JFP 20 (1): 71–122, 2010. c Cambridge University Press 2010 71 doi:10.1017/S0956796809990293 Ott: Effective tool support for the working semanticist PETER SEWELL1, FRANCESCO ZAPPA NARDELLI2, SCOTT OWENS1, GILLES PESKINE1, THOMAS RIDGE1, SUSMIT SARKAR1 andROK STRNISAˇ 1 1University of Cambridge, Computer Laboratory, William Gates Building, 15 JJ Thomson Avenue, Cambridge CB3 0FD, United Kingdom and 2INRIA Paris-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France (e-mail:
[email protected]) Abstract Semantic definitions of full-scale programming languages are rarely given, despite the many potential benefits. Partly this is because the available metalanguages for expressing semantics – usually either LATEX for informal mathematics or the formal mathematics of a proof assistant – make it much harder than necessary to work with large definitions. We present a metalanguage specifically designed for this problem, and a tool, Ott, that sanity-checks such definitions and compiles them into proof assistant code for Coq, HOL, and Isabelle/HOL, together with LATEX code for production-quality typesetting, and OCaml boilerplate. The main innovations are (1) metalanguage design to make definitions concise, and easy to read and edit; (2) an expressive but intuitive metalanguage for specifying binding structures; and (3) compilation to proof assistant code. This has been tested in substantial case studies, including modular specifications of calculi from the TAPL text, a Lightweight Java with Java JSR 277/294 module system proposals, and a large fragment of OCaml (OCamllight, 310 rules), with mechanised proofs of various soundness results. Our aim with this work is to enable a phase change: making it feasible to work routinely, without heroic effort, with rigorous semantic definitions of realistic languages.