Extending the Global Mass Change Data Record: GRACE Follow‐On Instrument and Science Data Performance
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
GPS Radio Occultation with CHAMP, GRACE-A, Terrasar-X, and COSMIC: Brief Review of Results from GFZ J
GPS radio occultation with CHAMP, GRACE-A, TerraSAR-X, and COSMIC: Brief review of results from GFZ J. Wickert, G. Beyerle, C. Falck, S. Heise, R. König, G. Michalak, D. Pingel*, M. Rothacher, T. Schmidt, and C. Viehweg GeoForschungsZentrum Potsdam, * Deutscher Wetterdienst Overview Current GPS occultation missions During the last decade ground and space based GNSS techniques for atmospheric/ionospheric remote sensing were established. The currently increasing number of receiver platforms (e.g., extension of regional/global ground networks and additional LEO satellites) together with future additional transmitters (GALILEO, reactivated GLONASS, new signal structures for GPS) will extend the potential of these innovative sounding techniques during the next years. Here, we focus to GPS radio CHAMP GRACE TerraSAR-X occultation and present selected examples of recent GFZ results. The activities include orbit and atmospheric /ionospheric occultation data processing for several satellite mission (CHAMP,GRACE-A, SAC-C, and COSMIC), but also various applications. Data sets from CHAMP, GRACE and COSMIC MetOp COSMIC SAC-C Current GPS radio occultation missions: CHAMP (launch July 15, 2000), GRACE (March 17, 2002), TerraSAR-X (June 15, 2007), MetOp (October 18, 2006), COSMIC (April 15, 2006) and SAC-C(November 21, 2000). Number of daily available vertical atmospheric profiles, derived from CHAMP (left), GRACE (middle), and COSMIC (right, UCAR processing) measurements (note the different scale). COSMIC provides significantly more data compared to CHAMP and GRACE-A. The long-term set from CHAMP is unique (300 km orbit altitude expected in Dec. 2008). Validation of CHAMP with MOZAIC aircraft data Near-real time data from CHAMP and GRACE-A (a) (b) (c) GFZ provides near-real time occultation data (bending angle and refractivity profiles) from CHAMP and GRACE-A using it’s operational ground infrastructure including 2 receiving antennas at Ny Ålesund. -
A Survey and Assessment of the Capabilities of Cubesats for Earth Observation
Acta Astronautica 74 (2012) 50–68 Contents lists available at SciVerse ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Review A survey and assessment of the capabilities of Cubesats for Earth observation Daniel Selva a,n, David Krejci b a Massachusetts Institute of Technology, Cambridge, MA 02139, USA b Vienna University of Technology, Vienna 1040, Austria article info abstract Article history: In less than a decade, Cubesats have evolved from purely educational tools to a standard Received 2 December 2011 platform for technology demonstration and scientific instrumentation. The use of COTS Accepted 9 December 2011 (Commercial-Off-The-Shelf) components and the ongoing miniaturization of several technologies have already led to scattered instances of missions with promising Keywords: scientific value. Furthermore, advantages in terms of development cost and develop- Cubesats ment time with respect to larger satellites, as well as the possibility of launching several Earth observation satellites dozens of Cubesats with a single rocket launch, have brought forth the potential for University satellites radically new mission architectures consisting of very large constellations or clusters of Systems engineering Cubesats. These architectures promise to combine the temporal resolution of GEO Remote sensing missions with the spatial resolution of LEO missions, thus breaking a traditional trade- Nanosatellites Picosatellites off in Earth observation mission design. This paper assesses the current capabilities of Cubesats with respect to potential employment in Earth observation missions. A thorough review of Cubesat bus technology capabilities is performed, identifying potential limitations and their implications on 17 different Earth observation payload technologies. These results are matched to an exhaustive review of scientific require- ments in the field of Earth observation, assessing the possibilities of Cubesats to cope with the requirements set for each one of 21 measurement categories. -
The Impact of Satellite Data in the Joint Center for Satellite
The Impact of Satellite Data in the Joint Center for Satellite Data Assimilation John Le Marshall (JCSDA) Director, JCSDA 2004-2007 Lars-Peter Rishojgaard 2007- … Overview • Background • The Challenge • The JCSDA • The Satellite Program • Recent Advances • Impact of Satellite Data • Plans/Future Prospects • Summary CDAS/Reanl vs GFS NH/SH 500Hpa day 5 Anomaly Correlation (20-80 N/S) 90 NH GFS 85 SH GFS NH CDAS/Reanl 80 SH CDAS/Reanl 75 70 65 60 Anomaly Correlation Anomaly Correlation 55 50 45 40 1960 1970 1980 1990 2000 YEAR Data Assimilation Impacts in the NCEP GDAS N. Hemisphere 500 mb AC Z 20N - 80N Waves 1-20 15 Jan - 15 Feb '03 1 0.9 0.8 0.7 0.6 control 0.5 no amsu 0.4 no conv 0.3 Anomaly Correlation 0.2 0.1 0 1234567891011121314151617 Forecast [days] AMSU and “All Conventional” data provide nearly the same amount of improvement to the Northern Hemisphere. Impact of Removing Selected Satellite Data on Hurricane Track Forecasts in the East Pacific Basin 140 120 100 Control No AMSU 80 No HIRS 60 No GEO Wind 40 No QSC 20 Average Track ErrorsAverage [NM] 0 12 24 36 48 Forecst Time [hours] Anomaly correlation for days 0 to 7 for 500 hPa geopotential height in the zonal band 20°-80° for January/February. The red arrow indicate use of satellite data in the forecast model has doubled the length of a useful forecast. The Challenge Satellite Systems/Global Measurements GRACE Aqua Cloudsat CALIPSO TRMM SSMIS GIFTS TOPEX NPP Landsat MSG Meteor/ SAGE GOES-R COSMIC/GPS NOAA/ POES NPOESS SeaWiFS Terra Jason Aura ICESat SORCE WindSAT 5-Order Magnitude -
Preliminary Estimation and Validation of Polar Motion Excitation from Different Types of the GRACE and GRACE Follow-On Missions Data
remote sensing Article Preliminary Estimation and Validation of Polar Motion Excitation from Different Types of the GRACE and GRACE Follow-On Missions Data Justyna Sliwi´ ´nska 1,* , Małgorzata Wi ´nska 2 and Jolanta Nastula 1 1 Space Research Centre, Polish Academy of Sciences, 00-716 Warsaw, Poland; [email protected] 2 Faculty of Civil Engineering, Warsaw University of Technology, 00-637 Warsaw, Poland; [email protected] * Correspondence: [email protected] Received: 18 September 2020; Accepted: 22 October 2020; Published: 23 October 2020 Abstract: The Gravity Recovery and Climate Experiment (GRACE) mission has provided global observations of temporal variations in the gravity field resulting from mass redistribution at the surface and within the Earth for the period 2002–2017. Although GRACE satellites are not able to realistically detect the second zonal parameter (DC20) of geopotential associated with the flattening of the Earth, they can accurately determine variations in degree-2 order-1 (DC21, DS21) coefficients that are proportional to variations in polar motion. Therefore, GRACE measurements are commonly exploited to interpret polar motion changes due to variations in the global mass redistribution, especially in the continental hydrosphere and cryosphere. Such impacts are usually examined by computing the so-called hydrological polar motion excitation (HAM) and cryospheric polar motion excitation (CAM), often analyzed together as HAM/CAM. The great success of the GRACE mission and the scientific robustness of its data contributed to the launch of its successor, GRACE Follow-On (GRACE-FO), which began in May 2018 and continues to the present. This study presents the first estimates of HAM/CAM computed from GRACE-FO data provided by three data centers: Center for Space Research (CSR), Jet Propulsion Laboratory (JPL), and GeoForschungsZentrum (GFZ). -
Combination of Multi-Satellite Altimetry Data with CHAMP and GRACE Egms for Geoid and Sea Surface Topography Determination
Combination of multi-satellite altimetry data with CHAMP and GRACE EGMs for geoid and sea surface topography determination G.S. Vergos , V.N. Grigoriadis, I.N. Tziavos Department of Geodesy and Surveying, Aristotle University of Thessaloniki, University Box 440, 541 24, Thessalo- niki, Greece, Fax: +30 231 0995948, E-mail: [email protected]. M.G. Sideris Department of Geomatics Engineering, University of Calgary, Abstract. Since the launch of the first altimetric mis- repeating measurements of the sea surface. Such satel- sions a wealth of data for the sea surface has become lites are ERS1, ERS2 and ENVISAT and available and utilized for geoid and sea surface topogra- TOPEX/Poseidon (T/P) with JASON-1. JASON-1 and phy modeling. The data from the gravity field dedicated ENVISAT are the latest on orbit satellites (December satellite missions of CHAMP and GRACE provide a 2001 and March 2002, respectively) and are both set on unique opportunity for combination studies with satel- exact repeat missions (ERM). lite altimetric observations. This study focuses on the This long series of altimetric observations has been combination of data from GEOSAT, ERS1/2, widely used for studies on the determination of MSS Topex/Poseidon, JASON-1 and ENVISAT with Earth models (Andersen and Knudsen 1998; Cazenave et al. Gravity Models (EGMs) generated from CHAMP and 1996), global and regional geoid models (Andritsanos et GRACE data to study the mean sea surface al. 2001; Lemoine et al. 1998; Vergos et al. 2005) as (MSS)/marine geoid in the Mediterranean Sea. Various well as on the recovery of gravity anomalies from al- combination methods, i.e., weighted least squares and timetric measurements (Andersen and Knudsen 1998; least squares collocation are investigated and conclu- Hwang et al. -
Comparison Between GPS Radio Occultation and Radiosonde Sounding Data
Comparison Between GPS Radio Occultation and Radiosonde Sounding Data Dione Rossiter Academic Affiliation, Fall 2003: Senior University of California, Berkeley SOARS® Summer 2003 Science Research Mentors: Christian Rocken, Bill Kuo, and Bill Schreiner Writing and Communications Mentor: David Gochis Community Mentor: Annette Lampert Peer Mentor: Pauline Datulayta ABSTRACT Global Positioning System (GPS) Radio Occultation (RO) is a new technique for obtaining profiles of atmospheric properties, specifically: refractivity, temperature, pressure, water vapor pressure in the neutral atmosphere, and electron density in the ionosphere. The data received from GPS RO contribute significant amounts of information to a range of fields including meteorology, climate, ionospheric research, geodesy, and gravity. Low-Earth orbiting satellites, equipped with a GPS receiver, track GPS radio signals as they set or rise behind the Earth. Since GPS signals are refracted (delayed and bent) by the Earth's atmosphere, these data are used to infer information about atmospheric refractivity. Before the GPS RO data are used for research and operations, it is essential to assess their accuracy. Therefore, this research provided quantitative estimates of the accuracy of GPS RO when compared with measurements of known accuracy. Profile statistics (mean, standard deviation, standard error) were computed as a function of altitude to quantify the errors. Comparing RO data with nearby (300km; 2hr) radiosonde data yielded small mean error for all of the statistical plots generated, affirming that the RO technique is accurate for measuring atmospheric properties. Comparison of RO data with sounding data from different radiosonde systems showed that the RO technique was of high enough accuracy to differentiate differences in performance of various types of radiosonde systems. -
High-Temporal-Resolution Water Level and Storage Change Data Sets for Lakes on the Tibetan Plateau During 2000–2017 Using Mult
Earth Syst. Sci. Data, 11, 1603–1627, 2019 https://doi.org/10.5194/essd-11-1603-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions Xingdong Li1, Di Long1, Qi Huang1, Pengfei Han1, Fanyu Zhao1, and Yoshihide Wada2 1State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing, China 2International Institute for Applied Systems Analysis (IIASA), 2361 Laxenburg, Austria Correspondence: Di Long ([email protected]) Received: 21 February 2019 – Discussion started: 15 March 2019 Revised: 4 September 2019 – Accepted: 22 September 2019 – Published: 28 October 2019 Abstract. The Tibetan Plateau (TP), known as Asia’s water tower, is quite sensitive to climate change, which is reflected by changes in hydrologic state variables such as lake water storage. Given the extremely limited ground observations on the TP due to the harsh environment and complex terrain, we exploited multiple altimetric mis- sions and Landsat satellite data to create high-temporal-resolution lake water level and storage change time series at weekly to monthly timescales for 52 large lakes (50 lakes larger than 150 km2 and 2 lakes larger than 100 km2) on the TP during 2000–2017. The data sets are available online at https://doi.org/10.1594/PANGAEA.898411 (Li et al., 2019). With Landsat archives and altimetry data, we developed water levels from lake shoreline posi- tions (i.e., Landsat-derived water levels) that cover the study period and serve as an ideal reference for merging multisource lake water levels with systematic biases being removed. -
Gravity Field Analysis from the Satellite Missions CHAMP and GOCE
Institut fÄurAstronomische und Physikalische GeodÄasie Gravity Field Analysis from the Satellite Missions CHAMP and GOCE Martin K. Wermuth VollstÄandigerAbdruck der von der FakultÄatfÄurBauingenieur- und Vermessungswesen der Technischen UniversitÄatMÄunchen zur Erlangung des akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr.-Ing. U. Stilla PrÄuferder Dissertation: 1. Univ.-Prof. Dr.-Ing., Dr. h.c. R. Rummel 2. Univ.-Prof. Dr.-Ing. N. Sneeuw, UniversitÄatStuttgart Die Dissertation wurde am 04.03.2008 bei der Technischen UniversitÄatMÄunchen eingereicht und durch die FakultÄatfÄurBauingenieur- und Vermessungswesen am 04.07.2008 angenommen. Zusammenfassung In dieser Arbeit ist die Bestimmung von globalen Schwerefeldmodellen aus Beobachtungen der Satelliten- missionen CHAMP und GOCE beschrieben. Im Fall von CHAMP wird die sogenannte Energieerhaltungs- Methode auf GPS Beobachtungen des tief fliegenden CHAMP Satelliten angewandt. Im Fall von GOCE ist Gradiometrie die wichtigste BeobachtungsgrÄo¼e.Die Erfahrung die bei der Verarbeitung von Echt- daten der CHAMP Mission gewonnen wurde, fließt in die Entwicklung einer operationellen Quick-look Software fÄurdie GOCE Mission ein. Die Aufgabe globaler Schwerefeldbestimmung ist es, aus Beobach- tungen entlang einer Satellitenbahn ein Model des Gravitationsfeldes der Erde abzuleiten, das auf der Erdoberfl¨ache in sphÄarisch-harmonischen Koe±zienten beschrieben wird. Die theoretischen Grundla- gen, die nÄotigsind um die Beobachtungen mit dem Schwerefeld in Bezug zu setzen und ein globales Schwerefeld aus Satellitenbeobachtungen zu berechnen sind werden ausfÄuhrlich erklÄart. Die CHAMP Mission wurde im Jahr 2000 gestartet. Sie ist die erste Schwerefeldmission mit einem GPS EmpfÄangeran Bord. Die HauptbeobachtungsgrÄo¼ensind die GPS Bahn-Beobachtungen zu CHAMP, das sogenannte "satellite-to-satellite tracking" (SST). Ein Schwerefeldmodell wird mit der Energieerhaltungs- Methode unter Verwendung von kinematischen Bahnen berechnet. -
Detection of Caves by Gravimetry
Detection of Caves by Gravimetry By HAnlUi'DO J. Cmco1) lVi/h plates 18 (1)-21 (4) Illtroduction A growing interest in locating caves - largely among non-speleolo- gists - has developed within the last decade, arising from industrial or military needs, such as: (1) analyzing subsUl'face characteristics for building sites or highway projects in karst areas; (2) locating shallow caves under airport runways constructed on karst terrain covered by a thin residual soil; and (3) finding strategic shelters of tactical significance. As a result, geologists and geophysicists have been experimenting with the possibility of applying standard geophysical methods toward void detection at shallow depths. Pioneering work along this line was accomplishecl by the U.S. Geological Survey illilitary Geology teams dUl'ing World War II on Okinawan airfields. Nicol (1951) reported that the residual soil covel' of these runways frequently indicated subsi- dence due to the collapse of the rooves of caves in an underlying coralline-limestone formation (partially detected by seismic methods). In spite of the wide application of geophysics to exploration, not much has been published regarding subsUl'face interpretation of ground conditions within the upper 50 feet of the earth's surface. Recently, however, Homberg (1962) and Colley (1962) did report some encoUl'ag- ing data using the gravity technique for void detection. This led to the present field study into the practical means of how this complex method can be simplified, and to a use-and-limitations appraisal of gravimetric techniques for speleologic research. Principles all(1 Correctiolls The fundamentals of gravimetry are based on the fact that natUl'al 01' artificial voids within the earth's sUl'face - which are filled with ail' 3 (negligible density) 01' water (density about 1 gmjcm ) - have a remark- able density contrast with the sUl'roun<ling rocks (density 2.0 to 1) 4609 Keswick Hoad, Baltimore 10, Maryland, U.S.A. -
Airborne Geoid Determination
LETTER Earth Planets Space, 52, 863–866, 2000 Airborne geoid determination R. Forsberg1, A. Olesen1, L. Bastos2, A. Gidskehaug3,U.Meyer4∗, and L. Timmen5 1KMS, Geodynamics Department, Rentemestervej 8, 2400 Copenhagen NV, Denmark 2Astronomical Observatory, University of Porto, Portugal 3Institute of Solid Earth Physics, University of Bergen, Norway 4Alfred Wegener Institute, Bremerhaven, Germany 5Geo Forschungs Zentrum, Potsdam, Germany (Received January 17, 2000; Revised August 18, 2000; Accepted August 18, 2000) Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate “seam-less” geoid model across most coastal regions. Determination of the geoid by airborne methods relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5–10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys in the North Sea and Greenland are given. 1. Introduction the sea-surface (H) by airborne altimetry. This allows— Precise geoid determination has in recent years been facil- in principle—the determination of the dynamic sea-surface itated through the progress in airborne gravimetry. The first topography (ζ) through the equation large-scale aerogravity experiment was the airborne gravity survey of Greenland 1991–92 (Brozena, 1991). -
Algorithm Theoretical Basis Document (ATBD) for Land
ICE, CLOUD, and Land Elevation Satellite (ICESat-2) Algorithm Theoretical Basis Document (ATBD) for Land - Vegetation Along-track products (ATL08) Contributions by Land/VEG SDT Team Members and ICESAt-2 Project Science Office (Amy Neuenschwander, Sorin Popescu, Ross Nelson, David Harding, Katherine Pitts, John Robbins, Dylan Pederson, and Ryan Sheridan) ATBD Document prepared by Amy Neuenschwander June 2018 Content reviewed: technical approach, assumptions, scientific soundness, maturity, scientific utility of the data product 21 Contents 1 INTRODUCTION 8 1.1. Background 9 1.2 Photon Counting Lidar 11 1.3 The ICESat-2 concept 12 1.4 Height Retrieval from ATLAS 16 1.5 Accuracy Expected from ATLAS 17 1.6 Additional Potential Height Errors from ATLAS 19 1.7 Dense Canopy Cases 20 1.8 Sparse Canopy Cases 20 2. ATL08: DATA PRODUCT 21 2.1 Subgroup: Land Parameters 23 2.1.1 Georeferenced_segment_number_beg 24 2.1.2 Georeferenced_segment_number_end 25 2.1.3 Segment_terrain_height_mean 25 2.1.4 Segment_terrain_height_med 25 2.1.5 Segment_terrain_height_min 25 2.1.6 Segment_terrain_height_max 26 2.1.7 Segment_terrain_height_mode 26 2.1.8 Segment_terrain_height_skew 26 2.1.9 Segment_number_terrain_photons 26 2.1.10 Segment height_interp 27 2.1.11 Segment h_te_std 27 2.1.12 Segment_terrain_height_uncertainty 27 2.1.13 Segment_terrain_slope 27 21 2.1.14 Segment number_of_photons 27 2.1.15 Segment_terrain_height_best_fit 28 2.2 Subgroup: Vegetation Parameters 28 2.2.1 Georeferenced_segment_number_beg 31 2.2.2 Georeferenced_segment_number_end 31 2.2.3 -
GLAS HDF Standard Data Product Specification Revision - November 01, 2012
ICE, CLOUD, and Land Elevation Satellite (ICESat) Project GLAS_HDF Standard Data Product Specification Revision - November 01, 2012 SGT/Jeffrey Lee Cryospheric Sciences Laboratory Hydrospheric and Biospheric Processes NASA Goddard Space Flight Center Goddard Space Flight Center Greenbelt, Maryland National Aeronautics and Space Administration GLAS_HDF Standard Data Product Specification Revision - Table of Contents Table of Contents ............................................................................................... 1-1 List of Figures ..................................................................................................... 1-3 List of Tables ...................................................................................................... 1-3 1.0 Introduction ................................................................................................ 1-1 1.1 Identification of Document ...................................................................... 1-1 1.2 Scope ..................................................................................................... 1-1 1.3 Purpose and Objectives ......................................................................... 1-1 1.4 Acknowledgements ................................................................................ 1-1 1.5 Document Status and Schedule ............................................................. 1-2 1.6 Document Change History ..................................................................... 1-2 2.0 Related Documentation ............................................................................