Severe Hypodontia: Dental, Dentofacial, Osseous and Genetic Aspects

Total Page:16

File Type:pdf, Size:1020Kb

Severe Hypodontia: Dental, Dentofacial, Osseous and Genetic Aspects SEVERE HYPODONTIA: DENTAL, DENTOFACIAL, OSSEOUS AND GENETIC ASPECTS Marijn Créton Promotoren: Prof.dr. M.S. Cune & Prof.dr. C. de Putter Colofon © Marijntje Annika Créton ISBN: 978-90-393-5807-8 Cover: Lay-out: Chris Bor, Medische Fotografie en Illustratie, AMC, Amsterdam Printed by: Buijten & Schipperheijn, Amsterdam SEVERE HYPODONTIA: DENTAL, DENTOFACIAL, OSSEOUS AND GENETIC ASPECTS Ernstige hypodontie: dentale, dentofaciale, osseale en genetische aspecten (with a summary in English) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 6 juli 2012 des ochtends te 10.30 uur door Marijntje Annika Créton geboren op 28 september 1973 te Utrecht Promotoren Prof.dr. M.S. Cune Prof.dr. C. de Putter Sponsoring Het drukken van dit proefschrift werd mede gefinancierd door: NVT - Nederlandse Vereniging voor Tandartsen www.nvt.nu NMT - Nederlandse Maatschappij tot bevordering der Tandheelkunde www.tandartsennet.nl NVGPT - Nederlandse Vereniging voor Gnathologie en Prothetische Tandheelkunde www.nvgpt.nl NVVRT - Nederlands Vlaamse Vereniging voor Restauratieve Tandheelkunde www.nvvrt.com BioComp Dental b.v. www.biocomp.eu Straumann B.V. www.straumann.nl Astra Tech Benelux BV www.astratech.com Tandtechnisch laboratorium Oosterwijk www.ttloosterwijk.nl Elysee Dental www.elysee-dental.com NVOI - Nederlandse Vereniging voor Orale Implantologie www.nvoi.nl Prof.dr. P. Egyedi Stichting Paranimfen: M.H. Créton Dr. R.J. Créton Manuscriptcommissie Prof.dr. WPTM Mali, röntgenoloog, UMC Utrecht, voorzitter Prof.dr. R Koole, kaakchirurg, UMC Utrecht Prof.dr. GJ Meijer, kaakchirurg, UMC St. Radboud, Nijmegen Dr. JK Ploos van Amstel, medisch geneticus, UMC Utrecht Prof.dr. AJP Schrijvers, UMC Utrecht Contents Chapter 1 9 General introduction and aims of the study General introduction General aims of the study Specific aims of the study: questions of investigation Chapter 2 29 Patterns of missing teeth in a population of oligodontia patients Chapter 3 41 Dentofacial characteristics of patients with hypodontia Chapter 4 61 Radiographic features of mandibular trabecular bone structure in hypodontia Chapter 5 75 Implant treatment in patients with severe hypodontia: a retrospective evaluation Chapter 6 91 Three-dimensional analysis of tooth dimensions in the MSX1-missense mutation. Chapter 7 109 Mutations in WNT10A are present in more than half of isolated hypodontia cases Chapter 8 131 General discussion and future perspectives General discussion Future research Summary 147 (Dutch summary) Dankwoord 163 Curriculum Vitae 169 Appendix I 173 The Dutch hypodontia database Appendix II 179 Full-Mouth Tooth Agenesis Code in 106 oligodontia patients Appendix III 185 Restorative aspects: clinical decision-making General introduction and 11 aims of the study General introduction The number of teeth is commonly used as an important indicator for oral health. Already in 1992 the World Health Organization has proclaimed that one of their goals for the year 2000 was that people should have a functional, esthetic dentition of at least 20 teeth throughout life and can go without some sort of dental prosthesis.1 This is not just a challenge for underdeveloped countries and an ambitious goal, also considering the fact that in the Chapter 1 Chapter year 1992 an estimated 23% of the Dutch population was fully edentulous in the maxilla and/or mandible. Although this number is rapidly declining, in the years 2000 and 2009 the corresponding numbers were still approximately 16% and 12%, with marked regional and decreasing gender differences (Statline, CBS, 2010).2 11 Most of these patients will have had a full natural dentition at one moment in time and have and aims of the study General introduction lost their teeth because of caries and / or periodontal disease. However, this is not as obvious as it may seem. In some cases teeth may not have developed properly and have been absent from birth. The process of tooth development is called odontogenesis. Odontogenesis is quite a complex process. It consists of a series of events by which teeth develop from embryonic cells that derive from mesenchymal and epidermal tissues and subsequently grow, before erupting into the mouth. Tooth development resembles the development of other organs such as glands and hair, both morphologically and molecularly. Odontogenesis and more specifically tooth morphogenesis (its shape) is regulated through a large number of molecules that are organized in signaling networks.3 These molecules initiate reciprocal interactions between epithelial and mesenchymal cells that cause the ectoderm to thicken, tooth buds to grow and fold and eventually form the complex shape of a tooth crown.4 The study of these processes is the domain of expertise of developmental biologists. Their field is growing rapidly and new technologies emerge on a constant basis, helping us understand how dental abnormalities come about, and in the future may even help us to grow teeth.5, 6 Because of the many factors involved, odontogenesis is a rather precarious process that can easily be disturbed and disrupted as a result of various endocrine, local, environmental and genetic factors.3 An endocrine, hormonal cause for hypodontia is for example idiopathic (hypo) parathyroidism.7 Trauma or cysts in the apical area of the alveolar process are considered local causes.8 Environmental factors include virus and yeast infections (i.e. Rubella9 and Candida), exposure to certain toxins (i.e. dioxin)10, and radio- and chemotherapy during childhood. For example, nearly all patients from a Dutch population of 40 who underwent allogenic hematopoietic stem cell transplantation for hematological malignancies developed dental disturbances, especially those who were younger than 3 years of age when treatment commenced.11 Also, 50% of surviving children with a rhabdomyosarcoma who had radiation 12 Figure 1 The genetic factors that disturb odontogenesis are comprehensive and mutations in a large and rapidly growing number of genes have been identified as the causes of dental abnormalities such as amelogenesis imperfecta. Amelogenesis imperfecta is a hereditary condition in which the dental enamel does not develop properly in the whole dentition. In this case, the poor condition of the enamel caused chipping with the lower molars and bad esthetics for the front teeth. therapy to the head or neck during childhood present with dental abnormalities.12 It is hard to distinguish between the original illness and the therapeutic measures as the actual cause of the dental sequelae. The genetic factors that disturb odontogenesis are comprehensive and mutations in a large and rapidly growing number of genes have been identified as the causes of dental abnormalities such as amelogenesis and dentinogenesis imperfecta (figure 1), dentin dysplasia’s and anomalies of teeth number.6, 13-15 The latter is the general topic of this thesis and will be discussed in more detail. Numerical anomalies in tooth development: hyperdontia and hypodontia With respect to numerical anomalies in tooth development a distinction between hyper- and hypodontia can be made, either in combination with or not in combination with a syndrome. Hyperdontia (ICD-10: K00.1) occurs singly, in multiples, unilaterally or bilaterally, in the maxilla, in the mandible or both. It has a prevalence in the permanent dentition that varies from 0.1 – 3.8 %, depending on the population studied.16 The most common presentation of hyperdontia is the so-called mesiodens; an extra, peg-shaped tooth that is commonly located between the 2 maxillary central incisors. Extra teeth in the molar area are called paramolar teeth, those located posterior to the third molar are referred to as distomolar teeth. Although cases of multiple supernumerary teeth have been reported they are rare and seldom seen without associated diseases or syndromes caused by genetic disturbances such as Gardner’s syndrome (APC gene), cleidocranial dysostosis (RUNX2 gene) and tricho- a Chapter 1 Chapter b 13 General introduction and aims of the study General introduction c Figure 2a A supernumerary permanent mandibular incisor is a rare finding (2a). b-c A super- numerary right lateral incisor is relatively more common. rhino-phalangeal syndrome (TRPS1 gene).8, 16, 17 In uncommon cases ‘extra’ teeth or tooth like structures can develop outside the mouth (i.e. in the ovaries, lungs or orbit). They are referred to as teratomas. Subjects with supernumerary teeth generally have larger teeth (macrodontia) than controls.18-20 Restorative treatment is usually uncomplicated and may consist of extraction of the supernumerary teeth, although on occasions they fit in reasonably well in the dental arch (figure 2a-c). Hyperdontia falls beyond the scope of this thesis. Hypodontia (ICD-10: K00.0), the congenital absence of one or more permanent teeth, is the most common developmental anomaly in man. It has a prevalence of 5.5% in Europeans, with a preference for women compared to men (1.37:1).21 There are racial differences with 14 respect to the prevalence of hypodontia. In the Caucasian race the second mandibular bicuspid and maxillary lateral incisor are the most common absent tooth type, whereas in Asians the first mandibular incisor is the most frequently congenitally absent tooth.22 In case of anodontia all permanent teeth are missing, which is extremely rare. By definition,
Recommended publications
  • Sequence Analysis of Familial Neurodevelopmental Disorders
    SEQUENCE ANALYSIS OF FAMILIAL NEURODEVELOPMENTAL DISORDERS by Joseph Mark Tilghman A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland December 2020 © 2020 Joseph Tilghman All Rights Reserved Abstract: In the practice of human genetics, there is a gulf between the study of Mendelian and complex inheritance. When diagnosis of families affected by presumed monogenic syndromes is undertaken by genomic sequencing, these families are typically considered to have been solved only when a single gene or variant showing apparently Mendelian inheritance is discovered. However, about half of such families remain unexplained through this approach. On the other hand, common regulatory variants conferring low risk of disease still predominate our understanding of individual disease risk in complex disorders, despite rapidly increasing access to rare variant genotypes through sequencing. This dissertation utilizes primarily exome sequencing across several developmental disorders (having different levels of genetic complexity) to investigate how to best use an individual’s combination of rare and common variants to explain genetic risk, phenotypic heterogeneity, and the molecular bases of disorders ranging from those presumed to be monogenic to those known to be highly complex. The study described in Chapter 2 addresses putatively monogenic syndromes, where we used exome sequencing of four probands having syndromic neurodevelopmental disorders from an Israeli-Arab founder population to diagnose recessive and dominant disorders, highlighting the need to consider diverse modes of inheritance and phenotypic heterogeneity. In the study described in Chapter 3, we address the case of a relatively tractable multifactorial disorder, Hirschsprung disease.
    [Show full text]
  • Possible Causes of Deaf-Blindness
    1 Nebraska Deaf-Blind Project Fact Sheet, December 2014 Possible Causes of Combined Hearing and Vision Losses (Dual Sensory Impairments/Deaf-Blindness) By Teresa Coonts, Project Director Aicardi Syndrome Marfan Syndrome Alport Syndrome Marshall Syndrome Alstrom Syndrome Maroteaux-Lamy Syndrome Apert Syndrome Maternal Drug Use Asphyxia Meningitis Bardet-Biedl Syndrome Microcephaly Batten Disease Moebius Syndrome CHARGE Syndrome Mohr-Tranebjaerg Chromosome 18 Monosomy 10p Cockayne Syndrome Morquio Syndrome Cogan’s Syndrome Neonatal Herpes Simplex (HSV) Congenital rubella syndrome NF1-Neurofibromatosis (von Cornelia de Lange Syndrome (CdLs) Recklinghausen disease) Craniosynostosis (Aipert, Crouzon and NF2-Bilateral Acoustic Neurofibromatosis Pfeiffer) Norrie Disease Cri du Chat Syndrome Optico-Cochleo-Dentate Degeneration Crigler-Najjar syndrome Pallister Killian Mosaic Syndrome Crouzon Syndrome Peroxisomal disorders (including Refsum Cytomegalovirus (CMV) Disease, Zellweger syndrome, and Dandy-Walker Syndrome Infantile Adrenoleukodystrophy) Direct Trauma to the Eye and Ear Pfieffer Syndrome Down Syndrome Prader-Willi Syndrome Duane Syndrome Pierre-Robin Syndrome Encephalitis Scheie Syndrome Fetal Alcohol Syndrome Severe Head/Brain Injury Flynn Aird Syndrome Smith-Lemli-Opitz (SLO) Syndrome or Friedreich’s Ataxia (Spinocerebellar (SLOS) degeneration) Stickler Syndrome Goldenhar Syndrome Stroke Hand-Schuller-Christian disease (also Sturge-Weber Syndrome 1 2 known as Histiocytosis) Congenital Syphillis Herpes zoster (not at birth or childhood
    [Show full text]
  • Review Article
    Krithigaa S et al. Orofacial syndrome – Part I. Journal of Advanced Medical and Dental Sciences Research @Society of Scientific Research and Studies NLM ID: 101716117 Journal home page: www.jamdsr.com doi: 10.21276/jamdsr Index Copernicus value = 85.10 (e) ISSN Online: 2321-9599; (p) ISSN Print: 2348-6805 Review Article A Review on Orofacial Syndromes Associated With Head and Neck Region - Part I S.Krithigaa1, D.Anupriya2, Harini Priya.A.H3, R.Sathish Muthukumar4, Sreeja.C5, Nachiammai6 1,2Post Graduate, Department of Oral & Maxillofacial Pathology, Chettinad Dental College & Research Institute, Kancheepuram, Tamil Nadu; 3Associate Professor, Department of Oral & Maxillofacial Pathology, Chettinad Dental College & Research Institute, Kancheepuram, Tamil Nadu; 4Professor & Head, Department of Oral & Maxillofacial Pathology, Chettinad Dental College & Research Institute, Kancheepuram, Tamil Nadu; 5,6Reader, Department of Oral & Maxillofacial Pathology, Chettinad Dental College & Research Institute, Kancheepuram, Tamil Nadu ABSTRACT: Objectives: A syndrome is a condition presenting with a collection of signs & symptoms reflecting the presence of disease. Many syndromes have overlapping clinical and oral manifestations, and diagnostic uncertainty is frequently observed during clinical practice. Thorough basic knowledge about various orofacial syndromes would help us in diagnosis and perform successful management for patients. This paper briefly reviews various syndromes associated with the orofacial region. Methods: This study reviews on clear detailed representation of syndromes from original articles, overviews, case reports and reviews. Results: Several relevant reports were identified and collected to enlist the list of syndromes associated with craniofacial manifestations. Conclusion: This article is constructed to help the health care providers to understand and aid in the diagnosis to provide an optimal personalized care for individuals.
    [Show full text]
  • Epidemiology, Etiology, and Treatment of Isolated Cleft Palate
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW published: 01 March 2016 doi: 10.3389/fphys.2016.00067 Epidemiology, Etiology, and Treatment of Isolated Cleft Palate Madeleine L. Burg 1, Yang Chai 2, Caroline A. Yao 3, 4, William Magee III 3, 4 and Jane C. Figueiredo 5* 1 Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 2 Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA, 3 Division of Plastic and Reconstructive Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA, 4 Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA, USA, 5 Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA Isolated cleft palate (CPO) is the rarest form of oral clefting. The incidence of CPO varies substantially by geography from 1.3 to 25.3 per 10,000 live births, with the Edited by: highest rates in British Columbia, Canada and the lowest rates in Nigeria, Africa. Paul Trainor, Stratified by ethnicity/race, the highest rates of CPO are observed in non-Hispanic Stowers Institute for Medical Research, USA Whites and the lowest in Africans; nevertheless, rates of CPO are consistently higher Reviewed by: in females compared to males. Approximately fifty percent of cases born with cleft Keiji Moriyama, palate occur as part of a known genetic syndrome or with another malformation Tokyo Medical and Dental University, Japan (e.g., congenital heart defects) and the other half occur as solitary defects, referred to Daniel Graf, often as non-syndromic clefts.
    [Show full text]
  • Syndromes Affecting Ear Nose & Throat
    Journal of Analytical & Pharmaceutical Research Syndromes Affecting Ear Nose & Throat Keywords: Throat Review Article genetic disorders; oral manifestations; Ear, Nose, Abbreviations: Volume 5 Issue 4 - 2017 TCS: Treacher Collins Syndrome; RHS: Ramsay Hunt Syndrome; FNP: Facial Nerve Palsy; CHD: Congenital Heart Diseases; AD: Alzheimer’s Diseases; HD: Hirschprung Disease; DS: Down Syndrome; ES: Eagle’s Syndrome; OAV: Department of oral pathology and microbiology, Rajiv Gandhi Oculo-Auriculovertebral; VZV: Varicella Zoster Virus; MPS: University of Health Sciences, India Myofacial Pain Syndrome; FMS: Fibromyalgia Syndrome; NF2: *Corresponding author: Kalpajyoti Bhattacharjee, IntroductionNeurofibromatosis Type I Department of oral pathology and microbiology, Rajiv Gandhi University of Health Sciences, Rajarajeswari Dental College The term syndrome denotes set of signs and symptoms that Email: disease or an increased chance of developing to a particular and Hospital, Bangalore, India, Tel: 8951714933; disease.tend to occurThere together are more and thanreflect 4,000 the presencegenetic disordersof a particular that Received: | Published: constitute head and neck syndromes of which more than 300 May 09, 2017 July 13, 2017 entities involve craniofacial structures [1]. The heritage of the term syndrome is ancient and derived from the Greek word sundrome: sun, syn – together + dromos, a running i.e., “run together”, as the features do. There are of mutated cell are confined to one site and leads to formation of numerous syndromes which involve Ear, Nose, Throat areas with Listmonostotic of Syndromes fibrous dysplasia Affecting [2]. Ear Nose & Throat oral manifestations. The aim of this review is to discuss ear, nose a. Goldenhar syndrome, and throat related syndromes with oral manifestations. b. Frey syndrome, Etiopathogenesis c.
    [Show full text]
  • Pediatric Endocrinology Through Syndromes
    Accepted Manuscript Pediatric endocrinology through syndromes Gianluca Tornese, Maria Chiara Pellegrin, Egidio Barbi, Alessandro Ventura PII: S1769-7212(18)30316-1 DOI: https://doi.org/10.1016/j.ejmg.2019.01.004 Reference: EJMG 3614 To appear in: European Journal of Medical Genetics Received Date: 6 May 2018 Revised Date: 20 November 2018 Accepted Date: 12 January 2019 Please cite this article as: G. Tornese, M.C. Pellegrin, E. Barbi, A. Ventura, Pediatric endocrinology through syndromes, European Journal of Medical Genetics (2019), doi: https://doi.org/10.1016/ j.ejmg.2019.01.004. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Pediatric endocrinology through syndromes Gianluca Tornese 1, Maria Chiara Pellegrin 1, Egidio Barbi 1,2 , Alessandro Ventura 1,2 1) Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy 2) University of Trieste, Trieste, Italy Corresponding author: Maria Chiara Pellegrin, MD Department of Pediatrics - Endocrinology, AuxologyMANUSCRIPT and Diabetology Unit Institute for Maternal and Child Health - IRCCS "Burlo Garofolo" via dell'Istria 65/1 - 34137 Trieste, Italy Phone: +39 040 3785 470 - Mobile : +39 339 8619117- Fax: +39 040 3785 290 E-mail: [email protected] / [email protected] ACCEPTED 1 ACCEPTED MANUSCRIPT Abstract In everyday practice, a pediatric endocrinologist will face a variety of different endocrine issues (such as short or tall stature, dysthyroidism, abnormal pubertal timing or impaired glucose metabolism), which relevantly contribute to the global care of a number of syndromic conditions.
    [Show full text]
  • EUROCAT Syndrome Guide
    JRC - Central Registry european surveillance of congenital anomalies EUROCAT Syndrome Guide Definition and Coding of Syndromes Version July 2017 Revised in 2016 by Ingeborg Barisic, approved by the Coding & Classification Committee in 2017: Ester Garne, Diana Wellesley, David Tucker, Jorieke Bergman and Ingeborg Barisic Revised 2008 by Ingeborg Barisic, Helen Dolk and Ester Garne and discussed and approved by the Coding & Classification Committee 2008: Elisa Calzolari, Diana Wellesley, David Tucker, Ingeborg Barisic, Ester Garne The list of syndromes contained in the previous EUROCAT “Guide to the Coding of Eponyms and Syndromes” (Josephine Weatherall, 1979) was revised by Ingeborg Barisic, Helen Dolk, Ester Garne, Claude Stoll and Diana Wellesley at a meeting in London in November 2003. Approved by the members EUROCAT Coding & Classification Committee 2004: Ingeborg Barisic, Elisa Calzolari, Ester Garne, Annukka Ritvanen, Claude Stoll, Diana Wellesley 1 TABLE OF CONTENTS Introduction and Definitions 6 Coding Notes and Explanation of Guide 10 List of conditions to be coded in the syndrome field 13 List of conditions which should not be coded as syndromes 14 Syndromes – monogenic or unknown etiology Aarskog syndrome 18 Acrocephalopolysyndactyly (all types) 19 Alagille syndrome 20 Alport syndrome 21 Angelman syndrome 22 Aniridia-Wilms tumor syndrome, WAGR 23 Apert syndrome 24 Bardet-Biedl syndrome 25 Beckwith-Wiedemann syndrome (EMG syndrome) 26 Blepharophimosis-ptosis syndrome 28 Branchiootorenal syndrome (Melnick-Fraser syndrome) 29 CHARGE
    [Show full text]
  • Living History-Biography: from Oral Pathology to Craniofacial Genetics
    American Journal of Medical Genetics 46:317-334 (1993) Living History-Biography: From Oral Pathology to Craniofacial Genetics Robert J. Gorlin University of Minnesota School of Dentistry, Minneapolis, Minnesota ROBERT JAMES GORLIN Early Life I was born on 11 January 1923 in Hudson, N.Y.,the only child of James Alter Gorlin and Gladys Gretchen Hallenbeck. Abandoned by my mother, my father placed me in the care of my great aunt who raised me until I was 11 years old when she began to suffer ill health and had no more economic wherewithal to support me fur- ther. I then joined my father and my stepmother whom he had recently married. My father was a small scale businessman with little formal education. We moved several times within a few years to small towns in New Jersey, partly the result of his poor business acumen and partly due to malencounters with the law. In 1937, we moved to Newark and settled in a two-bedroom apart- ment with grandparents, uncles, aunts, cousins, and two boarders. In spite of the crowded conditions, every niche and recess being occupied by a bed, it was not, to the best of my memory, an unhappy home. I do not know what hopes or ambitions my father and stepmother had for me. They respected education but they believed that since they were so impecunious, col- lege was out of the picture. After I rejected the idea of becoming a priest (my stepmother’s brother’s calling), my father suggested that I take a General Business Preparation curriculum in high school.
    [Show full text]
  • Hereditary Hearing Loss and It's Syndromes
    Syndromes and Hearing Loss – Clinical Practice Guideline for Audiology (this is a section of a larger Practice Guideline “Cleft Palate, Craniofacial and Syndromic Guideline”) Care Paths for these syndromes are in separate PDF files in the same place as this document was found. There are many known syndromes associated with hearing loss. Many of these have clefting and/or craniofacial anomalies, some of them don’t. This list was generated by combining the BCCH Audiology Department list of syndromes and the BCEHP Late Onset Monitoring Risk Factor Syndromes. That list was then compared with those found in the “Hereditary Hearing Loss and It’s Syndromes” and reviewed by all of the reviewers of this Guideline for completeness. This resulted in the syndromes listed below which are associated with hearing loss. A literature review was conducted using Pub Med, PEDLYNX, and OMIM databases. Search terms were (‘name of syndrome’ as listed in Appendix B AND (‘Audio*’ OR Hear*’) in title or abstract, from 1999 to 2010, all languages. Citations were screened by a two reviewers for relevance. Published, peer reviewed articles were selected based on level of evidence with recently published articles describing well-designed randomised controlled trials with comparatively large sample groups taking precedence. High quality systematic reviews and retrospective reviews of clinical data were also used. Case studies of noteworthy results were occasionally noted as a matter of interest or possible focus of higher level literature to be reviewed in the future (when published), but were not considered in determining association of a syndrome with late onset SNHL. If the results of a study were inconclusive or the literature could not clearly associate a syndrome with late onset SNHL (ie.
    [Show full text]
  • Epilepsy 2017 from Bench to Bedside 23–24 September 2017 Eaching Weekend, Weekend, Eaching
    EPILEPSY 2017 FROM BENCH TO BEDSIDE 23–24 SEPTEMBER 2017 EACHING WEEKEND, WEEKEND, EACHING A PRACTICAL GUIDE TO EPILEPSY ILAE SPR T Edited by XVI F.J. Rugg-Gunn and H.B. Stapley International League Against Epilepsy EPILEPSY 2017 From Bench to Bedside A Practical Guide to Epilepsy Lecture Notes Sixteenth Epilepsy Teaching Weekend 23–24 September 2017 University of Oxford Mathematical Institute Edited by F.J. Rugg-Gunn and H.B. Stapley PREVIOUS PREVIOUS NEXT NEXT < SECTION < CHAPTER CONTENTS CHAPTER> SECTION> LECTURE NOTES for the Contents Sixteenth Epilepsy Teaching Weekend 23−24 September 2017 University of Oxford Mathematical Institute Preface F.J. RUGG-GUNN .................................................................................................................................... vi Introduction F.J. RUGG-GUNN ................................................................................................................................... vii Sixteenth Edition (2017) Edited by F.J. Rugg-Gunn and H.B. Stapley Section One – Introduction 1 The incidence and prevalence of epilepsy A. NELIGAN and J.W. SANDER ....................................................................................................3 2 Classification and terminology to organise seizures and epilepsy T. WEHNER ...................................................................................................................................11 Section Two – Basic science 3 Basic mechanisms of epilepsy J.G.R. JEFFERYS ���������������������������������������������������������������������������������������������������������������������������21
    [Show full text]
  • Fátima Lopes Mscthesis VERSÃO FINAL IMPRESSÃO ANÓNIMO
    Universidade de Aveiro Departamento de Química Ano 2011 Fátima Daniela Alterações de dosagem no genoma de doentes com Teixeira Lopes atraso mental Genomic imbalances in patients with intellectual disability Universidade de Aveiro Departamento de Química Ano 2011 Fátima Daniela Alterações de dosagem no genoma de doentes Teixeira Lopes com atraso mental Genomic imbalances in patients with intellectual disability Dissertação apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Biotecnologia , realizada sob a orientação científica da Doutor a Patrícia Espinheira de Sá Maciel, Professora A uxiliar da Escola de Ciências da Saúde da Universidade do Minho, e da Doutora Odete Cruz e Silva, Professora A uxiliar do Departamento de Biologia da Universidade de Aveiro. Apoio financeiro da FCT (PIC/IC/83026/2007) no âmbito do III Quadro Comunitário de Apoio. “Sooner or later we will find the cause, and it will be in exactly the same way as we have found genes for other disorders - by lucky coincidence. (…)There isn't anything unique about not having discovered it yet." John Marius Opitz, 1997 Por este motivo, este pequeno contributo é dedicado aos pais das crianças envolvidas neste estudo. o júri presidente Professor Doutor Jorge Manuel Alexandre Saraiva Investigador Auxiliar do Departamento de Química da Universidade de Aveiro Professora Doutora Filipa Abreu Gomes de Carvalho Professora Associada com Agregação da Faculdade de Medicina da Universidade do Porto Professora Doutora Patrícia Espinheira de Sá Maciel Professora Auxiliar da Escola de Ciências da Saúde da Universidade do Minho Professora Doutora Odete Cruz e Silva Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro.
    [Show full text]
  • Pivotal Role of the Muscle-Contraction Pathway in Cryptorchidism And
    Cannistraci et al. BMC Medical Genomics 2013, 6:5 http://www.biomedcentral.com/1755-8794/6/5 RESEARCH ARTICLE Open Access Pivotal role of the muscle-contraction pathway in cryptorchidism and evidence for genomic connections with cardiomyopathy pathways in RASopathies Carlo V Cannistraci1,2,3*†, Jernej Ogorevc4†, Minja Zorc4†, Timothy Ravasi1, Peter Dovc4 and Tanja Kunej4* Abstract Background: Cryptorchidism is the most frequent congenital disorder in male children; however the genetic causes of cryptorchidism remain poorly investigated. Comparative integratomics combined with systems biology approach was employed to elucidate genetic factors and molecular pathways underlying testis descent. Methods: Literature mining was performed to collect genomic loci associated with cryptorchidism in seven mammalian species. Information regarding the collected candidate genes was stored in MySQL relational database. Genomic view of the loci was presented using Flash GViewer web tool (http://gmod.org/wiki/Flashgviewer/). DAVID Bioinformatics Resources 6.7 was used for pathway enrichment analysis. Cytoscape plug-in PiNGO 1.11 was employed for protein-network-based prediction of novel candidate genes. Relevant protein-protein interactions were confirmed and visualized using the STRING database (version 9.0). Results: The developed cryptorchidism gene atlas includes 217 candidate loci (genes, regions involved in chromosomal mutations, and copy number variations) identified at the genomic, transcriptomic, and proteomic level. Human orthologs of the collected candidate loci were presented using a genomic map viewer. The cryptorchidism gene atlas is freely available online: http://www.integratomics-time.com/cryptorchidism/. Pathway analysis suggested the presence of twelve enriched pathways associated with the list of 179 literature-derived candidate genes. Additionally, a list of 43 network-predicted novel candidate genes was significantly associated with four enriched pathways.
    [Show full text]