Enzymatic Vitreolysis Using Reengineered Vibrio Mimicus–Derived Collagenase
Molecular Vision 2021; 27:125-141 <http://www.molvis.org/molvis/v27/125> © 2021 Molecular Vision Received 19 February 2020 | Accepted 30 March 2021 | Published 1 April 2021 Enzymatic vitreolysis using reengineered Vibrio mimicus–derived collagenase Mithun Santra,1 Maryada Sharma,1,4 Deeksha Katoch,2 Sahil Jain,2 Uma Nahar Saikia,3 Mangat R. Dogra,2 Manni Luthra-Guptasarma1 1Department of Immunopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 2Department of Ophthalmology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 3Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, India; 4Department of Otolaryngology and Head & Neck surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India Purpose: Collagen is a key player contributing to vitreoelasticity and vitreoretinal adhesions. Molecular reorganization causes spontaneous weakening of these adhesions with age, resulting in the separation of the posterior hyaloid membrane (PHM) from the retina in what is called complete posterior vitreous detachment (PVD). Incomplete separation of the posterior hyaloid or tight adherence or both can lead to retinal detachment, vitreomacular traction syndrome, or epiretinal membrane formation, which requires surgical intervention. Pharmacological vitrectomy has the potential of avoiding surgical vitrectomy; it is also useful as an adjunct during retinal surgery to induce PVD. Previously studied enzymatic reagents, such as collagenase derived from Clostridium histolyticum, are nonspecific and potentially toxic. We studied a novel collagenase from Vibrio mimicus (VMC) which remains active (VMA), even after deletion of 51 C-terminal amino acids. To limit the activity of VMA to the vitreous cavity, a fusion construct (inhibitor of hyaluronic acid-VMA [iHA-VMA]) was made in which a 12-mer peptide (iHA, which binds to HA) was fused to the N-terminus of VMA.
[Show full text]