Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems

Total Page:16

File Type:pdf, Size:1020Kb

Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems Von der Fakult¨atf¨urMaschinenbau der Technischen Universit¨atCarolo-Wilhelmina zu Braunschweig zur Erlangung der W¨urde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Dissertation von: Christoph C. Richter aus: Braunschweig eingereicht am: 11. Januar 2008 m¨undliche Pr¨ufungam: 3. April 2008 Referenten: Prof. Dr.-Ing. J¨urgen K¨ohler Prof. Dr.-Ing. Gerhard Schmitz Vorsitzender: Prof. Dr.-Ing. Martin M¨onnigmann 2008 Preface Preface This thesis can be regarded as a follow-up project to the PhD thesis of Tegethoff(1999) moving from his C++ simulation platform to a component model library written in Modelica complemented by a fluid property library developed in C/C++ with interfaces to various soft- ware tools and programming languages including Modelica. The thesis belongs somewhere in the intersection of Computer Science, Systems Design Engineering, and Thermodynamics. It examines the advantages and possible pitfalls of object-oriented model library design using the free object-oriented modeling language Modelica. During the time of the library devel- opment, I was involved in the design of parts of the Modelica Standard Library and got very good insight into the language design itself by being a member of the Modelica Association. The enthusiasm of the members of the Modelica Association and the Modelica Fluid Group was a continuous source of motivation and a great help with a lot of problems that emerged during the library design process. Acknowledgments Writing a thesis is an iterative process that requires continuous input from other people especially when developing simulation libraries that are meant to be used by others than the author himself. I would not have been able to finish this project without the strong support of a number of people to whom the following paragraphs are dedicated. The order is random and not meant to be a ranking of any sort. First I wish to thank all postgraduate students at the Institut f¨urThermodynamik for their support and help in many situations. Special thanks to Roland who was never bored with my endless questions regarding C++ and Qt and with whom I was able to develop a program as unique as the StateViewer. I would also like to thank Christine, Julia, Christian S., Roland, and Niko for many nice evenings including sushi, wine, and memorable Cranium sessions. Special thanks to Christine for cheering me up in the mornings by having a little chat before everyone else showed up. Also writing chapter6 would not have been possible without her strong support that I really appreciated. Thanks to Kai and Marcos who had to test and extend my libraries for not getting sick of the many updates that they had to adopt their models to. Special thanks also to Christian T. for his strong support with the ejector test stand and for his never-ending effort to keep up with me when going for a run after a long day of work. I also want to thank Willi who was always keen enough to discuss new ideas and who did not stop me when starting to redesign TILFluids from scratch in late spring 2006. I am also very grateful that Willi taught me how to use Modelica in an in-house course knowing the language just a little better than the participants of the course back then. This thesis would not have been possible without his strong support especially during the last weeks and days before finishing it. Furthermore, I want to thank the staff at TLK for utilizing some of the software I de- veloped despite all the bugs. Many thanks also to the master students at the Institut f¨ur III Acknowledgments Thermodynamik that helped me with some aspects of my work, especially to Martin for his tool ModelicaCDV (which I misspelled many times as ModelicaCVD) and Nils for his implementation of heat exchangers in Modelica. I am grateful to the members of the Modelica Association for answering the really tricky Modelica questions. I especially want to thank Katrin Pr¨olß,Hubertus Tummescheit, Francesco Casella, and the entire Modelica Fluid Group for many fruitful discussions and nice evenings at the Modelica Design Meetings. I am glad to express my sincere gratitude to Prof. K¨ohler for supervising this thesis and to Prof. Schmitz for his valuable inputs. I also want to thank the technical staff at the Institut f¨urThermodynamik for their support during the three years I spent there. Special thanks to the Canada gang for the yearly meetings that always were a source of motivation to me. Thanks Debbie, Jenny, Sven, and Matthias for the many outdoor events and cooking sessions. Also thanks for changing me from a couch potato into a marathon finisher. Special thanks go to my girlfriend Frederike for always being supportive even during the hard times of self-doubts. The two months in New Zealand are unforgettable and belong to my most precious memories. Thanks also to Frederike, Mandy, and Christian T. for the nice evenings taking dancing lessons. Also many thanks to my parents for their loving support and confidence in me and to my brother Marius for proofreading this thesis and for many motivating phone calls. For the financial support, I want to thank the Studienstiftung des deutschen Volkes that was brave enough to support me since my second semester as an undergraduate student all the way until finishing my doctoral thesis. IV Abstract Proposal of New Object-Oriented Equation-Based Model Libraries for Thermodynamic Systems Abstract This thesis proposes two new model libraries for fluid properties and for components that can be used for the simulation of thermodynamic systems such as refrigeration, air-conditioning, and heat-pump systems. The new fluid property library is written in C/C++ and can be interfaced from various software tools and programming languages. The new component model library is written in the object-oriented equation-based modeling language Modelica. Furthermore, tools for the automated generation of class diagrams and the visualization of the solution process as well as the numerical results in relevant diagrams such as pressure- enthalpy diagrams are presented. Both new libraries are based on a thorough object-oriented analysis. Graphical repre- sentations for all object-oriented features of Modelica based on the elements defined in the Unified Modeling Language are introduced. A set of general design rules for the develop- ment of object-oriented component model libraries is formulated to ensure that the resulting library can be used by the entire spectrum of possible users from experienced developers to design engineers. The new object-based fluid property library is based on a generalized approach to include external fluid property computation codes in Modelica. It is simple to extend to additional external fluid property computation codes. It allows for a numerically efficient handling of fluid properties in Modelica and in a number of software tools. The numerical efficiency of the presented approach matches the numerical efficiency of available fluid property computation codes formulated in Modelica. The new model library for components and systems was developed based on the newly introduced design rules. It features a structure that is simple to understand and flexible to allow for extensions. All balance equations are formulated in an easy and comprehensible way in base components. The new component model library contains models with different levels of detail to allow for a problem-dependent model selection. Two applications are presented to demonstrate the capabilities of the two new libraries. A prototype Peltier heat exchanger heating one water stream while cooling another one is analyzed during a transient reversion of the applied voltage. The second example analyzes a prototype ejector refrigeration system partly developed within the scope of this thesis. It is shown that an ejector improves the COP of a CO2 refrigeration system. The two selected examples demonstrate the extendibility and multidisciplinarity of the new libraries. Both libraries are already used and extended by a team of developers at the Institut f¨ur Thermodynamik and the TLK-Thermo GmbH. V Kurzfassung Vorschlag f¨urneue objektorientierte gleichungsbasierte Modellbibliotheken f¨urthermodynamische Systeme Kurzfassung Diese Arbeit beschreibt zwei neue Modellbibliotheken mit Stoffdaten- und Komponentenmo- dellen zur Simulation thermodynamischer Systeme wie zum Beispiel K¨alteanlagen,Klimaan- lagen und W¨armepumpen. Die neue Stoffdatenbibliothek ist basierend auf C/C++ entwickelt worden und verf¨ugt¨uber Schnittstellen f¨urunterschiedliche Anwendungsprogramme und Pro- grammiersprachen. Die neue Komponentenbibliothek ist in der objektorientierten gleichungs- basierten Modellierungssprache Modelica geschrieben. Es werden außerdem Werkzeuge vor- gestellt, die die automatische Generierung von Klassenstrukturdiagrammen und die Visu- alisierung des L¨osungsprozessessowie der numerischen Ergebnisse in thermodynamischen Diagrammen wie zum Beispiel dem p,h-Diagramm erm¨oglichen. Beide neuen Bibliotheken basieren auf einer gr¨undlichen objektorientierten Analyse. Um diese einheitlich zu erm¨oglichen, werden grafische Darstellungen f¨ur alle objektorientierten Merkmale von Modelica basierend auf der UML eingef¨uhrt. Es werden des Weiteren all- gemeing¨ultigeRichtlinien f¨ur die Erstellung von objektorientierten Modellbibliotheken en- twickelt, die sicherstellen, dass die entwickelte Bibliothek das gesamte Spektrum m¨oglicher Benutzer vom Code-Entwickler bis hin zum Anwender unterst¨utzt.
Recommended publications
  • Optimation Optimizing Process Control with Dymola
    DS PLM SUCCESS STORY Optimation Optimizing process control with Dymola Overview Challenge Optimizing manufacturing processes define the strategies to run the mill or the Optimation needed to provide its Sweden’s Optimation helps companies to power plant at an optimum level and use customers with solutions that define optimize their manufacturing processes via simulation to test those strategies before they the optimal process control strategy for their production processes its expertise in control technology, dynamic are implemented in the real world.” simulation, and production processes. Solution Optimized process control can contribute to With Dymola, Optimation produces simulation Optimation uses Dymola to energy savings, better product quality, and results that mimic reality enabling its dynamically simulate the way a increased output. On the contrary, incorrectly customers to implement the most optimum controller should function for maximum structured and insufficiently configured configuration from the beginning. “I suppose operating capacity control systems lead to production downtime, we can say that we are control architects - we idleness or inefficiencies. Customers that turn define the optimum strategy and we create a Benefits to Optimation for process control optimization roadmap so that programmers have precise Thanks to Dymola, Optimation’s customers have a precise idea of the come from a variety of disciplines that include instructions on how to program a control way a process controller should be pulp mills, power plants, mining and steel. system,” said Eriksson. programmed before proceeding with physical modifications or installations Optimum configuration with Dymola A plant is an ensemble of hydraulic, Optimation uses Dymola, Dassault Systèmes mechanical, electrical systems. This is why multi-engineering modeling and simulation Optimation adopts a broad approach when solutions based on the open Modelica asked to optimize an existing plant.
    [Show full text]
  • Dassault Systèmes Products Lines Releases Support Life Cycle Dates for Licensed Program
    Dassault Systèmes Products Lines Releases Support Life Cycle Dates For licensed program © Dassault Systèmes | Confidential Information | 5/23/14 | ref.: 3DS_Document_2014 ref.: Information | | 5/23/14 © Dassault | Confidential Systèmes 3DS.COM Applicable as of - 9/13/2019 Dassault Systèmes - Customer Support Table of contents 1. 3DEXPERIENCE ........................................................................................................... 4 2. 3DEXCITE ..................................................................................................................... 5 3. BIOVIA ........................................................................................................................... 6 4. CATIA Composer ........................................................................................................... 8 5. CATIA V4 ....................................................................................................................... 9 6. CATIA AITAC ............................................................................................................... 10 7. DELMIA APRISO ......................................................................................................... 11 8. DELMIA ORTEMS ....................................................................................................... 12 9. DYMOLA...................................................................................................................... 13 10. ELECTRE & ELECTRE Connectors for V5 .................................................................
    [Show full text]
  • Simulia Community News
    SIMULIA COMMUNITY NEWS #08 October 2014 THE POWER OF THE PORTFOLIO COVER STORY SIMULATION HELPS UPGRADE LONDON TUNNELS in this Issue October 2014 3 Welcome Letter Scott Berkey, Chief Executive Officer, SIMULIA 4 Portfolio Update Latest SIMULIA Portfolio Releases Deliver Powerful, Advanced Simulation Functionality to Users 8 Strategy Overview DR. SAUER How to Stay at the Top of Your Game in the Fast-Evolving 10 World of Simulation 10 Cover Story Dr. Sauer and Partners Helps Upgrade London Underground Station 13 News SIMPACK Joins the Dassault Systèmes Family 14 Case Study Stadler Rail Simulates Train Safety with FEA 17 Alliances Topology and Shape Optimization Using the Tosca-Ansa Environment 18 Case Study Fine-tuning the Anatomy of Car-Seat Comfort STADLER 20 Academic Update 14 Oil & Gas Subsurface Innovation with Multiphysics Simulations 22 Tips & Tricks Optimization Module Within Abaqus/CAE Contributors: Dr. Alois Starlinger (Stadler Rail), Dr. Alexander Siefert (Wölfel Group), Jeremy Brown and Randi Jean Walters (Stanford University), Parker Group On the Cover: Ali Nasekhian, Dr. techn., M.Sc. Senior Tunnel Engineer, Dr. Sauer and Partners Cover photo by Roger Brown Photography WÖLFEL 18 SIMULIA Community News is published by Dassault Systèmes Simulia Corp., Rising Sun Mills, 166 Valley Street, Providence, RI 02909-2499, Tel. +1 401 276 4400, Fax. +1 401 276 4408, [email protected], www.3ds.com/simulia Editor: Tad Clarke Associate Editor: Kristina Hines Graphic Designer: Todd Sabelli ©2014 Dassault Systèmes. All rights reserved. 3DEXPERIENCE, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, BIOVIA, NETVIBES, and 3DXCITE are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the U.S.
    [Show full text]
  • Running an Abaqus Job on the Cloud
    SIMULIA COMMUNITY NEWS #18 December 2017 EMPOWERED BY THE CLOUD COVER STORY DIGITAL ORTHOPAEDICS 6 | DigitalAdmedes Orthopaedics In this Issue December 2017 3 Welcome Letter Bruce Engelmann, SIMULIA R&D VP & CTO 4 Future Outlook Accessing the Latest Simulation Technologies from SIMULIA on the Cloud 6 Cover Story Digital Orthopaedics: Feet in the Cloud 10 | The Living Heart 9 Solution Highlight A Simulation Tool that Connects the Dots on the 3DEXPERIENCE Platform 10 The Living Heart on the Cloud Growing Awareness of the Value of Modeling and Simulation for Life Sciences 12 Solution Update: Virtual Human Modeling on The Cloud Advance Biomedical Engineering Through Realistic Simulation 14 Tech Tip Running an Abaqus Job on the Cloud 12 | Virtual Human 15 Alliances Using Your SIMULIA Portfolio License on the Cloud Modeling 17 Vertical Applications Democratize Analysis using Simulation Vertical Applications 18 3DEXPERIENCE for Academia + SIMULIA Bringing Innovation and Industry into the Classroom Contributors: Parker Group & Digital Orthopaedics On the Cover: Mr. Eric Halioua, Dr. Thibaut Leemrijse, Dr. Bruno Ferré, Digital Orthopaedics Photo by: Couloir 3, Paris, France 18 | Academic SIMULIA Community News is published by Dassault Systèmes Simulia Corp., 1301 Atwood Avenue, Suite 101W, Johnston, RI 02919, Tel. +1 401 531 5000, Fax. +1 401 531 5005, [email protected], www.3ds.com/simulia Editor: Tad Clarke Associate Editor: Kristina Hines Graphic Designer: Todd Sabelli ©2017 Dassault Systèmes. All rights reserved. 3DEXPERIENCE®, the Compass icon and the 3DS logo, CATIA, SOLIDWORKS, ENOVIA, DELMIA, SIMULIA, GEOVIA, EXALEAD, 3D VIA, 3DSWYM, BIOVIA, NETVIBES and 3DEXCITE are commercial trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the U.S.
    [Show full text]
  • DS Reports 2008 First Quarter Software Revenue Growth Above 14% in Constant Currencies
    DS Reports 2008 First Quarter Software Revenue Growth Above 14% in Constant Currencies Paris, France, April 29, 2008 ─ Dassault Systèmes (DS) (Nasdaq: DASTY; Euronext Paris: #13065, DSY.PA) reported U.S. GAAP unaudited financial results for the first quarter ended March 31, 2008. Summary Financial Highlights Q1 GAAP total revenue up 12% on GAAP software revenue growth of 16%, both in constant currencies Q1 non-GAAP total revenue up 10% on non-GAAP software revenue growth of 14%, both in constant currencies Q1 EPS €0.34 on GAAP basis and €0.41 on non-GAAP basis DS reconfirms 2008 Business Outlook: reconfirms constant currencies non-GAAP software and non-GAAP total revenue growth objectives for 2008; reconfirms non-GAAP operating margin expansion objective for 2008; adjusts non-GAAP EPS growth objective for 2008 to between 6% and 10% growth solely due to US dollar weakness First Quarter 2008 Financial Summary U.S. GAAP Non-GAAP In millions of Euros, except per share data Growth Growth in cc* Growth Growth in cc* Q1 Total Revenue 307.4 6% 12% 307.9 4% 10% Q1 Software Revenue 269.1 9% 16% 269.6 8% 14% Q1 EPS 0.34 21% 0.41 5% Q1 Operating Margin 17.3% 22.8% * In constant currencies. Bernard Charlès, Dassault Systèmes President and Chief Executive Officer, commented, “Dassault Systèmes had a solid start to 2008, meeting all of our financial objectives for revenue, operating margin and earnings per share. We are seeing good dynamics in our core industries and new verticals. In particular, we had a very strong quarter for CATIA benefiting from broad-based demand among automotive and aerospace companies and good execution in our Business Transformation Channel for large accounts.
    [Show full text]
  • Virtual Plants in Machine Automation Research and Development
    VTT-R-08126-13 RESEARCH REPORT ReUse-R Virtual plants in machine automation research and development Authors: Juha Kortelainen and Teemu Halmeaho Confidentiality: Public RESEARCH REPORT VTT-R-08126-13 1 (46) Report’s title Virtual plants in machine automation research and development Customer, contact person, address Order reference ReUse-R research project 40234/11 Tekes, Pekka Yrjölä Kyllikinportti 2, P.O. Box 69, FI-00101 Helsinki, Finland Project name Project number/Short name Prosessinhallinnan suunnitteluratkaisujen uudelleenkäyttö 75303/ReUse-R Author(s) Pages Juha Kortelainen and Teemu Halmeaho 47/– Keywords Report identification code Automation, CAD, control system, hydraulic system, model- VTT-R-08126-13 ling, multibody system, simulation Summary Computational product development has become the mainstream methodology in modern product development. The same trend has been visible also in research, where computational methods have gained popularity beside the traditional approach relying on theory and experi- mentations. The objective of this project task was to study and demonstrate a realistic ap- proach for an industrial case to reuse existing mechanical design CAD model as the starting point and the template for mechanical system simulation using multibody system simulation, and to use this MBS model as a virtual test plant for automation and control system testing. In the report, the role of system modelling and simulation in the product process is first dis- cussed and some selected technologies, such as Modelica simulation language and Functional Mock-up Interface specification, are introduced. Then different possible implementations ap- proaches for a test environment of the control and automation system of a multi-technical sys- tem are discussed.
    [Show full text]
  • Dymola Release Notes
    Dymola Dynamic Modeling Laboratory Dymola Release Notes Dymola 2021 The information in this document is subject to change without notice. Document version: 1 © Copyright 1992-2020 by Dassault Systèmes AB. All rights reserved. Dymola® is a registered trademark of Dassault Systèmes AB. Modelica® is a registered trademark of the Modelica Association. Other product or brand names are trademarks or registered trademarks of their respective holders. Dassault Systèmes AB Ideon Gateway Scheelevägen 27 – Floor 9 SE-223 63 Lund Sweden Support: http://www.3ds.com/support URL: http://www.Dymola.com Phone: +46 46 270 67 00 Contents 1 Important notes on Dymola .................................................................................................... 5 2 About this booklet ................................................................................................................... 5 3 Dymola 2021 ............................................................................................................................. 6 3.1 Introduction ...................................................................................................................................................... 6 3.1.1 Additions and improvements in Dymola ................................................................................................ 6 3.1.2 New and updated libraries ...................................................................................................................... 6 3.2 Developing a model ........................................................................................................................................
    [Show full text]
  • Dymola Dynamic Modeling Laboratory
    Dymola Dynamic Modeling Laboratory User’s Manual Dymola 6 Additions Version 6.0 © Copyright 1992-2006 by Dynasim AB. All rights reserved. Dymola™ is a trademark of Dynasim AB. Dymola® is a registered trademark of Dynasim AB in Sweden. Modelica® is a registered trademark of the Modelica Association. Dynasim AB Research Park Ideon SE-223 70 Lund Sweden E-mail: [email protected] URL: http://www.Dynasim.com Phone: +46 46 2862500 Fax: +46 46 2862501 Contents Recent features in Dymola.............................................................................................................9 Graphical editor..........................................................................................................................................................9 Parameter dialog.....................................................................................................................................................9 Package browser...................................................................................................................................................15 Component browser..............................................................................................................................................16 Replaceable components ......................................................................................................................................17 Connections..........................................................................................................................................................18
    [Show full text]
  • MODELICA / DYMOLA and SIMULIA Abaqus Working Together
    MODELICA / DYMOLA and SIMULIA Abaqus working together | ref.: 3DS_Document_2012 3DS_Document_2012 ref.: ref.: || 6/29/2015 6/29/2015 Tomáš Ivančík SIMULIA Sales | Confidential Information || InformationInformation Confidential Confidential || [email protected] SystèmesSystèmes © Dassault Dassault Dassault © © 3DS.COM 3DS.COM MODELICA seminář 2015 26.6.2015 1 3DS Technologies | Broadening the Portfolio Simpack Simulation fe-safe For Product, Nature and Life Tosca Isight Multi-Body Fatigue Non-parametric Dynamics | ref.: 3DS_Document_2012 ref.: | Abaqus Process Optimization Integration & 6/29/2015 SolidWorks Simpoe Simulation Design Uniting the Optimization Virtual & Real SFE Worlds for All FEA Multiphysics Industries | Confidential Information | Information Confidential | Simulation Geensoft Plastic CATIA Molding Systèmes Analysis Dymola Conceptual © Dassault Dassault © System Engineering Simulation SolidWorks 3DS.COM CAD Design CATIA Simulation SIMULIA 2 What is Realistic Simulation? “Realistic Simulation” is a simulation that is physically realistic and “life like” in every way “Predictive Crashworthiness Simulation in a Virtual Design Process without Hardware Testing”, Jurgen Lescheticky, Hariaokto Hooputra and Doris Ruckdeschel, BMW Group, SIMULIA Customer Conference, May 2010 | ref.: 3DS_Document_2012 ref.: | 6/29/2015 Courtesy Mechanical Design and Analysis Corporation, 2010 SCC | Confidential Information | Information Confidential | Statistical distribution of impact damage Systèmes © Dassault Dassault © Courtesy of University
    [Show full text]
  • 5.3 Modelica Model 48 5.4 Simulations and Results 49
    Development of models for designing industrial energy technologies related to cold production and storage Master’s Thesis within the Sustainable Energy Systems programme RÉMI ALLET EDF R&D Department of Eco-Energy Efficiency and Industrial Processes Moret-sur-Loing, France Department of Energy and Environment Division of Heat and Power Technology CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2011 MASTER’S THESIS Development of models for designing industrial energy technologies related to cold production and storage Master’s Thesis within the Sustainable Energy Systems programme RÉMI ALLET SUPERVISOR(S): Stéphanie Jumel (EDF) Mathias Gourdon (Chalmers) EXAMINER Mathias Gourdon Department of Energy and Environment Division of Heat and Power Technology CHALMERS UNIVERSITY OF TECHNOLOGY Göteborg, Sweden 2011 Development of models for designing industrial energy technologies related to cold production and storage Master’s Thesis within the Sustainable Energy Systems programme RÉMI ALLET © RÉMI ALLET, 2011 Department of Energy and Environment Division of Heat and Power Technology Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone: + 46 (0)31-772 1000 Cover: Experimental refrigerator of the E25 laboratories located at the research centre EDF Les Renardières, Moret-sur-Loing, France. Chalmers Reproservice Göteborg, Sweden 2011 Development of models for designing industrial energy technologies related to cold production and storage Master’s Thesis in the Sustainable Energy Systems programme RÉMI ALLET Department of Energy and Environment Division of Heat and Power Technology Chalmers University of Technology ABSTRACT Numerous industries use cold fluids in their processes. Large energy savings can be achieved through the efficient use of technologies such as refrigerators and cold storage.
    [Show full text]
  • Automatic Model Conversion to Modelica for Dymola-Based Mechatronic Simulation
    Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation Automatic Model Conversion to Modelica for Dymola-based Mechatronic Simulation Tamás Juhász, M. Sc. and Ulrich Schmucker, Dr. Sc. techn. Fraunhofer Institute for Factory Operation and Automation, Magdeburg, Germany [email protected] and [email protected] Abstract some internal model parameters must be fine-tuned, according to model assessment or verification proc- Virtual product development allows us to recognize esses. This implies that an automated model conver- and evaluate the characteristics of a new product on sion is highly demanded in order to accomplish a the basis of simulation at an early stage without hav- good workflow. The designing engineer can inspect ing to build a physical model. Currently the most, the behaviour of the given virtual product by utiliz- widely spread commercial CAE systems do not offer ing a dynamic simulation of that. For a convenient direct support to external dynamic simulation appli- iterative workflow a solution have to be provided to cations. Conversely, dynamic simulation of a de- automate the conversion between the standard output tailed model is required to maintain good correlation format of the source CAD system and the input for- between the behaviour of the real product and its mat of the target simulator. virtual counterpart. In this paper it will be presented, In this article it will be presented that using Robot- that using a partially automated workflow a conven- Max , our .NET-based mechatronic model authoring ient Modelica model translation can be achieved and visualization application mechanical CAD data from the output of a mechanical CAD system, allow- from the widely-spread Pro/Engineer CAD environ- ing the final model to be extended independently ment can be imported, new mechatronic components with new elements from other simulation domains, can be added, thus multi-domain Modelica models considering Dymola-based multi-domain simulation.
    [Show full text]
  • Modelica Evolution – from My Perspective
    Modelica Evolution – From My Perspective Hilding Elmqvist Dassault Systèmes Ideon Science Park, SE-223 70 Lund, Sweden [email protected] Abstract mathematical expressions. I was just studying com- piler technology, so I considered this project perfect This paper intends to tell the story of Modelica for me. The result was Simnon (SIMulation of NON- (www.Modelica.org) from the author’s perspective. linear systems): (Elmqvist, 1975, 1977a). A novel It is a fantastic saga that for me started in April 1976. feature was that a mixture of continuous time and The saga includes studying the needs, the original discrete time systems could be simulated, i.e. perfect idea, the development of a solution, waiting for ma- for simulation of sampled data control systems ture hardware technology, a start-up company, a fan- which were becoming very important at that time. tastic collaboration, an automotive company caring However, I was not satisfied with the approach as for its software supplier, how to get momentum by a basis for my PhD thesis, since it was based on standards collaboration, forming the right team, and submodels with inputs and outputs. I therefore want- the magic phone call from the right company. ed to investigate the fundamentals of modeling which my professor Karl Johan Åström supported. In Keywords: Simnon; Dymola; Modelica; Physical April 1976, I was studying a report with about 200 Modeling; DAE; Modelica Association pages about a drum-boiler model written by Sture Lindahl (Lindahl, 1976). The report was very sys- tematic, showing how the equations were organized 1 Introduction for the drum, the super heaters, the turbines, etc., i.e.
    [Show full text]