Teaching of Structural Analysis Into the Future

Total Page:16

File Type:pdf, Size:1020Kb

Teaching of Structural Analysis Into the Future Civil Engineering Research in Ireland 2020 Teaching of Structural Analysis into the Future Dermot O’Dwyer, Department of Civil, Structural and Environmental Engineering, Museum Building, Trinity College Dublin, Ireland email: [email protected] ABSTRACT: The curricula of modern engineering programmes achieve a greater number of learning outcomes and cover a broader range of subject areas than ever before. This has resulted in a reduction in the hours that are available to teach structural engineering. At the same time the work of graduate structural engineers has changed and is likely to change further in the future. This paper considers what the kernel of essential knowledge for structural engineering should contain. More specifically it explores what elements of this kernel must be taught in university. The paper does not result in a definitive list of topics but makes some initial suggestions and promotes a rationale by which such a list might be arrived at. The paper argues that it is import to acknowledge that much of structural engineering analysis is pragmatic. Many of the basic theories are simplifications that are useful only in certain circumstances with certain materials. This complicates identifying a small set of structural engineering rules, Newton’s Laws excepted. While structural engineers should have knowledge of mechanics of solids, elasticity and methods of analysing statically indeterminate structures the level of complexity that needs to be achieved is not immediately clear. Modern structural engineering practice suggests that some areas of structural engineering analysis, such as the flexibility method, are obsolete; however, some of these methods are useful for exploring important concepts and developing qualitative analysis skills. Qualitative analysis skills are vitally important because most structural analysis is performed using computer software and it is essential that an engineer is able to critique the output from such programs. Qualitative analysis is a key skill in structural design. The paper also considers how the role of structural engineers is likely to change with the increased use of artificial intelligence and machine learning, and with the development of parametric modeling packages that allow engineers to vary the form of a structure and observe the changes in structural response instantly. The paper also considers whether there is a need for different objectives when it comes to selecting topics that should be taught at undergraduate and at postgraduate level. Undergraduate curricula should ensure basic competence: equilibrium of forces, the relationship between stresses and strains and knowledge of the failure mechanisms for different materials and structure type etc. Should postgraduate curricula be designed to ensure that knowledge of a wide variety of specialist techniques, such as: fracture mechanics, classical elasticity, continuum mechanics, structural optimisation, design and analysis of plates and shells etc. are maintained within the engineering profession? From this basis the paper tries to address the core competences that every structural engineer should have as well as the core knowledge that would be essential for students to further develop their knowledge of structural engineering once they have graduated. KEY WORDS: Engineering education; Structural Engineering; Structural analysis; Structural design; Engineering Curriculum; Future. 1 INTRODUCTION taught in college are rarely used in practice. As a result the structural engineering curriculum is changing. This paper This paper is intended to be the starting point in a discussion on considers what the core curriculum for structural engineering what should be included in current and future structural should contain. engineering curricula. This is not a trivial question. While some traditional analysis The engineering curriculum has always been full. In the past methods, such as graphic statics, can be omitted without civil and structural engineers studied a wide variety of technical significant consequences the loss of other types of hand subjects within the broad field of engineering science and spent analysis, such as influence line diagrams, may hinder students many hours working on design projects. Modern engineering developing a full understanding of structural behavior. curricula try to cover these areas while also dedicating more Similarly, while all structural and civil engineering time to structured group-work, report writing and students must have a knowledge of mechanics of solids, what communication skills. Although students spend longer in aspects of mechanics of solids are core? As structural college, the number and range of technical fields that engineers embrace an ever wider variety of materials should students must master is considerably broader than in the past. mechanics of solids and mechanics of materials be studied in As a result the time available to teach structural engineering greater detail? Should the emphasis on linear-elastic matrix has reduced. At the same time the work of a structural engineer methods move from teaching the basic algorithms to an has changed and some methods of analysis and design that increased emphasis on were traditionally 429 Civil Engineering Research in Ireland 2020 understanding and overcoming the limitations of such forget that this theory is a combination of three separate methods? Where does plastic analysis fit when most structural concepts. These are: analysis is performed using linear-elastic theory? What will the core skills of a civil/structural engineer be when structural 1. The internal forces in a beam must be in equilibrium designs can be developed by autonomous algorithms that take with the externally applied loads. 3D general arrangement models as their input? 2. The internal forces developed in the beam are related to internal deformations of the material in the beam. 2 STRUCTURAL ANALYSIS & PRAGMATISM 3. The beam fails when the internal forces (stresses) or It is possible to interpret the history of the development of internal deformations (strains) exceed the capacity of structural engineering as the gradual development of ever more the material the beam is formed from. sophisticated mathematical models [1,2,3,4,5,6]. This interpretation is correct but it is not necessarily complete. This The first point, which was understood by Galileo and was given is an important point to consider because it is easy to imagine in a general form by Coulomb in the 1770s is clear today but that the core canon of structural engineering is fixed. This is not was poorly understood for many years [7]. Coulomb necessarily the case. specified the need for the internal forces along the section A- D in Figure 2 to be in equilibrium with the applied load. He Engineers Bending Theory stated that the longitudinal stresses must develop an internal Consider engineers’ bending theory, which is arguably among moment and that there was a need for forces with a the most useful structural engineering theories. It began with vertical component to counteract the vertical load. the work of Galileo, and was developed by Marriott, James and However, the discussions following James Barton’s Daniel Bernoulli, Euler, Coulomb, Hodgkinson, Navier and paper on the Boyne Viaduct to the ICE in 185 5, shortly others. Figure 1 shows a sequence of assumptions of how the before Jourawski’s work on shear was published in 1856, internal longitudinal stresses are distributed in a cross-section shows how the shear forces in a beam were poorly understood of the base of a cantilever [3]. [8,9]. Figure 2. Equilibrium of the internal forces and external loads [7] Regarding the second point, the relationship between stress and strain in a beam made from an elastic material is far more complex than = . This formula and the familiar = work well for simple steel universal beams but with larger plate girders effects such as shear lag must be considered. The third concept, that of material failure criteria is also treated in a very simple manner when designing steel beams. It is notable that when designing other components it is often essential to consider the full stress and strain tensors and to take account of fracture mechanics and fatigue. The important point is that many of our analysis methods are based on assumptions that are not universally true. There is often a conflict between teaching as much “useful” material as possible and ensuring that the underlying assumptions are covered in detail. One particularly relevant example is the use Figure 1. Stress distributions and calculated moment of elastic methods, and computer programs based on elastic capacity of a cantilever [3]. methods, to calculate the internal forces in reinforced concrete structures. This procedure is justified by the safe The wonder to a modern engineer is that the final “correct” theorem of plasticity but many engineers today learn solution took so long to emerge. However, engineers today elastic analysis without getting a thorough grounding in have the benefit of hindsight and typically use structural plastic theory. materials that have well defined properties. The profession is In the past structural analysis was not as essential as we so comfortable with engineers’ bending theory that it is easy to consider it today. The gothic cathedrals were constructed without formal calculation, although being based on arches it was 430 Civil Engineering Research in Ireland 2020 possible for their builders to rely on models to ensure
Recommended publications
  • 3 Concepts of Stress Analysis
    FEA Concepts: SW Simulation Overview J.E. Akin 3 Concepts of Stress Analysis 3.1 Introduction Here the concepts of stress analysis will be stated in a finite element context. That means that the primary unknown will be the (generalized) displacements. All other items of interest will mainly depend on the gradient of the displacements and therefore will be less accurate than the displacements. Stress analysis covers several common special cases to be mentioned later. Here only two formulations will be considered initially. They are the solid continuum form and the shell form. Both are offered in SW Simulation. They differ in that the continuum form utilizes only displacement vectors, while the shell form utilizes displacement vectors and infinitesimal rotation vectors at the element nodes. As illustrated in Figure 3‐1, the solid elements have three translational degrees of freedom (DOF) as nodal unknowns, for a total of 12 or 30 DOF. The shell elements have three translational degrees of freedom as well as three rotational degrees of freedom, for a total of 18 or 36 DOF. The difference in DOF types means that moments or couples can only be applied directly to shell models. Solid elements require that couples be indirectly applied by specifying a pair of equivalent pressure distributions, or an equivalent pair of equal and opposite forces at two nodes on the body. Shell node Solid node Figure 3‐1 Nodal degrees of freedom for frames and shells; solids and trusses Stress transfer takes place within, and on, the boundaries of a solid body. The displacement vector, u, at any point in the continuum body has the units of meters [m], and its components are the primary unknowns.
    [Show full text]
  • Analysis of Statically Indeterminate Trusses for Progressive Collapse
    Bucknell University Bucknell Digital Commons Honors Theses Student Theses 2017 Analysis of Statically Indeterminate Trusses for Progressive Collapse Using Graphic Statics and Complexity Metrics Maximilian Edward Ororbia Bucknell University, [email protected] Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses Recommended Citation Ororbia, Maximilian Edward, "Analysis of Statically Indeterminate Trusses for Progressive Collapse Using Graphic Statics and Complexity Metrics" (2017). Honors Theses. 412. https://digitalcommons.bucknell.edu/honors_theses/412 This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. ACKNOWLEDGEMENTS First and foremost, I would like to thank my advisor Professor Stephen G. Buonopane for being an incredible mentor, an amazing teacher, and for providing me the opportunity to work on this research. Without his assistance and dedicated support, this thesis would not have been possible. I would also like to thank Professor Ronald D. Ziemian, who co-advised my honors thesis, and my committee member, Professor Dabrina Dutcher, for their valuable feedback, support, and guidance. Many thanks go to Professor Jeffrey C. Evans and Professor Kelly Salyards for encouraging and inspiring me to pursue research. I would also like to express my gratitude to the civil engineering faculty and staff at Bucknell University for facilitating an excellent education and outstanding research opportunities. Most importantly, none of this could have happened without my family. I am grateful for my mom and dad standing by my side and providing me with an infinite amount of love and support.
    [Show full text]
  • Structural Analysis
    Module 1 Energy Methods in Structural Analysis Version 2 CE IIT, Kharagpur Lesson 1 General Introduction Version 2 CE IIT, Kharagpur Instructional Objectives After reading this chapter the student will be able to 1. Differentiate between various structural forms such as beams, plane truss, space truss, plane frame, space frame, arches, cables, plates and shells. 2. State and use conditions of static equilibrium. 3. Calculate the degree of static and kinematic indeterminacy of a given structure such as beams, truss and frames. 4. Differentiate between stable and unstable structure. 5. Define flexibility and stiffness coefficients. 6. Write force-displacement relations for simple structure. 1.1 Introduction Structural analysis and design is a very old art and is known to human beings since early civilizations. The Pyramids constructed by Egyptians around 2000 B.C. stands today as the testimony to the skills of master builders of that civilization. Many early civilizations produced great builders, skilled craftsmen who constructed magnificent buildings such as the Parthenon at Athens (2500 years old), the great Stupa at Sanchi (2000 years old), Taj Mahal (350 years old), Eiffel Tower (120 years old) and many more buildings around the world. These monuments tell us about the great feats accomplished by these craftsmen in analysis, design and construction of large structures. Today we see around us countless houses, bridges, fly-overs, high-rise buildings and spacious shopping malls. Planning, analysis and construction of these buildings is a science by itself. The main purpose of any structure is to support the loads coming on it by properly transferring them to the foundation.
    [Show full text]
  • Module Code CE7S02 Module Name Advanced Structural Analysis ECTS
    Module Code CE7S02 Module Name Advanced Structural Analysis 1 ECTS Weighting 5 ECTS Semester taught Semester 1 Module Coordinator/s Module Coordinator: Assoc. Prof. Dermot O’Dwyer ([email protected]) Module Learning Outcomes with reference On successful completion of this module, students should be able to: to the Graduate Attributes and how they are developed in discipline LO1. Identify the appropriate differential equations and boundary conditions for analysing a range of structural analysis and solid mechanics problems. LO2. Implement the finite difference method to solve a range of continuum problems. LO3. Implement a basic beam-element finite element analysis. LO4. Implement a basic variational-based finite element analysis. LO5. Implement time-stepping algorithms and modal analysis algorithms to analyse structural dynamics problems. L06. Detail the assumptions and limitations underlying their analyses and quantify the errors/check for convergence. Graduate Attributes: levels of attainment To act responsibly - ho ose an item. To think independently - hoo se an item. To develop continuously - hoo se an it em. To communicate effectively - hoo se an item. Module Content The Advanced Structural Analysis Module can be taken as a Level 9 course in a single year for 5 credits or as a Level 10 courses over two years for the total of 10 credits. The first year of the module is common to all students, in the second year Level 10 students who have completed the first year of the module will lead the work groups. The course will run throughout the first semester. The aim of the course is to develop the ability of postgraduate Engineering students to develop and implement non-trivial analysis and modelling algorithms.
    [Show full text]
  • “Linear Buckling” Analysis Branch
    Appendix A Eigenvalue Buckling Analysis 16.0 Release Introduction to ANSYS Mechanical 1 © 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this Appendix, performing an eigenvalue buckling analysis in Mechanical will be covered. Mechanical enables you to link the Eigenvalue Buckling analysis to a nonlinear Static Structural analysis that can include all types of nonlinearities. This will not be covered in this section. We will focused on Linear buckling. Contents: A. Background On Buckling B. Buckling Analysis Procedure C. Workshop AppA-1 2 © 2015 ANSYS, Inc. February 27, 2015 A. Background on Buckling Many structures require an evaluation of their structural stability. Thin columns, compression members, and vacuum tanks are all examples of structures where stability considerations are important. At the onset of instability (buckling) a structure will have a very large change in displacement {x} under essentially no change in the load (beyond a small load perturbation). F F Stable Unstable 3 © 2015 ANSYS, Inc. February 27, 2015 … Background on Buckling Eigenvalue or linear buckling analysis predicts the theoretical buckling strength of an ideal linear elastic structure. This method corresponds to the textbook approach of linear elastic buckling analysis. • The eigenvalue buckling solution of a Euler column will match the classical Euler solution. Imperfections and nonlinear behaviors prevent most real world structures from achieving their theoretical elastic buckling strength. Linear buckling generally yields unconservative results
    [Show full text]
  • Structural Analysis (Statics & Mechanics)
    APPLIED ARCHITECTURAL STRUCTURES: STRUCTURAL ANALYSIS AND SYSTEMS Structural Requirements ARCH 631 • serviceability DR. ANNE NICHOLS FALL 2013 – strength – deflections lecture two • efficiency – economy of materials • construction structural analysis • cost (statics & mechanics) • other www.pbs.org/wgbh/buildingbig/ Analysis 1 Applied Architectural Structures F2009abn Analysis 2 Architectural Structures III F2009abn Lecture 2 ARCH 631 Lecture 2 ARCH 631 Structure Requirements Structure Requirements • strength & • stability & equilibrium stiffness – safety – stability of – stresses components not greater – minimum than deflection and strength vibration – adequate – adequate foundation foundation Analysis 3 Architectural Structures III F2008abn Analysis 4 Architectural Structures III F2008abn Lecture 2 ARCH 631 Lecture 2 ARCH 631 1 Structure Requirements Relation to Architecture • economy and “The geometry and arrangement of the construction load-bearing members, the use of – minimum material materials, and the crafting of joints all represent opportunities for buildings to – standard sized express themselves. The best members buildings are not designed by – simple connections architects who after resolving the and details formal and spatial issues, simply ask – maintenance the structural engineer to make sure it – fabrication/ erection doesn’t fall down.” - Onouy & Kane Analysis 5 Architectural Structures III F2008abn Analysis 6 Architectural Structures III F2008abn Lecture 2 ARCH 631 Lecture 2 ARCH 631 Structural Loads - STATIC Structural
    [Show full text]
  • Simulating Sliding Wear with Finite Element Method
    Tribology International 32 (1999) 71–81 www.elsevier.com/locate/triboint Simulating sliding wear with finite element method Priit Po˜dra a,*,So¨ren Andersson b a Department of Machine Science, Tallinn Technical University, TTU, Ehitajate tee 5, 19086 Tallinn, Estonia b Machine Elements, Department of Machine Design, Royal Institute of Technology, KTH, S-100 44 Stockholm, Sweden Received 5 September 1997; received in revised form 18 January 1999; accepted 25 March 1999 Abstract Wear of components is often a critical factor influencing the product service life. Wear prediction is therefore an important part of engineering. The wear simulation approach with commercial finite element (FE) software ANSYS is presented in this paper. A modelling and simulation procedure is proposed and used with the linear wear law and the Euler integration scheme. Good care, however, must be taken to assure model validity and numerical solution convergence. A spherical pin-on-disc unlubricated steel contact was analysed both experimentally and with FEM, and the Lim and Ashby wear map was used to identify the wear mech- anism. It was shown that the FEA wear simulation results of a given geometry and loading can be treated on the basis of wear coefficientϪsliding distance change equivalence. The finite element software ANSYS is well suited for the solving of contact problems as well as the wear simulation. The actual scatter of the wear coefficient being within the limits of ±40–60% led to considerable deviation of wear simulation results. These results must therefore be evaluated on a relative scale to compare different design options. 1999 Elsevier Science Ltd.
    [Show full text]
  • Structural Analysis and Design, University of Houston-Downtown
    Session 3615 STRUCTURAL ANALYSIS DESIGN: A DISTINCTIVE ENGINEERING TECHNOLOGY PROGRAM Alberto Gomez-Rivas, and George Pincus Professors of Structural Analysis and Design, University of Houston-Downtown Abstract Graduates of the Structural Analysis and Design Engineering Technology program, University of Houston-Downtown, are successful in reaching responsible positions in industry and government. The strong emphasis on computer technology provides an advantage to graduates of the program because they are highly productive. The Structural Analysis Design (SAD) Engineering Technology program, University of Houston-Downtown, is focused on the design of bridges, buildings, towers, offshore platforms and other structures. It is not traditional civil engineering but includes all aspects of structural design, including soil mechanics, foundation design, and construction surveying by GIS-GPS. Students take an intensive course in applications of computers, a visualization course, and two courses in computer-aided design, followed by a course in 3-D modeling including the most common CADD software packages: MicroStation, AutoCAD, and 3D Studio. Structural Analysis deals with application of finite element theory to beams and frames. A second course, Finite Element Analysis, utilizes ANSYS and ROBOT. Since the program focuses on structural analysis and design, students are exposed to several techniques and practices that are taught in schools of civil engineering at the graduate level. Examples include instruction on finite element analysis and use of structural software packages used in industry. Structural Analysis Design – Program Description This program covers the design of structures, bridges, buildings, towers, and offshore platforms and in general what is called civil structures. However, the program is not civil engineering because that field is considered broader.
    [Show full text]
  • Mechanical Properties and Structural Analysis of Coatings and Engineered Surfaces
    coatings Editorial Mechanical Properties and Structural Analysis of Coatings and Engineered Surfaces Mattia Merlin * and Annalisa Fortini * Department of Engineering (DE), University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy * Correspondence: [email protected] (M.M.); [email protected] (A.F.) 1. Introduction and Scope The performance improvement in engineering components during operation is a challenging issue and surface engineering methods have been attracting considerable interest in both research and industrial fields. Surface characteristics have a pivotal role in enhancing the life of products since they control the mechanical, electrical, thermal, and electronic properties. Nevertheless, the surface and near-surface properties are cru- cial in failure mechanisms since the loss of performance and failures mostly begin from the surface. In this framework, this Special Issue includes original research papers and a review that covers the latest development in methods for enhancing the life and functionality of engineering components by tuning the physical, chemical, mechanical, and metallur- gical properties of their surfaces. Attention is focused on processing and characterizing methods capable of supporting industrial applications and products to both tackle surface degradation and improve the performance and reliability of components. 2. Contributions Citation: Merlin, M.; Fortini, A. The book collects manuscripts from cutting-edge academic researchers and consists of Mechanical Properties and Structural one review paper regarding the characteristics and mechanical properties of high-velocity Analysis of Coatings and Engineered oxy-fuel (HVOF) cermet coatings [1] and four research papers focused on the effects of Surfaces. Coatings 2021, 11, 875. different treatments and coatings on the mechanical and microstructural properties of the https://doi.org/10.3390/coatings investigated material [2–4].
    [Show full text]
  • Toward a More Comprehensive Approach for Design Using Buckling Analysis
    Proceedings of the Annual Stability Conference Structural Stability Research Council Nashville, Tennessee, March 24-27, 2015 Toward A More Comprehensive Approach for Design Using Buckling Analysis Oğuzhan Toğay1, Woo Yong Jeong2, Cliff D. Bishop3, Donald W. White4 Abstract This paper discusses a comprehensive approach for the design checking of structural steel members and their bracing systems via the use of buckling analysis combined with appropriate column or beam stiffness reduction factors. The stiffness reduction factors are derived from the AISC column and lateral torsional buckling strength curves. The resulting analysis provides a direct check of the member design resistance without the need for separate checking of the underlying Specification limit state equations. In addition, it can be used to directly evaluate stability bracing stiffness requirements. The paper presents the stiffness reduction factor equations for both columns and beams, and explains how these factors can be incorporated into a buckling analysis calculation. The paper closes with a representative beam design example. 1. Introduction Within the context of the Effective Length Method of design (the ELM), engineers have often calculated inelastic buckling effective length (K) factors to achieve a more accurate and economical design of columns. This process involves the determination of a stiffness reduction factor, , which captures the loss of rigidity of the column due to the spread of plasticity, including initial residual stress effects, as a function of the magnitude of the column axial force. Several different tau factor equations are in use in practice, but there is only one that fully captures the implicit inelastic stiffness reduction associated with the AISC column curve.
    [Show full text]
  • Chapter 10 Force Method
    18/02/2019 Chapter 10 Force Method Analysis of Statically Indeterminate Structures Iqbal Marie 2018-2019 Structural Analysis- Text Book by: R. C. HIBBELER 1 18/02/2019 Structures Determinate Indeterminate Serious effect No effect due due settlement settlement No effect due to Serious effect due to Rise in rise in temperature temperature Not economical economical Deflection Deflection Formation of plastic hinges Formation of results unstable plastic hinges structure results stable structure https://www.youtube.com/watch?v=Ff0GsQpw0.Xc 2 18/02/2019 There are two different Methods of analysis Force method • known as consistent deformation, unit load method, flexibility method • The primary unknowns are forces Displacement method • Known as stiffness method • The primary unknowns are displacements The deflection or slope at any point on a structure as a result of a number of forces, including the reactions, is equal to the algebraic sum of the deflections or slopes at this particular point as a result of these loads acting individually 3 18/02/2019 10.1 – 10-3 Force Method of Analysis: Beams 10.2 Analysis Procedure Indeterminate to the first degree ( 4 unknowns) • Three equilibrium equations and one compatibility equation is needed • Choosing one of the support reaction as a redundant (say By) • The structure become statically determinate and stable ( primary structure) • Calculate Downward displacement B at B (load action) • Apply unit load at B and calculate BB (upward deflection )- correction structure BB • Apply the Compatibility equation:
    [Show full text]
  • Approximate Analysis of Statically Indeterminate Structures
    Approximate Analysis of Statically Indeterminate Structures Every successful structure must be capable of reaching stable equilibrium under its applied loads, regardless of structural behavior. Exact analysis of indeterminate structures involves computation of deflections and solution of simultaneous equations. Thus, computer programs are typically used. 1 To eliminate the difficulties associated with exact analysis, preliminary designs of indeter- minate structures are often based on the results of approximate analysis. Approximate analysis is based on introducing deformation and/or force distribution assumptions into a statically indeterminate structure, equal in number to degree of indeter- minacy, which maintains stable equilibrium of the structure. 2 No assumptions inconsistent with stable equilibrium are admissible in any approximate analysis. Uses of approximate analysis include: (1) planning phase of projects, when several alternative designs of the structure are usually evaluated for relative economy; (2) estimating the various member sizes needed to initiate an exact analysis; 3 (3) check on exact analysis results; (4) upgrades for older structure designs initially based on approximate analysis; and (5) provide the engineer with a sense of how the forces distribute through the structure. 4 In order to determine the reac- tions and internal forces for indeterminate structures using approximate equilibrium me- thods, the equilibrium equations must be supplemented by enough equations of conditions or assumptions such that the resulting structure is stable and statically determinate. 5 The required number of such additional equations equals the degree of static indeter- minacy for the structure, with each assumption providing an independent relationship between the unknown reactions and/or internal forces. In approximate analysis, these additional equations are based on engineering judgment of appropriate simplifying assump- tions on the response of the structure.
    [Show full text]