Frigyes Riesz's Approach to Hilbert's Problem of Continuity of Space. A

Total Page:16

File Type:pdf, Size:1020Kb

Frigyes Riesz's Approach to Hilbert's Problem of Continuity of Space. A CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE SÉMINAIRE HISTOIRES DE GÉOMÉTRIES FONDATION MAISON DES SCIENCES DE L’HOMME Année 2007 ÉQUIPE F2DS & CENTRE CHARLES MORAZÉ 54 bd Raspail 75006 Paris Frigyes Riesz's approach to Hilbert’s problem of continuity of space. A chapter in the history of general topology Laura RODRIGUEZ (Johannes Gutenberg – Universität, Mainz) Lundi 23 avril de 10h à 12h, Salle 214 The question we will be dealing with is: to which extent is the concept of topological space historically related with the concept of space in geometry? For some time it was believed that Felix Hausdorff came to his definition of the concept of topological space starting from Hilbert’s notion of the plane as a two-dimensional manifold 1. It was Hermann Weyl, Hilbert’s best student, who set on the germ of this legend in an obituary dedicated to his master 2. In recent years Erhard Scholz showed that this assertion does not hold 3 . According to Scholz, Hausdorff developed his system of axioms for neighbourhoods when he was preparing a lecture on Riemannian surfaces in the spring of the year 1912. As for Hilbert’s work on the foundations of geometry, Hausdorff had known it for sure since some years before 1912 and so he had probably knew also Hilbert’s definition of the plane, and yet Scholz argues convincingly against any direct influence. In this way Scholz proved that Hilbert’s work on the foundations of geometry did not play any essential role in the development of Hausdorff’s concept of topological 1 “With Hausdorff general topology as it is understood today starts. Taking up again the notion of neighbourhood, he knew how to choose, among the axioms of Hilbert on neighbourhoods in the plane, those that could give to his theory at the same time all the precision and the generality that were desirable.” Nicolas Bourbaki. Elements of the History of Mathematics . Berlin: Springer 1994 (Original French edition from 1984), p. 143. A similar statement can be found in a text by C. Chevalley and A. Weil called “Hermann Weyl (1885-1955)” that appeared in L’Enseignement Mathématique tome 3, fasc. 3 (1957) and was partially reprint in: Hermann Weyl Gesammelte Abhandlungen , K. Chandrasekharan (ed.), Heidelberg: Springer 1968, 2 Hermann Weyl. David Hilbert and his mathematical work , Bulletin of AMS 50 (1944), 612-654. Here p. 638. 3 Erhard Scholz. Logische Ordnungen im Chaos: Hausdorffs frühe Beiträge zur Mengenlehre. In: Egbert Brieskorn (Hrsg.) Felix Hausdorff zum Gedächtnis. Band I: Aspekte seines Werkes. Wiesbaden, Vieweg 1996 space. This is true for Hausdorff’s concept. But some years before Hausdorff’s discovery another mathematician was working on the development of an abstract point set theory based on a general concept named “mathematical continuum”, which happens to be very closely related to Hausdorff’s notion of topological space. I am talking of Frigyes Riesz, who 1906 was a young Hungarian mathematician that had spent some years as a student and a research fellow in Göttingen and in Paris. Contrary to Hausdorff, Riesz did indeed attempt to contribute with his theory to Hilbert’s problem of the continuity of space. This is the story I want to tell you: how Riesz’s abstract point set theory was connected with Hilbert’ work on the foundations of geometry. The aims of this talk are: To present Hilbert’s problem of continuity of space in the context of his work on the foundations of geometry To show how Riesz came to develop his notion of continuous space And to evaluate the role that Riesz’s ideas played in the further development of mathematics Hilbert and the foundations of Geometry By 1900 David Hilbert had emerged as the leading mathematician in Germany. In 1899 Hilbert published his book The foundations of geometry, with which he succeeded in building up the Euclidean geometry axiomatically and in a strict systematic way, namely starting from a group of axioms and adding on subsequently the other four sets of axioms. The last group he added was the group of axioms of continuity, showing in this way how far the geometry can be built up without any assumptions of continuity. In 1902 Hilbert pursued an approach to the foundations of geometry entirely different from the one followed in his book. The background was given by the so-called Riemann-Helmholtz-Lie problem of space. From the standpoint of mechanics Hermann von Helmoltz had asked in 1868: in which of all those possible spaces embraced by Riemann’s notion of a three dimensional manifold can the task be fulfilled of describing the mobility of a solid. This is known as Helmholtz’s postulate of the free mobility of rigid bodies. Helmholtz succeeded in limiting the class of those geometries to the now so-called simply connected three-dimensional manifolds with constant curvature. These are the Euclidean, the non-Euclidean by Bolya- Lobatschewski, the spherical, and the elliptical geometry. The question had been taken up by Sophus Lie in the light of his general theory of continuous groups. Lie’s approach depends on certain assumptions of differentiability; to get rid of them is the task asked by Hilbert in his fifth Paris problem from 1900. In the paper ”Ueber die Grundlagen der Geometrie” from 1902 Hilbert does get rid of any assumptions of differentiability as far as Riemann-Helmholtz-Lie’s problem in the plane is concerned, that means for the two-dimensional space. The proof is difficult and laborious. Very important here is that the notion of continuity is now the foundation and has therefore to be assumed from the beginning. So continuity is no more the last keystone of the building as it had been in Hilbert’s Grundlagen book. Hilbert’s fifth mathematical problem I would like to say some words on Hilbert’s fifth mathematical problem. In 1900 David Hilbert gave in the second International Congress of Mathematicians in Paris an invited paper. He spoke on The Problems of Mathematics and presented a list of unsolved problems that had become since quite famous. The so-called Hilbert's problems came in four groups. The first group concerned foundational questions and consisted of six problems. From them, the fifth one was related with the foundations of geometry. Hilbert described it in the following terms: On sait qu’en employant la notion des groupes continues de transformations, Lie a établi un système d’axiomes pour la Géométrie, et a démontré au moyen de sa théorie des groupes continus de transformations que ce système d’axiomes suffit pour édifier la Géométrie. Or dans l’exposition de sa théorie, Lie suppose toujours que les fonctions définissant les groupes sont susceptibles de différentiation; alors rien dans ces développements ne nous dit si, dans la question des axiomes de la Géométrie, cette hypothèse relative à la différentiation est de tout nécessité, ou si elle ne serait pas plutôt une conséquence du concept de groupes ainsi que des autres axiomes géométriques employés. 4 4 David Hilbert. Sur les problèmes futures des mathématiques. Traduite par M. L. Laugel. Deuxième Congrès International des Mathématiciens, Paris 1900. From this quotation I would like to point out two things: First, the terms used by Hilbert suggest an interpretation of Lie’s contribution into a question of providing a foundation of geometry axiomatically. This is easily understood considering Hilbert’s own achievements at that time, namely his book on the foundations of geometry from 1899, which was precisely a very accurate attempt of building up the geometry systematically on the base of a system of axioms. But I have to stress that this was Hilbert’s very personal interpretation. Lie himself didn’t claim to have attempted an axiomatic foundation of geometry –and most surely not in the sense meant by Hilbert. Second, in the fifth problem Hilbert wondered whether the assumptions of differentiability imposed by Lie had really to be included within the axioms. He wondered whether the properties of differentiability might actually follow as a consequence of the continuity of the transformations defining the rigid motions, together with the group property and the other axioms of geometry. So, looked from the perspective of his axiomatic approach, the task Hilbert was setting is actually that of finding a system of axioms of geometry and a more appropriated definition of the continuity of group of transformations from which the properties of differentiability could be proved to be a consequence. It is the question of the mutually independence of the elementary assumptions. The significance Hilbert saw in the independence of the elementary assumptions, as he stressed in his Foundations book, was to establish which of them were really unavoidable for the proof of a geometric elementary truth 5. This lecture of Hilbert’s fifth mathematical problem is by no means new but I find it important to recall you in which way this problem was meant to clear also a foundational question, namely the question: how far can the geometry be built up using a group theoretical approach and starting alone from assumptions of continuity? Hilbert’s problem of continuity of space from 1899 to 1902 For Hilbert that question was a double one: How shall continuous space be defined? How shall continuous group be defined? This last question will not be of our further 5 „In der Tat sucht die vorstehende geometrische Untersuchung allgemein darüber Aufschluß zu geben, welche Axiome, Voraussetzungen oder Hilfsmittel zum Beweise einer elementargeometrischen Wahrheit nötig sind.“ D. Hilbert, Grundlagen der Geometrie, Stuttgart: Teubner 1956 (8th ed.), p. 125. interest. Suffice it to say that its solution is known as the solution of Hilbert’s fifth mathematical problem and its importance is associated with the emergence of a whole new branch of mathematics: the theory of topological groups.
Recommended publications
  • FROM a MEASURE THEORY to a THEORY of MEASURES Martinez
    XXIII ICHST T09-01 Mathematics in the Contemporary Period (1800-) FROM A MEASURE THEORY TO A THEORY OF MEASURES Martinez Adame, Carmen UNAM, Mexico The idea of this talk is to describe how Carathéodory developed what can be rightfully named a theory of measures from the ideas set out initially in the late 19th and early 20th Centuries by Jordan, Borel and Lebesgue (among others) even though this was not the envisaged goal of these authors. The three French authors we have mentioned all developed a measure as an auxiliary tool in their research, it is quite clear that none of them intended to study the measure they had created on its own; their goal was to facilitate and improve either integration theory or complex variable theory. However, it was the manner in which Borel and Lebesgue presented their measures that would eventually lead to Carathéodory’s approach and it is our claim that it is at this moment that an object called a “measure” was introduced as such in mathematics. In other words, it was the axiomatic approach followed by Lebesgue (and Borel) that allowed Carathéodory’s “formal theory of measurability” and eventually led to measure theory (as a theory whose objects are measures) as known today. THE RIESZ BROTHERS’S CORRESPONDENCE Péter Gábor Szabó University of Szeged, Hungary The Riesz brothers, Frigyes Riesz (1880-1956) and Marcel Riesz (1886-1969) were world famous mathematicians in the 20th century. Frigyes Riesz was one of the founders of functional analysis; the famous Riesz-Fischer theorem is familiar to every mathematician.
    [Show full text]
  • BI~LA SZOKEFALVI-NAGY I 1913-1998 We Inform You
    ] BI~LA SZOKEFALVI-NAGY I 1913-1998 We inform you with great sorrow that B~la Sz6kefalvi-Nagy, Editor-in-chief of the Hungarian Section of the Editorial Board of our quarterly "Analysis Mathematica" passed away on December 21, 1998, at the age of 86. He was a distinguished representative of the Hungarian mathematics and a world- wide acknowledged doyen of Operator Theory. He enriched several fields of mathematics, especially Functional Analysis, with fundamental results, contributing decisively to the development of those fields. He guarded and transferred to future generations the spirit of his teachers, Frigyes Riesz and Alfred Haar, the founders of the Szeged school of mathematics. B@la Sz6kefalvi-Nagy was born on July 29, 1913 in Kolozsv£r. His father, Gyula Sz6kefalvi-Nagy was a professor of mathematics, his mother was a secondary school teacher of mathematics and physics. B~la Sz6kefalvi- Nagy started his university studies in 1931 at the University of Szeged and received his diploma with distinction in mathematics and physics. He wrote his Ph.D. thesis on isomorphic function systems, a topic closely related to the research field of Alfr@d Haar. In the first part of his scientific career, B~la Sz6kefalvi-Nagy achieved significant results in the theory of Fourier Series, Approximation Theory, and Geometry. However, his main achievements are linked to Functional Anal- ysis, more closely, to the theory of Hilbert space operators. His first book entitled "Spektraldarstellung linearer Transformationen des Hilbertschen Raumes", by "Springer Verlag" was the first concise, summarizing work on Hilbert spaces. This slim book is the best introduction to the subject even in our days.
    [Show full text]
  • Stephen Erdely
    Music at MIT Oral History Project Stephen Erdely Interviewed by Forrest Larson March 24, 1999 Interview no. 1 Massachusetts Institute of Technology Lewis Music Library Transcribed by MIT Academic Media Services and 3Play Media. Cambridge, MA Transcript Proof Reader: Lois Beattie, Jennifer Peterson Transcript Editor: Forrest Larson ©2013 Massachusetts Institute of Technology Lewis Music Library, Cambridge, MA ii Table of Contents 1. Education and professional background (00:14) ......................................... 1 George Szell—playing in the Cleveland Orchestra—doctorate degree from Case Western Reserve University—teaching at Toledo University—education in Hungary—World War II—beginnings of ethnomusicology as a field of study—American Anthropological Society—Alan Merriam—Japp Kunst—Music Folklore Studies—Erick M. von Hornbostel and Comparative Musicology—dissertation: Methods and Principles of Hungarian Ethnomusicology —Walter Hendl—Eastman School of Music 2. Coming to MIT (19:51) .................................................................................4 Music faculty: Rufus Hallmark, John Buttrick, David Epstein, John Harbison, Barry Vercoe—Klaus Liepmann—music and the arts as academic disciplines—musical climate at MIT—MIT President Jerome Wiesner—Jacob den Hartog—performing with MIT faculty—performing duo with pianist Beatrice Erdely—Marcus Thompson 3. Music programs at MIT (31:19) ....................................................................7 Philosophy on music at MIT—introduction of ear training course—musical
    [Show full text]
  • Kaleidoscope Művelődés-, Tudomány- És Orvostörténeti Folyóirat Első Száma Megjelent
    KKKaaallleeeiiidddooosscopecopescope ISSN: 2062-2597 2012012013201333////11112222 7. szám Népegészségtani Intézet orvostörténeti csoportjának online folyóirata a ű ő ő Kaleidoscope M vel dés-, Tudomány- és Orvostörténeti Folyóirat els száma megjelent: http://www.kaleidoscopehistory.hu/ Kutatásaink központja az ember: az egészség-betegség, a gyógyítás szemlélete, orvosi antropológia, betegségek, járványok, caritas, könyörületesség, egészséges életre törekvés, és mindaz, ami az orvostörténet témáinak tárgya, s azok tágabb értelmezése a tudományok és a művelődéstörténet területein, az ókortól napjainkig. Felelős szerkesztő: dr. Forrai Judit Thoéris, a várandós nők és anyák védelmezője Thoeris, protector of pregnant women and mothers ő [Szerz (k): Szántó Zsuzsa, doktorandusz - ELTE BTK Ókortörténeti Doktori 1-5 Program ] (Hippokratésztől Galénoszig: Kultúra és gyógyítás a görög-római világban) Európai orvostudomány a 17. században European medicine in the 17th century ő [Szerz (k): Schultheisz Emil Prof. em. Dr. - Semmelweis Egyetem, 6-21 Népegészségtani Intézet ] (A modern orvostudomány története napjainkig ) Neves székelyföldi orvosok élete és tevékenysége Life and Life-work of renowned physicians from Székler Land (Eastern Transylvania) 22-50 [Szerző(k): Péter Mihály DSc ] (A modern orvostudomány története napjainkig ) „Die Pflanzschule der Wissenschaften und guten Sitten” Beiträge zur Mentalitätsgeschichte der Göttinger Studenten "The nursery of science and morality" Contributions to the history of mentalities of the Göttingen students
    [Show full text]
  • Selected Passages from the History of the Szeged Mathematical School 1
    Prehistory: the Kolozsv´arroots New university in Transylvania Selected Passages from the History • The foundation of the Franz Joseph University in 1872. of the Szeged Mathematical School 1 • Math. departments: Kolozsv´arand the first years in Szeged • Elementary Mathematics • Higher Mathematics • Mathematical Physics Lajos Klukovits • A serious problem: there were no outstanding mathematician, prospective professors, in Transylvania. Bolyai Institute University of Szeged • The govermental solution: May 20, 2021. • the polyhistor Samuel Brassai and the aviatist ingeneer Lajos Martin were the first two, • two years later the young physicist M´orR´ethy. Prehistory: the Kolozsv´arroots Kolozsv´ar:the the turn of the century. Scientific interests • Brassai: ranging from linguistics (eg. sanscrit) to astronomy, 3 famous new professors. • in Kolozsv´aryears mostly astronomy, Hungarian math. ´ language. 1. Gyula VALYI (1855-1913) • important deficiency: not recognized the ultimate importance • The most talanted student of R´ethy, of the Bolyai geometry. • in Berlin: lectures of Weierstrass, Kirchoff, Kronecker and Kummer. • Martin: theoretical questions of aviatics, • Main interest: partial differential equations, • R´ethy:the shape of the incompressible fluid rays. • first time regular course on the Appendix. • the first professor in Hungary lecturing on the Bolyai geometry, 2. Gyula FARKAS (1847-1930) • several constructions in hyperbolic geometry. • Mainly theoretical physicist, system of linear inequalities, • R´ethywas the first outstanding professor of theoretical physics • Farkas-lemma: fundamental in operation research. in Hungary. 3. Lajos SCHLESINGER (1864-1933) • One of his most important statemens: ...in our country before • Complex functions, system of differential equations, the two Bolyai, there were no outstanding mathematician; • several lecture notes. therefore almost all mathematical research have to be rooted in their results.
    [Show full text]
  • Commutative Harmonic Analysis
    BOLYAI SOCIETY A Panorama of Hungarian Mathematics MATHEMATICAL STUDIES, 14 in the Twentieth Century, pp. 159–192. Commutative Harmonic Analysis JEAN-PIERRE KAHANE The present article is organized around four themes: 1. the theorem of Fej´er, 2. the theorem of Riesz–Fischer, 3. boundary values of analytic functions, 4. Riesz products and lacunary trigonometric series. This does not cover the whole field of the Hungarian contributions to commutative harmonic analysis. A final section includes a few spots on other beautiful matters. Sometimes references are given in the course of the text, for example at the end of the coming paragraph on Fej´er. Other can be found at the end of the article. 1. The theorem of Fejer´ On November 19, 1900 the Acad´emiedes Sciences in Paris noted that it had received a paper from Leopold FEJEV in Budapest with the title “Proof of the theorem that a bounded and integrable function is analytic in the sense of Euler”. On December 10 the Comptes Rendus published the famous note “On bounded and integrable fonctions”, in which Fej´ersums, Fej´er kernel and Fej´ersummation process appear for the first time, and where the famous Fej´ertheorem, which asserts that any decent function is the limit of its Fej´ersums, is proved. The spelling error of November 19 in Fej´er’sname (Fejev instead of Fej´er)is not reproduced on December 10. It is replaced by an other one: the paper presented by Picard is attributed to Leopold TEJER. This is how Fej´er’sname enters into history (C.R.
    [Show full text]
  • 5. Demise of the Dogmatic Universe 1895 CE– 1950 CE
    5. Demise of the Dogmatic Universe 1895 CE– 1950 CE Maturation of Abstract Algebra and the Grand Fusion of Geometry, Algebra and Topology Logic, Set Theory, Foundation of Mathematics and the Genesis of Computer Science Modern Analysis Electrons, Atoms and Quanta Einstein’s Relativity and the Geometrization of Gravity; The Expanding Universe Preliminary Attempts to Geometrize Non-Gravitational Interactions Subatomic Physics: Quantum Mechanics and Electrodynamics; Nuclear Physics Reduction of Chemistry to Physics; Condensed Matter Physics; The 4th State of Matter The Conquest of Distance by Automobile, Aircraft and Wireless Communication; Cinematography The ‘Flaming Sword’: Antibiotics and Nuclear Weapons Unfolding Basic Biostructures: Chromosomes, Genes, Hormones, Enzymes and Viruses; Proteins and Amino Acids Technology: Early Laser Theory; Holography; Magnetic Recording and Vacuum Tubes; Invention of the Transistor ‘Big Science’: Accelerators; The Manhattan Project 1895–1950 CE 3 Personae Wilhelm R¨ontgen 25 August and Louis Lumi´ere 25 Hendrik · · Lorentz 25 Guglielmo Marconi 26 Georg Wulff 26 Wallace · · · Sabine 27 Horace Lamb 27 Thorvald Thiele 27 Herbert George · · · Wells 33 Charles Sherrington 69 Arthur Schuster 71 Max von · · · Gruber 71 Jacques Hadamard 71 Henry Ford 74 Antoine Henri · · · Becquerel 74 Hjalmar Mellin 75 Arnold Sommerfeld 76 Vil- · · · fredo Pareto 77 Emil´ Borel 78 Joseph John Thomson 88 Al- · · · fred Tauber 90 Frederick Lanchester 92 Ernest Barnes 93 Adolf · · · Loos 92 Vilhelm Bjerkens 93 Ivan Bloch 94 Marie
    [Show full text]
  • Programme ADVAN 19 20 14
    ADVANCED ANALYSIS Academic Year 2018/19 Francesco Serra Cassano Contents I. Derivation of measures and functions. I.1 Some recalls of measure theory: measures and outer measures, Lebesgue- Stielt- jes measure, approximation of measures. I.2 Radon- Nikodym and Lebesgue decomposition theorems. I.3 Lebesgue points and differentiation theorem for Radon measures on Rn: Lebesgue's differentiation theorem for monotone functions. I. 4 Functions of bounded variation. I.5 The fundamental theorem of calculus. II. Main spaces of functions and results on Banach and Hilbert spaces. II.1 The space of continuous functions C0(Ω). II.2 The space of continuously differentiable functions C1(Ω). II.3 The space of Lipschitz functions Lip(Ω). II.4. The space of p-integrable functions Lp(Ω). III. Weak topologies. III.1 Weak topology on a normed vector space and compactness. III.2 Reflexivity of the main spaces of functions. III.3 Weak topology and convexity: an application to the Calculus of Variations. III.4 Weak* topology on a dual space and compactness. IV. An introduction to the Sobolev space and an application to Poisson's equation. IV.1 Reference example: general electrostatic problem. IV.2 Energy functional and classical Dirichlet's principle. IV.3 Dirichlet's principle in the Sobolev space and weak solutions. (?)= optional argument (◦)= result without proof I. Derivation of measures and functions. I.1 Some recalls of measure theory: measures and outer measures, Lebesgue- Stieltjes measure, approximation of measures. Recalls about the classical fundamental theorem of calculus. Definitions of outer measure ' on a set X and '-measurability (or Carath´eodory measurability).
    [Show full text]
  • Remarkable Hungarian Mathematicians at the Cluj University
    Stud. Univ. Babe¸s-Bolyai Math. 59(2014), No. 4, 419{433 Remarkable Hungarian mathematicians at the Cluj University Ferenc Szenkovits Abstract. We provide a brief overview of the life and activity of the most remark- able Hungarian mathematicians who worked at the University of Cluj, from the beginnings to the present day. Mathematics Subject Classification (2010): 01A55, 01A60, 01A73. Keywords: University of Cluj, Hungarian mathematicians. 1. Introduction The first higher education institution in Cluj (Kolozsv´ar,Claudiopolis), a Jesuit colleage with three faculties: Theology, Philosophy and Law, was set up on May 12, 1581 by Stephen B´athory, the prince of Transylvania and king of Poland. Over the centuries astronomy and mathematics had an important role between the subjects taught at this catholic school. The most remarkable professors of astron- omy and mathematics of this school were Mikl´osJ´anosi(1700{1741) and Maximilian Hell (1720{1792). J´anosiand Hell published the first mathematical textbooks in Cluj: Mikl´osJ´anosi: Trigonometria plana et sphaerica cum selectis ex geometria et astronomia problematibus, sinuum canonibus et propositionibus ex Euclide magis nec- essariis. Claudiopoli, 1737. Maximilian Hell: Compendia varia praxesque omnium operationum arithmeti- carum. Claudiopoli, 1755. Elementa mathematicae naturalis philosophiae ancillantia ad praefixam in scho- lis normam concinnata. Pars I., Elementa arithmeticae numericae et litteralis seu algebrae. Claudiopoli, 1755. Exercitationum mathematicarum Partes Tres. Claudiopoli. 1760. A new era begins in the Cluj university education on October 12, 1872, when the emperor Franz Joseph I of Austria approves a decision of the Hungarian Parliament for setting up the University of Cluj. This Hungarian university was between the This paper was presented at the 8th Conference on History of Mathematics & Teaching of Mathe- matics, Cluj-Napoca, May 21-25, 2014.
    [Show full text]
  • Ubb World-Class Contributions
    UBB WORLD-CLASS CONTRIBUTIONS Babeș-Bolyai University (Universitatea Babeș-Bolyai/UBB) of Cluj-Napoca, Transylvania, Romania has (1) the oldest academic/university tradition in Romania, (2) is the largest university of the country, and (3) is ranked on the first position in country between 2016-2019, in the University Metaranking, initiated by the Romanian Ministry of Education and Research in 2016. (i.e. by combining all the major international academic rankings of universities, as presented by IREG - https://ireg-observatory.org/en/). The British QS STAR audit has evaluated UBB in 2019 as an international university, with excellence in teaching and research (QS****). The university tradition of UBB started in 1581 as Academia Claudiopolitana Societatis Jesu – by its Royal statute having the right to confer the university titles of baccalaureus/magister/doctor -, developed after 1698 until 1786 into Universitas Claudiopolitana, with teachings in Latin and later also in German. The Academia/Universitas Claudiopolitana was followed after 1786 by two institutions with a semiuniversity statute (e.g., offering training at baccalaureus/magister level, but not at doctor level): (a) the Surgical-Medical Institute and (b) the Academy of Law. Then, starting with 1872, the Royal Hungarian University of Cluj (Franz Joseph University/Cluj Hungarian University) was founded, with teaching in Hungarian, which included the two semiuniversity institutions already existing in Cluj (the main part of the academic tradition of this Hungarian period is shared with the current University of Szeged in Hungary). In 1919, the Hungarian university was transformed/followed by the Romanian University of Cluj (King Ferdinand University of Cluj/Cluj Romanian University).
    [Show full text]
  • Mathematical Biography: a Mactutor Celebration
    MATHEMATICAL BIOGRAPHY: A MACTUTOR CELEBRATION 16-17 September 2016 ABSTRACTS Philip Beeley: 'The learned shall reap the benefit of your spare hours'. An essay on the life and work of the mathematical intelligencer John Collins The second half of the seventeenth century witnessed a remarkable growth in the mathematical sciences in England, culminating in the publication of Newton's Principia in 1687. This progress was reflected not only in the newly-established Royal Society, but also in an increasingly sophisticated level of of practical mathematics in accountancy, commerce, navigation, and instrument making. New mathematical learning permeated workshops. warehouses, dockyards, coffee houses, and taverns, and was disseminated by printed books, journals, and letters. The most prominent facilitator of mathematical exchanges in Restoration England was undoubtedly John Collins (1625-83), whose primary goal became 'the promotion of mathematick learning'. The talk will present some of the results of the AHRC project 'Mathematical Culture in Restoration England: Life and Letters of John Collins', whose outputs include an intellectual biography of Collins and a complete edition of his correspondence. It will be a first attempt (or 'essay') at presenting an account of Collins's life and will outline and discuss the various challenges which this biographical task entails. John Bibby: Zigzagging round Karl Pearson's Yorkshire roots: an idiot's tour using familiography, local history, biography and science history This paper will recount an amateur's investigations into the family history of Karl Pearson, and how it led into local histories and beyond. Serendipities abound, especially when one gets into grey literature and the web.
    [Show full text]
  • Proceedings of the International Conference in Memoriam Gyula Farkas August 23–26, 2005, Cluj-Napoca
    Proceedings of the International Conference In Memoriam Gyula Farkas August 23–26, 2005, Cluj-Napoca Proceedings of the International Conference In Memoriam Gyula Farkas August 23–26, 2005 Cluj-Napoca Edited by Z. Kása, G. Kassay, J. Kolumbán Cluj University Press 2006 This conference was dedicated to the memory of Gyula Farkas (1847–1930), the famous professor in Mathematics and Physics of the University of Kolozsvár/Cluj between 1887–1915. ORGANIZERS Babe³-Bolyai University, Cluj-Napoca Hungarian Operational Research Society, Budapest Operations Research Committee of the Hungarian Academy of Sciences Sapientia University, Cluj-Napoca Gyula Farkas Association for Mathematics and Informatics, Cluj-Napoca Hungarian Technical Sciences Society of Transylvania, Cluj-Napoca Transylvanian Museum Association, Cluj-Napoca SCIENTIFIC ORGANIZING COMMITTEE Wolfgang BRECKNER (Cluj, Romania), Tibor CSENDES (Szeged, Hungary), Zoltán GÁBOS (Cluj, Romania), József KOLUMBÁN (Cluj, Romania), Sándor KOMLÓSI (Pécs, Hungary), Katalin MARTINÁS (Budapest, Hungary), Petru T. MOCANU (Cluj, Romania), Zsolt PÁLES (Debrecen, Hungary), Tamás RAPCSÁK (Budapest, Hungary), Paul SZILÁGYI (Cluj, Romania), Béla VIZVÁRI (Budapest, Hungary) LOCAL ORGANIZING COMMITTEE Gábor KASSAY (Cluj, Romania), Zoltán KÁSA (Cluj, Romania), Gábor KÖLLŐ (Cluj, Romania), Lehel KOVÁCS (Cluj, Romania), Marian MUREŞAN (Cluj, Romania), László NAGY (Cluj, Romania), Ferenc SZENKOVITS (Cluj, Romania) INVITED SPEAKERS Katalin MARTINÁS, Boris S. MORDUKHOVICH, András PRÉKOPA, Constantin ZĂLINESCU, Gert
    [Show full text]