Crystal Chemistry of the Zeolites Erionite and Offretite

Total Page:16

File Type:pdf, Size:1020Kb

Crystal Chemistry of the Zeolites Erionite and Offretite American Mineralogist, Volume 83, pages 577±589, 1998 Crystal chemistry of the zeolites erionite and offretite E. PASSAGLIA,1 G. ARTIOLI,2,* AND A. GUALTIERI1 1Dipartimento di Scienze della Terra, UniversitaÁ di Modena, via S. Eufemia 19, I-41100 Modena, Italy 2Dipartimento di Scienze della Terra, UniversitaÁ di Milano, via Botticelli 23, I-20133 Milano, Italy ABSTRACT Many known occurrences of the zeolites erionite and offretite have been characterized by electron probe microanalysis, X-ray powder diffraction, and optical microscopy. For the ®rst time, a substantial amount of experimentally consistent and homogeneous chemical and crystallographic data have been evaluated for these natural zeolites. Systematic anal- ysis of the data, performed by statistical multivariate analysis, leads to the following con- clusions: (1) the two zeolites have well-de®ned compositional ®elds in the chemical space describing the extraframework cation content, best illustrated in a Mg-Ca(1Na)- K(1Sr1Ba) diagram; (2) no discrimination is possible on the basis of the framework Si/Al ratio because of the extensive compositional overlap between the two species, however the Si-Al content in the framework tetrahedra is the major control on the unit-cell volume dimensions, particularly in erionite; (3) the crystal chemistry of the Mg cations is a major factor in controlling the crystallization of the mineral species; (4) cation compositions at the boundary of the recognized compositional ®elds might be due to chemical averaging of two-phase intergrowths, although these mixed-phase occurrences are much less common than previously thought; (5) the sign of optical elongation is not a distinctive character of the two phases, it is related to the Si/Al ratio in the framework tetrahedra of each zeolite type and cannot be used for identi®cation purposes; (6) the zeolite mineral species epitax- ially overgrown on levyne in all cases is identi®ed as erionite; in a few cases offretite was found to be overgrown on chabazite; (7) erionite samples epitaxially overgrown on levyne are substantially more Al-rich and Mg-poor than the erionite samples associated with other zeolites. INTRODUCTION of the two mineral zeolites, whereas offretite occurrences Erionite and offretite are natural zeolites having differ- are scarce. Typical occurrences, morphological and opti- ent topologies ([ERI]- and [OFF]-topological codes fol- cal features, and earlier crystal chemical studies are well lowing Meier and Olson 1992). Both zeolites are found described in the literature (Sheppard and Gude 1969; in vugs of volcanic massive rocks, and available literature Wise and Tschernich 1976; Gottardi and Galli 1985; descriptions include: one-phase occurrences and epitaxial Tschernich 1992). The present study stems from two ma- intergrowths of the two species (Pongiluppi 1976; Rinaldi jor problems commonly encountered in the characteriza- 1976; Wise and Tschernich 1976; Hentschel and Schricke tion of erionite-offretite mineral samples: (1) The identi- 1976; Betz and Hentschel 1978; Rychly et al. 1982), ep- ®cation of mineral species is troublesome, due to the itaxial overgrowth of both erionite and offretite on levyne structural and crystal chemical similarities of the two ze- (Shimazu and Mizota 1972; Passaglia et al. 1974; Shep- olites; and (2) the literature descriptions available to date pard et al. 1974; Wise and Tschernich 1976; England and do not provide clear discriminatory parameters for the Ostwald 1979; Birch 1989; Kile and Modreski 1988), and de®nition and the distinction of the two minerals, unless epitaxial overgrowth of offretite on chabazite (Passaglia a complete structural study is performed. and Tagliavini 1994; Passaglia et al. 1996). Only erionite The ®rst point is readily justi®ed: In the literature it is is also found as an authigenic mineral in volcanoclastic possible to ®nd several cases where the minerals were silicic layers and tuffs diagenetically altered in continen- misidenti®ed by simple routine mineralogical analysis. tal (Staples and Gard 1959; Sheppard and Gude 1969; An example is the sample from Beech Creek, Oregon, Sheppard et al. 1965; Gude and Sheppard 1981; Boles which was originally identi®ed as an offretite overgrowth and Surdam 1979; Surdam and Eugster 1976) and marine on levyne on the basis of optical elongation sign and X- (Shameshima 1978) environments. Given the wider range ray powder diffraction data (Sheppard et al. 1974), but for conditions of formation, erionite is the more common was subsequently rede®ned as erionite on levyne on the basis of thorough X-ray and electron diffraction analysis * E-mail: [email protected] and adsorption capacity measurements (Bennett and Grose 0003±004X/98/0506±0577$05.00 577 578 PASSAGLIA ET AL.: CRYSTAL CHEMISTRY OF ERIONITE AND OFFRETITE FIGURE 1. Compositional diagram showing the reliable (1965); Sheppard and Gude (1969); Staples and Gard (1959); chemical analyses of erionite (open circles) and offretite (solid Surdam and Eugster (1976), Wise and Tschernich (1976). About circles) from the literature. Sources of the data: Batiashvili and half of the erionites are reported to be ``hydrothermal,'' and half Gvakhariya (1968); Belitskiy and Bukin (1968); Birch (1988, are sedimentary. M 5 (Na 1 K); D 5 (Ca 1 Mg 1 Sr 1 Ba). 1889); Boles and Surdam (1979); England and Ostwald (1979); All data normalized to 72 framework O atoms. Horizontal dis- Gude and Sheppard (1981); Harada et al. (1967); Kile and Mod- crimination lines based on Si/Al ratio are after Sheppard and reski (1988); Noh and Kim (1986); Passaglia et al. (1974); Pas- Gude (1969) [±´±´±], Wise and Tschernich (1976) [- - - -], and saglia and Tagliavini (1994, 1995); Pongiluppi (1976); Rinaldi Rinaldi (1976) [´´´´´´´´]. Sub-vertical line (D 5 M) is the discrim- (1976); Rychly et al. (1982); Sameshima (1978); Sheppard et al. inant after Sheppard and Gude (1969). 1978). Several of the samples obtained for the present natory diagram based on the above chemical parameters study were also misidenti®ed by the original authors: The (Fig. 1), it is evident that none among the proposed cri- close relationship between the crystal structures of the teria satisfactorily de®nes appropriate compositional two minerals (Bennett and Gard 1967) is the cause for ®elds apt to describe the literature information. Chemical such frequent misidenti®cations. Although both crystal analyses are considered to be reliable if (Si 1 Al) ø 36, structures are now reasonably well de®ned, at least in on the basis of 72 O atoms; and balance error E # 10%, terms of major crystallographic features (Staples and where E% (Passaglia 1970) is Gard 1959; Kawahara and Curien 1969; Gard and Tait 1972, 1973; Alberti et al. 1996; Gualtieri et al. 1998), the 100 3 [(Al 1 Fe)ob2Alth]/Alth (1) available crystal chemical characterizations are incom- Al 5 Na 1 K 1 2 3 (Ca 1 Mg 1 Sr 1 Ba). (2) plete and often inconsistent. This is the cause of the sec- th ond problem listed above: Based on the present literature, The situation is even more confused if we try to plot it is impossible to de®ne universal discrimination criteria the available data describing the extraframework cation applicable to all reported erionite and offretite samples. content of the two zeolites, using the same literature Problems exist because earlier discrimination parame- sources (Fig. 2). We assume that the lack of discrimina- ters were based on a limited number of samples. Shep- tory compositional ®elds for the two zeolites is due to pard and Gude (1969) proposed species distinction based several factors: First of all, several minerals in the liter- on the optical sign of elongation (positive in erionite, neg- ature could be simply misidenti®ed; second, several of ative in offretite, a widely used identi®cation parameter the analyses may have been carried out on mixed-phase in subsequent studies) and on chemical parameters [eri- samples. onite: Si/(Al 1 Fe) . 2.9 and (Na 1 K) . (Ca 1 Mg)]. The present work attempts to rede®ne the crystal Subsequently, Wise and Tschernich (1976) and Rinaldi chemistry of erionite and offretite minerals. We collected (1976) proposed a distinction based on the Si/Al ratio, as many available samples as possible from different lo- the former de®ning as erionite the mineral having Si/Al calities, identi®ed the associated minerals, and eventually . 3.0, the latter de®ning as erionite the mineral having separated pure erionite and offretite samples. For each Si/Al . 2.4. sample, we performed electron microprobe analysis If all reliable chemical analyses of erionites and offre- (EMPA), thermal gravimetric analysis, X-ray powder dif- tites available in the literature are inserted in a discrimi- fraction, and optical microscopy. Statistical analysis of PASSAGLIA ET AL.: CRYSTAL CHEMISTRY OF ERIONITE AND OFFRETITE 579 FIGURE 2. Compositional diagram showing the extraframework cation content of reliable chemical analyses of erionite and offretite minerals in the literature. Sources of the data and symbols as in Figure 1. the internally consistent and homogeneous chemical and rated for preliminary X-ray diffraction analysis by long crystallographic data was used to evaluate and interpret exposures (up to 24 h) using a Gandol® camera. The non- possible discrimination parameters between the two zeo- destructive technique allowed identi®cation of the sepa- lites. A companion study (Gualtieri et al. 1998) presents rated crystals and guaranteed integrity of the crystals for the full structural characterization
Recommended publications
  • Cation Sieve Properties of the Opei{ Zeolites Chabazite
    THE AMERICAN MINERALOGIST, VOL. 46, SEPTEMBER-OCTOBER, 1961 CATION SIEVE PROPERTIES OF THE OPEI{ ZEOLITES CHABAZITE. MORDENITE, ERIONITE AND CLINOPTILOLITE L. L. Aues, ly., GeneralElectric Company, R'ichland, Washington. Ansrnecr The partial cation sieve properties of the "open" zeolites chabazite, mordenite, erionite and clinoptilolite were studied in an efiort to determine the mechanism responsible for the type and intensity of the observed cation replacement series. It was found that neither the hydration state of the cations before entering the zeolite structure nor relative loading rates had any significant efiect on the type or intensity of alkali metal or alkaline earth metal cation replacement series. Molten salt experiments with Csw-containing zeolites demonstrated that at higher temperatures the normal hydrated type replacement series could be reversed to a coulombic replacement series without destruction of the alumino- silicate framework. The above results were interpreted as being caused by the presence or absence of structural water. Additional stereochemical studies are necessarv to determine the details of the mechanism. INrnonucrroN There are at least three mechanisms responsible for the cation sieve properties exhibited by natural zeolites.One such mechanism is the posi- tive exclusion of certain cations due to the inability of these larger ca- tions to enter the zeolite Iattice in significant amounts. The sieve effect shown by analcite for Cs+ is an exampleof such an exclusionbased dn cation size (Barrer, 1950). A second mechanism for a cation sieve effect is the inability of the negative charge distribution on the zeolite structure to accommodate a given cation. An example of this mechanism is given in the difficulty of obtaining calcium or barium-rich analcites(Barrer, 1950)or sodium-rich heulandites(Mumpton, 1960) by cation exchange.Determination of a third mechanism constitutes the object of this paper.
    [Show full text]
  • Case Report Erionite-Associated Malignant Pleural Mesothelioma in Mexico
    Int J Clin Exp Pathol 2016;9(5):5722-5732 www.ijcep.com /ISSN:1936-2625/IJCEP0027993 Case Report Erionite-associated malignant pleural mesothelioma in Mexico Elizabeth A Oczypok1, Matthew S Sanchez2, Drew R Van Orden2, Gerald J Berry3, Kristina Pourtabib4, Mickey E Gunter4, Victor L Roggli5, Alyssa M Kraynie5, Tim D Oury1 1Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213; 2RJ Lee Group, Inc., Monroeville, PA, 15146; 3Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305; 4Department of Geological Sciences, University of Idaho, Moscow, ID, 83844; 5Department of Pathology, Duke University School of Medicine, Durham, NC, 27710 Received March 11, 2016; Accepted March 28, 2016; Epub May 1, 2016; Published May 15, 2016 Abstract: Malignant mesothelioma is a highly fatal cancer of the visceral and parietal pleura most often caused by asbestos exposure. However, studies over the past thirty-five to forty years have shown that a fibrous zeolite mineral found in the soil, erionite, is a strong causative agent of malignant mesothelioma as well. Cases of erionite- associated pleural mesothelioma have been widely reported in Turkey, but only one case has been documented in North America. Here we report a new North American case of epithelial malignant pleural mesothelioma in a vehicle repairman who was raised on a farm in the Mexican Volcanic Belt region. The complexities of the case highlight the importance of objective lung digestion studies to uncover the causative agents of mesotheliomas. It also highlights a need for increased environmental precautions and medical vigilance for mesotheliomas in erionite-rich regions of the United States and Mexico.
    [Show full text]
  • Study of the Asbestos Bodies and Chemical-Physical Modifi- Cation of Mineral Fibres in Rat Histological Tissues Using Scan
    Microscopie.qxp_Hrev_master 27/03/18 13:22 Pagina 23 SCIENTIFIC ARTICLES Study of the asbestos bodies and chemical-physical modifi- cation of mineral fibres in rat histological tissues using scan- ning electron microscopy, and high-resolution transmission electron microscopy Nicola Bursi Gandolfi Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy Corresponding author: Nicola Bursi Gandolfi, Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy. Tel. +39.059.2058497 E-mail: [email protected] Key words: Asbestos; erionite; in vivo; asbestos bodies; SEM; TEM. Conflict of interest: The Author declares no conflict of interest. SUMMARY This work presents a systematic FEG-SEM and HR-TEM characterization of the morpho-chemical char- acteristics of both asbestos bodies and fibres found in the tissues of Sprague Dawley rats after an intrapleural injection of UICC chrysotile, UICC crocidolite and erionite from Jersey, Nevada (USA). The characterization of the fibrous materials and asbestos bodies within the organic tissues, were performed using a FEI Nova NanoSEM 450 FEG-SEM located at the CIGS (Centro Interdipartimentale Grandi Strumenti) of University of Modena. Parts of histological tissue were dissolved, and the mineral fibres recovered were subsequently analysed with a FEI TECNAI G2 200kv TEM located at The Friedrich Schiller University of Jena, and with a JEOL ARM 200F TEM located at National Institute of Chemistry of Ljubljana. Notwithstanding, the results of this study may help to better understand the mechanism of formation of asbestos bodies and why do they not form on the fibrous erionite specimen used for this study.
    [Show full text]
  • Erionite Information
    Erionite Information What you need to Know about Erionite Erionite is a naturally occurring zeolite typically formed by the alteration of volcanic rocks. Zeolites are a group of hydrated aluminum silicates that contain alkaline and alkaline-earth metals. Because of their inherent properties such as the ability to absorb large quantities of water, zeolites are used widely as pet litter, animal feed and other horticultural applications. Several hundred occurrences of zeolite deposits have been recorded worldwide. Erionite has an average formula of K2 (Na,Ca0.5)8[Al10Si26O72] 30H2O. However, the large chemical variability in the chemical structure of erionite can become an issue during EDS analysis. In fact, in 1997 erionite was elevated to a “series” status in an attempt to better categorize the wide chemical ranges observed for erionite. Three different species names have been created according to the most abundant extra framework cation present:erionite- Na, erionite-K and erionite-Ca. Why analyze for Erionite? Erionite has been associated with an increased risk of developing malignant mesothelioma in villages in Turkey, where people have built their homes out of erionite bearing rock. In the U.S. erionite deposits have been found in at least 13 states. A study conducted in 2011, concluded that the physical and chemical properties of erionite from Turkey and North Dakota are very similar and show identical biological activities.1 Erionite is classified as an IARC Class I carcinogen by the WHO and IARC but is currently not regulated by the U.S. EPA in the same way as asbestos. Currently there are no established exposure limits for erionite.
    [Show full text]
  • Rocks and Minerals Make up Your World
    Rocks and Minerals Make up Your World Rock and Mineral 10-Specimen Kit Companion Book Presented in Partnership by This mineral kit was also made possible through the generosity of the mining companies who supplied the minerals. If you have any questions or comments about this kit please contact the SME Pittsburgh Section Chair at www.smepittsburgh.org. For more information about mining, visit the following web sites: www.smepittsburgh.org or www.cdc.gov/niosh/mining Updated August 2011 CONTENTS Click on any section name to jump directly to that section. If you want to come back to the contents page, you can click the page number at the bottom of any page. INTRODUCTION 3 MINERAL IDENTIFICATION 5 PHYSICAL PROPERTIES 6 FUELS 10 BITUMINOUS COAL 12 ANTHRACITE COAL 13 BASE METAL ORES 14 IRON ORE 15 COPPER ORE 16 PRECIOUS METAL ORE 17 GOLD ORE 18 ROCKS AND INDUSTRIAL MINERALS 19 GYPSUM 21 LIMESTONE 22 MARBLE 23 SALT 24 ZEOLITE 25 INTRODUCTION The effect rocks and minerals have on our daily lives is not always obvious, but this book will help explain how essential they really are. If you don’t think you come in contact with minerals every day, think about these facts below and see if you change your mind. • Every American (including you!) uses an average of 43,000 pounds of newly mined materials each year. • Coal produces over half of U.S. electricity, and every year you use 3.7 tons of coal. • When you talk on a land-line telephone you’re holding as many as 42 different minerals, including aluminum, beryllium, coal, copper, gold, iron, limestone, silica, silver, talc, and wollastonite.
    [Show full text]
  • Mineral Reactions in the Sedimentary Deposits of the Lake Magadi Region, Kenya
    Mineral reactions in the sedimentary deposits of the Lake Magadi region, Kenya RONALD C. SURD AM Department of Geology, University of Wyoming, Laramie, Wyoming 82071 HANS P. EUGSTER Department of Earth and Planetary Science, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT hand, the initial alkalic zeolite that will form in a specific alkaline lake environment cannot yet be predicted with confidence. Among The authigenic minerals, principally zeolites, in the Pleistocene to the many parameters controlling zeolite distribution, the compo- Holocene consolidated and unconsolidated sediments of the sitions of the volcanic glasses and of the alkaline solutions are cer- Magadi basin in the Eastern Rift Valley of Kenya have been inves- tainly of primary importance. tigated. Samples were available from outcrops as well as drill cores. Most zeolite studies are concerned with fossil alkaline lakes. The following reactions can be documented: (1) trachytic glass + While it is generally easy to establish the composition of the vol- H20 —» erionite, (2) trachytic glass + Na-rich brine —* Na-Al-Si gel, canic glass, the brines responsible for the authigenic reactions have + + (3) erionite + Na analcime + K + Si02 + H20, (4) Na-Al-Si long since disappeared. To overcome this handicap, it is desirable gelanalcime + H20, (5) calcite + F-rich brine—> fluorite + C03 , to investigate an alkaline lake environment for which glass as well (6) calcite + Na-rich brine —» gaylussite, and (7) magadiite —• as brine compositions can be determined — in other words, a + quartz + Na + H20. Erionite is the most common zeolite present, modern alkaline lake environment. Such an environment is Lake but minor amounts of chabazite, clinoptilolite, mordenite, and Magadi of Kenya.
    [Show full text]
  • Mineralogical Study of the Fibrous Zeolites Erionite and Offretite and Hazard Assessment
    Department of Pure and Applied Sciences Dipartimento di Scienze Pure e Applicate Philosophy Degree in Basic Sciences and Applications Curriculum Earth Sciences Corso di Dottorato in Scienze di Base e Applicazioni Curriculum Scienze della Terra XXIX Ciclo Titolo della tesi: Mineralogical study of the fibrous zeolites erionite and offretite and hazard assessment Studio mineralogico delle zeoliti fibrose erionite ed offretite e valutazione della pericolosità Settore Scientifico Disciplinare SSD: GEO/06 Dottorando Relatore Matteo Giordani Prof. Michele Mattioli Anno Accademico 2015/2016 Department of Pure and Applied Sciences Dipartimento di Scienze Pure e Applicate Philosophy Degree in Basic Sciences and Applications Curriculum Earth Sciences Corso di Dottorato in Scienze di Base e Applicazioni Curriculum Scienze della Terra XXIX Ciclo Titolo della tesi: Mineralogical study of the fibrous zeolites erionite and offretite and hazard assessment Studio mineralogico delle zeoliti fibrose erionite ed offretite e valutazione della pericolosità Settore Scientifico Disciplinare SSD: GEO/06 Dottorando Relatore Matteo Giordani Prof. Michele Mattioli Anno Accademico 2015/2016 A mio padre List of contents 1. GENERAL INTRODUCTION AND SUMMARY 1 Introduzione generale e Sommario 3 2. POTENTIALLY CARCINOGENIC ERIONITE FROM LESSINI MOUNTAINS, NE ITALY: MORPHOLOGICAL, MINERALOGICAL AND CHEMICAL CHARACTERIZATION 2.1 Introduction 7 2.2 Mineralogical background 8 2.3 Materials and methods 9 2.3.1 Materials 9 2.3.2 Environmental Scanning Electron Microscope (ESEM) 9 2.3.3 Electron Micro Probe Analysis (EMPA) 10 2.3.4 X-ray Powder Diffraction (XRPD) 11 2.4 Results 11 2.4.1 Morphology 11 2.4.2 Mineralogical composition 13 2.4.3 Morphometry 14 2.4.4 Chemical data 15 2.5 Discussion 15 2.5.1 Environmental occurrence of erionite and risk assessment in Italy 19 2.6 Conclusion 20 3.
    [Show full text]
  • Overview of Erionite Sampling Guidelines
    OVERVIEW ERIONITE BULK SAMPLING GUIDELINES FOR NORTH DAKOTA The North Dakota Department of Health (NDDoH) has developed new guidelines on testing for the presence of erionite in existing and proposed gravel pits near the Killdeer Mountains, Chalky Buttes and Little Badlands areas in western North Dakota. Erionite is a naturally occurring, fibrous mineral. Like asbestos, erionite may pose health risks to those who breathe in the fibers. Its exposure effects appear to be similar to asbestos, with increased risks of fibrogenic lung disease, lung cancer and mesothelioma. What areas of North Dakota are affected? The NDDoH has mapped the land surrounding the Killdeer Mountains, Chalky Buttes and Little Badlands and makes the following recommendations: (1) Exclusion Radius – where no gravel should be mined, and (2) Test Radius – where appropriate testing for the presence of erionite should be conducted prior to new or continued gravel mining. (See map at right.) In addition, random sampling of areas outside of the Test Radius area is recommended if there is a concern. What type of testing is needed? Bulk sampling is recommended to contractors mining existing gravel pits or exploring new areas for gravel pits in the affected areas. Where should bulk samples be collected? Within the Test Radius area, samples should be collected from (1) each acre of land containing any areas of proposed excavation, pit exploration test holes or actual excavations; and (2) every 1,000 tons of piled gravel. How many bulk samples must be collected? To obtain accurate testing results, the number of bulk samples that must be collected depends on the type and size of the gravel pit development.
    [Show full text]
  • A Deep Look Into Erionite Fibres
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by Bern Open Repository and Information System (BORIS) OPEN A Deep Look Into Erionite Fibres: an Electron Microscopy Investigation of their Self- Received: 03 September 2015 Accepted: 20 October 2015 Assembly Published: 16 November 2015 Roberto Matassa1, Giuseppe Familiari1, Michela Relucenti1, Ezio Battaglione1, Clive Downing2, Alessandro Pacella3, Georgia Cametti4 & Paolo Ballirano3,5 The exposure of humans to erionite fibres of appropriate morphology and dimension has been unambiguously linked to the occurrence of Malignant Mesothelioma. For this reason, a detailed morpho-structural investigation through Electron Microscopy techniques has been performed on erionite samples collected at two different localities, Durkee (ED) and Rome (ER), Oregon, USA. The sample from Rome has been also investigated after a prolonged leaching with Gamble’s solution (ER4G) in order to evaluate the possible occurrence of morpho-structural modifications induced by this Simulated-Lung-Fluid (SLF). Here we report how the micrometric erionite fibres evolve in irregular ribbon- or rod-like bundles as a function of different nano-structural features. The reasons for the observed morphological variability have been explained by considering the structural defects located at ED surface fibrils (bi-dimensional ribbons) and the presence of nontronite, an iron-bearing clay mineral embedding the ER fibrils (mono-dimensional rods). ER4G shows a decrease in width of the rod-like fibres due to their partial digestion by SLF leaching, which synchronously dissolves nontronite. The reported results represent a valuable background toward the full comprehension of the morphological mechanisms responsible for potentially damage of lung tissue through the potential relocation of fibers to extrapulmonary sites, increasing the carcinogenic risk to humans.
    [Show full text]
  • Calcium-Aluminum-Silicate-Hydrate “
    Cent. Eur. J. Geosci. • 2(2) • 2010 • 175-187 DOI: 10.2478/v10085-010-0007-6 Central European Journal of Geosciences Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy Research Article F. Stoppa1∗, F. Scordari2,E.Mesto2, V.V. Sharygin3, G. Bortolozzi4 1 Dipartimento di Scienze della Terra, Università G. d’Annunzio, Chieti, Italy 2 Dipartimento Geomineralogico, Università di Bari, Bari, Italy 3 Sobolev V.S. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia 4 Via Dogali, 20, 31100-Treviso Received 26 January 2010; accepted 8 April 2010 Abstract: Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate- alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite- afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) – “cement” phases – i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon- dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca-Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique.
    [Show full text]
  • Different Erionite Species Bind Iron Into the Structure: a Potential Explanation for Fibrous Erionite Toxicity
    minerals Article Different Erionite Species Bind Iron into the Structure: A Potential Explanation for Fibrous Erionite Toxicity Alessandro Pacella 1,*, Carlo Cremisini 2, Elisa Nardi 2, Maria Rita Montereali 2, Ida Pettiti 3, Matteo Giordani 4, Michele Mattioli 4 ID and Paolo Ballirano 1,5 ID 1 Department of Earth Sciences, Sapienza University of Rome, Piazzale A. Moro 5, I-00185 Rome, Italy; [email protected] 2 ENEA, Casaccia Research Centre, via Anguillarese 301, S. Maria di Galeria, I-00123 Rome, Italy; [email protected] (C.C.); [email protected] (E.N.); [email protected] (M.R.M.) 3 Department of Chemistry, Sapienza University of Rome, Piazzale A. Moro 5, I-00185 Rome, Italy; [email protected] 4 Department of Pure and Applied Sciences, University of Urbino Carlo Bo, Piazza della Repubblica 13, I-61029 Urbino, PU, Italy; [email protected] (M.G.); [email protected] (M.M.) 5 Rectorial Laboratory Fibres and Inorganic Particulate, Sapienza University of Rome, Piazzale A. Moro 5, I-00185 Rome, Italy * Correspondence: [email protected] Received: 29 December 2017; Accepted: 18 January 2018; Published: 23 January 2018 Abstract: In this investigation, the crystal chemical characterization of one sample of woolly erionite-K (Lander County, NV, USA) was examined after suspension in a FeCl2 solution, in anaerobic conditions. The aim of this study was to determine the effect of the chemical composition of erionite on its efficiency to bind iron. Inductively coupled plasma (ICP) results showed that the sample bound Fe(II) through an ion-exchange mechanism mainly involving Ca.
    [Show full text]
  • Distribution and Genesis of Authigenic Silicate Minerals in Tuffs of Pleistocene Lake Tecopa, Inyo County California
    Distribution and Genesis of Authigenic Silicate Minerals In Tuffs of Pleistocene Lake Tecopa, Inyo County California GEOLOGICAL SURVEY PROFESSIONAL PAPER 597 Distribution and Genesis of Authigenic Silicate Minerals In Tuffs of Pleistocene Lake Tecopa, Inyo County California By RICHARD A. SHEPPARD and ARTHUR J. GUDE 3d GEOLOGICAL SURVEY PROFESSIONAL PAPER 597 Zeolites, potassium feldspar, searlesite and clay minerals formed during diagenesis of rhyolitic vitric tuffs that were deposited in a saline lake UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1968 UNITED STATES DEPARTl\fENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. GS 68-196 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 -Price 40 cents (paper cover) CONTENTS Page Page Abstract __________________________________________ _ 1 Authigenic minerals-Continued Introduction--------------------------------------- 1 Erionite ___ ------ __ --------- __ - ----- ____ ------- 15 Location ______________________________________ _ 1 Opal---------------------------------------~-- 16 Geography ____________________________________ _ 1 Phillipsite_________________________ ---_____ ·--_- 16 Previous work _________________________________ _ 2 Potassium feldspar _____________________________ _ 18 Name of the lake ______________________________ _ 2 Searlesite ________________ -- _______ ------------- 18 , Scope of investigation __________________________ _ 2 Diagenetic
    [Show full text]