes ....... 828 13.8 Extreme Values ......................... 839 13.9 Lagrange Multipliers ...................... 850 14 Multiple Integration 857 14.1 Iterated Integrals and Area ................... 857 14.2 Double Integration and Volume ................. 867 14.3 Double Integration with Polar Coordinates ........... 879 14.4 Center of Mass ......................... 887 14.5 Surface Area ........................... 899 14.6 Volume Between Surfaces and Triple Integration ........ 906 14.7 Triple Integration with Cylindrical and Spherical Coordinates . 928 15 Vector Analysis 945 15.1 Introduction to Line Integrals .................. 946 15.2 Vector Fields ........................... 957 15.3 Line Integrals over Vector Fields ................ 967 15.4 Flow, Flux, Green’s Theorem and the Divergence Theorem .. 980 15.5 Parameterized Surfaces and Surface Area ........... 990 15.6 Surface Integrals ......................... 1002 15.7 The Divergence Theorem and Stokes’ Theorem ........ 1011 Appendix Solutions To Selected Problems A.3 Index A.17 Important Formulas A.21 PREFACE A Note on Using this Text Thank you for reading this short preface. Allow us to share a few key points about the text so that you may better understand what you will find beyond this page. This text comprises a three‐volume series on Calculus. The first part covers material taught in many “Calculus 1” courses: limits, derivatives, and the basics of integration, found in Chapters 1 through 6. The second text covers materi‐ al often taught in “Calculus 2”: integration and its applications, along withan introduction to sequences, series and Taylor Polynomials, found in Chapters 7 through 10. The third text covers topics common in “Calculus 3” or “Multi‐ variable Calculus”: parametric equations, polar coordinates, vector‐valued func‐ tions, and functions of more than one variable, found inChapters 11 through 15. All three are available separately for free. Printing the entire text as one volume makes for a large, heavy, cumbersome book. One can certainly only print the pages they currently need, but some prefer to have a nice, bound copy of the text. Therefore this text has been split into these three manageable parts, each of which can be purchased separately. A result of this splitting is that sometimes material is referenced that isnot contained in the present text. The context should make it clear whether the “missing” material comes before or after the current portion. Downloading the appropriate pdf, or the entire APEX Calculus LT pdf, will give access to these topics. For Students: How to Read this Text Mathematics textbooks have a reputation for being hard to read. High‐level mathematical writing often seeks to say much with few words, and thisstyle often seeps into texts of lower‐level topics. This book was written with thegoal of being easier to read than many other calculus textbooks, without becoming too verbose. Each chapter and section starts with an introduction of the coming materi‐ al, hopefully setting the stage for “why you should care,” and ends with alook ahead to see how the just‐learned material helps address future problems. Ad‐ ditionally, each chapter includes a section zero, which provides a basic review and practice problems of pre‐calculus skills. Since this content is a pre‐requisite for calculus, reviewing and mastering these skills are considered your responsi‐ bility. This means that it is your responsibility to seek assistance outside of class from your instructor, a math resource center or other math tutoring available on‐campus. A solid understanding of these skills is essential to your success in solving calculus problems. Please read the text; it is written to explain the concepts of Calculus. There are numerous examples to demonstrate the meaning of definitions, the truth of theorems, and the application of mathematical techniques. When you en‐ counter a sentence you don’t understand, read it again. If it still doesn’t make sense, read on anyway, as sometimes confusing sentences are explained by later sentences. You don’t have to read every
Recommended publications
  • Series: Convergence and Divergence Comparison Tests
    Series: Convergence and Divergence Here is a compilation of what we have done so far (up to the end of October) in terms of convergence and divergence. • Series that we know about: P∞ n Geometric Series: A geometric series is a series of the form n=0 ar . The series converges if |r| < 1 and 1 a1 diverges otherwise . If |r| < 1, the sum of the entire series is 1−r where a is the first term of the series and r is the common ratio. P∞ 1 2 p-Series Test: The series n=1 np converges if p1 and diverges otherwise . P∞ • Nth Term Test for Divergence: If limn→∞ an 6= 0, then the series n=1 an diverges. Note: If limn→∞ an = 0 we know nothing. It is possible that the series converges but it is possible that the series diverges. Comparison Tests: P∞ • Direct Comparison Test: If a series n=1 an has all positive terms, and all of its terms are eventually bigger than those in a series that is known to be divergent, then it is also divergent. The reverse is also true–if all the terms are eventually smaller than those of some convergent series, then the series is convergent. P P P That is, if an, bn and cn are all series with positive terms and an ≤ bn ≤ cn for all n sufficiently large, then P P if cn converges, then bn does as well P P if an diverges, then bn does as well. (This is a good test to use with rational functions.
    [Show full text]
  • Calculus II Chapter 9 Review Name______
    Calculus II Chapter 9 Review Name___________ ________________________ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. A recursion formula and the initial term(s) of a sequence are given. Write out the first five terms of the sequence. an 1) a = 1, a = 1) 1 n+1 n + 2 Find a formula for the nth term of the sequence. 1 1 1 1 2) 1, - , , - , 2) 4 9 16 25 Find the limit of the sequence if it converges; otherwise indicate divergence. 9 + 8n 3) a = 3) n 9 + 5n 3 4) (-1)n 1 - 4) n Determine if the sequence is bounded. Δn 5) 5) 4n Find a formula for the nth partial sum of the series and use it to find the series' sum if the series converges. 3 3 3 3 6) 3 - + - + ... + (-1)n-1 + ... 6) 8 64 512 8n-1 7 7 7 7 7) + + + ... + + ... 7) 1·3 2·4 3·5 n(n + 2) Find the sum of the series. Q n 9 8) _ (-1) 8) 4n n=0 Use partial fractions to find the sum of the series. 3 9) 9) _ (4n - 1)(4n + 3) 1 Determine if the series converges or diverges; if the series converges, find its sum. 3n+1 10) _ 10) 7n-1 1 cos nΔ 11) _ 11) 7n Find the values of x for which the geometric series converges. n n 12) _ -3 x 12) Find the sum of the geometric series for those x for which the series converges.
    [Show full text]
  • MATH 162: Calculus II Differentiation
    MATH 162: Calculus II Framework for Mon., Jan. 29 Review of Differentiation and Integration Differentiation Definition of derivative f 0(x): f(x + h) − f(x) f(y) − f(x) lim or lim . h→0 h y→x y − x Differentiation rules: 1. Sum/Difference rule: If f, g are differentiable at x0, then 0 0 0 (f ± g) (x0) = f (x0) ± g (x0). 2. Product rule: If f, g are differentiable at x0, then 0 0 0 (fg) (x0) = f (x0)g(x0) + f(x0)g (x0). 3. Quotient rule: If f, g are differentiable at x0, and g(x0) 6= 0, then 0 0 0 f f (x0)g(x0) − f(x0)g (x0) (x0) = 2 . g [g(x0)] 4. Chain rule: If g is differentiable at x0, and f is differentiable at g(x0), then 0 0 0 (f ◦ g) (x0) = f (g(x0))g (x0). This rule may also be expressed as dy dy du = . dx x=x0 du u=u(x0) dx x=x0 Implicit differentiation is a consequence of the chain rule. For instance, if y is really dependent upon x (i.e., y = y(x)), and if u = y3, then d du du dy d (y3) = = = (y3)y0(x) = 3y2y0. dx dx dy dx dy Practice: Find d x d √ d , (x2 y), and [y cos(xy)]. dx y dx dx MATH 162—Framework for Mon., Jan. 29 Review of Differentiation and Integration Integration The definite integral • the area problem • Riemann sums • definition Fundamental Theorem of Calculus: R x I: Suppose f is continuous on [a, b].
    [Show full text]
  • Calculus 141 Section 9.6 Lecture Notes
    Calculus 141, section 9.6 Ratio Test and Root Tests notes by Tim Pilachowski ∞ c r m ● The geometric series ∑ c r n = if and only if r <1. n = m 1 − r ∞ 1 ● The p-series converges whenever p > 1 and diverges whenever 0 < p ≤ 1. ∑ p n =1 n ∞ ∞ ● The Integral Test states a series a converges if and only if f ()x dx converges. ∑ n ∫1 n =1 ∞ ● In the Direct Comparison Test, ∑ an converges if its terms are less than those of a known convergent n =1 series, and diverges if its terms are greater than those of a known convergent series. ∞ an ● The Limit Comparison Test states: If lim exists and is a positive number, then positive series ∑ an n → ∞ bn n =1 ∞ and ∑ bn either both converge or both diverge. n =1 A downside to the Comparison Tests is that they require a suitable series to use for the comparison. In contrast, the Ratio Test and the Root Test require only the series itself. ∞ ∞ an+1 Ratio Test (Theorem 9.15) Given a positive series an for which lim = r : a. If 0 ≤ r < 1, then an ∑ n→∞ ∑ n =1 an n =1 ∞ an+1 converges. b. If r > 1, then an diverges. c. If r = 1 or lim does not exist, no conclusion. ∑ n→∞ n =1 an The proof of part a. relies upon the definition of limits and the “creation” of a geometric series which converges to which we compare our original series. Briefly, by the nature of inequalities there exists a value s for which an+1 0 ≤ r < s < 1.
    [Show full text]
  • MATH 166 TEST 3 REVIEW SHEET General Comments and Advice
    MATH 166 TEST 3 REVIEW SHEET General Comments and Advice: The student should regard this review sheet only as a sample of potential test problems, and not an end-all-be-all guide to its content. Anything and everything which we have discussed in class is fair game for the test. The test will cover roughly Sections 10.1, 10.2, 10.3, 10.4, and 10.5. Don't limit your studying to this sheet; if you feel you don't fully understand a particular topic, then try to do more problems out of your textbook! Summary of Relative Growth Rates. For two sequences (an) and (bn) such that (an) ! 1 and (bn) ! 1, let the symbols (an) << (bn) denote that (bn) grows faster than (an). Then the following is a summary of our most commonly encountered growth rates: (ln n) << ((ln n)r) << (nq) << (n) << (np) << (bn) << (n!) << (nn), where r > 1, 0 < q < 1, p > 1, and b > 1. General Strategy for Determining Convergence of a Series. There is no hard and fast rule for determining whether a series converges or diverges, and in general the student should build up their own intuition on the subject through practice. However, the following mental checklist can be a helpful guideline. 1 X (1) Divergence Test. Given a series an, the first thing one should always n=1 ask is, do the terms (an) ! 0? If not, we are done and the series diverges by the DT. If the terms do shrink to zero, however, we have to put more thought into the problem.
    [Show full text]
  • The Direct Comparison Test (Day #1)
    9.4--The Direct Comparison Test (day #1) When applying the Direct Comparison Test, you will usually compare a tricky series against a geometric series or a p-series whose convergence/divergence is already known. Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 1) 1 3 n + 7 n=1 9.4--The Direct Comparison Test (day #1) Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 2) 1 n - 2 n=3 Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 3) 5n n 2 - 1 n=1 9.4--The Direct Comparison Test (day #1) Use the Direct Comparison Test to determine the convergence or divergence of the series: ∞ 4) 1 n 4 + 3 n=1 9.4--The Limit Comparison Test (day #2) The Limit Comparison Test is useful when the Direct Comparison Test fails, or when the series can't be easily compared with a geometric series or a p-series. 9.4--The Limit Comparison Test (day #2) Use the Limit Comparison Test to determine the convergence or divergence of the series: 5) ∞ 3n2 - 2 n3 + 5 n=1 Use the Limit Comparison Test to determine the convergence or divergence of the series: 6) ∞ 4n5 + 9 10n7 n=1 9.4--The Limit Comparison Test (day #2) Use the Limit Comparison Test to determine the convergence or divergence of the series: 7) ∞ 1 n 4 - 1 n=1 Use the Limit Comparison Test to determine the convergence or divergence of the series: 8) ∞ 5 3 2 n - 6 n=1 9.4--Comparisons of Series (day #3) (This is actually a review of 9.1-9.4) page 630--Converging or diverging? Tell which test you used.
    [Show full text]
  • Direct and Limit Comparison Tests
    Joe Foster Direct and Limit Comparison Tests We have seen that a given improper integral converges if its integrand is less than the integrand of another integral known to converge. Similarly, a given improper integral diverges if its integrand is greater than the integrand of another integral known to diverge. We now apply the same idea to infinite series instead. Direct Comparison Test for Series: If0 a b for all n N, for some N, then, ≤ n ≤ n ≥ ∞ ∞ 1. If bn converges, then so does an. nX=1 nX=1 ∞ ∞ 2. If an diverges, then so does bn. nX=1 nX=1 a The Limit Comparison Test: Suppose a > 0 and b > 0 for all n. If lim n = L, where L is finite and L> 0, then n n →∞ n bn the two series an and bn either both converge or both diverge. X X ∞ 1 Example 1: Determine whether the series converges or diverges. 2n + n nX=1 1 1 We have for all n 1. So, 2n + n ≤ 2n ≥ ∞ ∞ 1 1 . 2n + n ≤ 2n nX=1 nX=1 1 Since the series on the right is a geometric series with r = , it converges. So we determine that our series of interest also 2 converges. ∞ 1 Example 2: Determine whether the series converges or diverges. n2 + n +1 nX=1 1 1 We have for all n 1. So, n2 + n +1 ≤ n2 ≥ ∞ ∞ 1 1 . n2 + n +1 ≤ n2 nX=1 nX=1 Since the series on the right is a p series with p = 2 > 1, it converges.
    [Show full text]
  • Comparison Tests for Integrals
    Joe Foster Direct and Limit Comparison Tests Tests for Convergence: When we cannot evaluate an improper integral directly, we try to determine whether it con- verges of diverges. If the integral diverges, we are done. If it converges we can use numerical methods to approximate its value. The principal tests for convergence or divergence are the Direct Comparison Test and the Limit Comparison Test. Direct Comparison Test for Integrals: If0 ≤ f(x) ≤ g(x) on the interval (a, ∞], where a ∈ R, then, ∞ ∞ 1. If g(x) dx converges, then so does f(x) dx. ˆa ˆa ∞ ∞ 2. If f(x) dx diverges, then so does g(x) dx. ˆa ˆa Why does this make sense? 1. If the area under the curve of g(x) is finite and f(x) is bounded above by g(x) (and below by 0), then the area under the curve of f(x) must be less than or equal to the area under the curve of g(x). A positive number less that a finite number is also finite. 2. If the area under the curve of f(x) is infinite and g(x) is bounded below by f(x), then the area under the curve of g(x) must be “less than or equal to” the area under the curve of g(x). Since there is no finite number “greater than” infinity, the area under g(x) must also be infinite. Example 1: Determine if the following integral is convergent or divergent. ∞ cos2(x) 2 dx. ˆ2 x cos2(x) cos2(x) We want to find a function g(x) such that for some a ∈ R, f(x)= ≤ g(x) or f(x)= ≥ g(x) for all x ≥ a.
    [Show full text]
  • Math Flow Chart
    Updated November 12, 2014 MATH FLOW CHART Grade 6 Grade 7 Grade 8 Grade 9 Grade 10 Grade 11 Grade 12 Calculus Advanced Advanced Advanced Math AB or BC Algebra II Algebra I Geometry Analysis MAP GLA-Grade 8 MAP EOC-Algebra I MAP - ACT AP Statistics College Calculus Algebra/ Algebra I Geometry Algebra II AP Statistics MAP GLA-Grade 8 MAP EOC-Algebra I Trigonometry MAP - ACT Math 6 Pre-Algebra Statistics Extension Extension MAP GLA-Grade 6 MAP GLA-Grade 7 or or Algebra II Math 6 Pre-Algebra Geometry MAP EOC-Algebra I College Algebra/ MAP GLA-Grade 6 MAP GLA-Grade 7 MAP - ACT Foundations Trigonometry of Algebra Algebra I Algebra II Geometry MAP GLA-Grade 8 Concepts Statistics Concepts MAP EOC-Algebra I MAP - ACT Geometry Algebra II MAP EOC-Algebra I MAP - ACT Discovery Geometry Algebra Algebra I Algebra II Concepts Concepts MAP - ACT MAP EOC-Algebra I Additional Full Year Courses: General Math, Applied Technical Mathematics, and AP Computer Science. Calculus III is available for students who complete Calculus BC before grade 12. MAP GLA – Missouri Assessment Program Grade Level Assessment; MAP EOC – Missouri Assessment Program End-of-Course Exam Mathematics Objectives Calculus Mathematical Practices 1. Make sense of problems and persevere in solving them. 2. Reason abstractly and quantitatively. 3. Construct viable arguments and critique the reasoning of others. 4. Model with mathematics. 5. Use appropriate tools strategically. 6. Attend to precision. 7. Look for and make use of structure. 8. Look for and express regularity in repeated reasoning. Linear and Nonlinear Functions • Write equations of linear and nonlinear functions in various formats.
    [Show full text]
  • Which Convergence Test Should I Use?
    Which Convergence Test Should I Use? 1 X 1. Is the series a geometric series? I.e. arn. n=0 Then: Converges for jrj < 1 and diverges otherwise. 1 X 1 2. Is the series a p-series? I.e. np n=0 Then: Converges for p > 1 and diverges otherwise. 3. Check the nth Term Divergence Test. Then: Diverges if lim an 6= 0. No information, otherwise. n!1 4. Is the series a positive series? I.e. an ≥ 0 for all n. Then: Check the following tests, in order. (a) The Direct Comparison Test: Can you find a larger series that converges or a smaller series which diverges? This is usually done by dropping terms from the numerator or denominator. 1 1 1 1 I.e. p < , but p > . n2 + n n2 n2 − n n2 Then: Larger series converging implies convergence, and smaller series diverging implies diver- gence. (b) The Limit Comparison Test: Can you find a comparison with a known convergent or divergent series, but the inequality is the wrong way for the Direct Comparison Test? Consider the \dom- 1 1 inant" term in the series. I.e. p is dominated by n2, so compare with . n2 − n n2 an X X Then: Consider lim = L. If L > 0, an and bn both converge or both diverge. If n!1 bn X X X L = 0, convergence of bn implies convergence of an. If L = 1, convergence of an X implies convergence of bn. (c) The Ratio Test: Does the series contain terms with factorials (i.e n!) or exponentials (i.e.
    [Show full text]
  • Of 13 MATH 1C: EXAM INFORMATION for SEQUENCES and SERIES (SS) LESSONS
    MATH 1C: EXAM INFORMATION FOR MULTIVARIABLE DIFFERENTIATION (MD) LESSONS MD LESSONS 0: THE LEAST-SQUARES PROBLEM ☐ Discuss the major themes of part 1 of Math 1C: State the limit definition of the ordinary derivative from Math 1A. State the second derivative test from Math 1A. Given a single variable function, find the maximum and minimum values of this function using the second derivative test from Math 1A. Describe the forward and backward problems of single-variable differentiation. Make explicit connections to the work you did in Math 1AB. Describe the forward and backward problems of multivariable-variable differentiation. Make explicit connections to the work you will do in Math 1CD. Compare and contrast single-variable differentiation with multivariable differentiation. Construct a linear least-squares problem using a given data set. Make sure you can • Set up a model for the error �! between the ith data point (�!, �!) and any associated linear model � = � � = �� + �. • Using the model for the errors, set up the least-squares problem for this input data. In particular, create a two variable function �!(�, �) that you can use to solve create the ``best-fit'' model for this data. Explain in detail the choices that you made to construct your error function �!. Why do you use the total squared error (and not the sum of the individual errors �! or the sum of the absolute value of the individual errors �! )? • Explain how we will use multivariable calculus to find the line of best fit. Make explicit connections with the second
    [Show full text]
  • Math 131Infinite Series, Part IV: the Limit Comparisontest
    21 The Limit Comparison Test While the direct comparison test is very useful, there is another comparison test that focuses only on the tails of the series that we want to compare. This makes it more widely applicable and simpler to use. We don’t need to verify that an ≤ bn for all (or most) n. However, it will require our skills in evaluating limits at infinity! THEOREM 14.7 (The Limit Comparison Test). Assume that an > 0 and bn > 0 for all n (or at least all n ≥ k) and that a lim n = L. n!¥ bn ¥ (1) If 0 < L < ¥ (i.e., L is a positive, finite number), then either the series ∑ an and n=1 ¥ ∑ bn both converge or both diverge. n=1 ¥ ¥ (2) If L = 0 and ∑ bn converges, then ∑ an converges. n=1 n=1 ¥ ¥ (3) If L = ¥ and ∑ bn diverges, then ∑ an diverges. n=1 n=1 an The idea of the theorem is since lim = L, then eventually an ≈ Lbn. So if one n!¥ bn of the series converges (diverges) so does the other since the two are ‘essentially’ scalar multiples of each other. ¥ 1 EXAMPLE 14.19. Does converge? ∑ 2 − + n=1 3n n 6 SOLUTION. scrap work: Let’s apply the limit comparison test. Notice that the terms are always positive since the polynomial 3n2 − n + 6 has no roots. In any event, the terms are eventually positive since this an upward-opening parabola. If we focus on ¥ 1 highest powers, then the series looks a like the p-series ∑ 2 which converges.
    [Show full text]