Phylogenomics Reveals Biogeographical History and Invasive Species Relationships in the Genus Nylanderia (Hymenoptera: Formicidae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenomics Reveals Biogeographical History and Invasive Species Relationships in the Genus Nylanderia (Hymenoptera: Formicidae) Systematic Entomology (2020), DOI: 10.1111/syen.12423 Global domination by crazy ants: phylogenomics reveals biogeographical history and invasive species relationships in the genus Nylanderia (Hymenoptera: Formicidae) JASON L. WILLIAMS1 ,YUANMENGMILESZHANG1 , MICHAEL W. LLOYD2,3 ,JOHNS.LAPOLLA4, TED R. SCHULTZ2 and A N D R E A L U C K Y 1 1Entomology & Nematology Department, University of Florida, Gainesville, FL, U.S.A., 2Department of Entomology, Smithsonian Institution, Washington, DC, U.S.A., 3Laboratories of Analytical Biology, Smithsonian Institution, Washington, DC, U.S.A. and 4Department of Biological Sciences, Towson University, Towson, MD, U.S.A. Abstract. Nylanderia (Emery) is one of the world’s most diverse ant genera, with 123 described species worldwide and hundreds more undescribed. Fifteen globetrotting or invasive species have widespread distributions and are often encountered outside their native ranges. A molecular approach to understanding the evolutionary history and to revision of Nylanderia taxonomy is needed because historical efforts based on morphol- ogy have proven insuffcient to defne major lineages and delimit species boundaries, especially where adventive species are concerned. To address these problems, we gener- ated the frst genus-wide genomic dataset of Nylanderia using ultraconserved elements (UCEs) to resolve the phylogeny of major lineages, determine the age and origin of the genus, and describe global biogeographical patterns. Sampling from seven biogeo- graphical regions revealed a Southeast Asian origin of Nylanderia in the mid-Eocene and four distinct biogeographical clades in the Nearctic, the Neotropics, the Afrotrop- ics/Malagasy region, and Australasia. The Nearctic and Neotropical clades are dis- tantly related, indicating two separate dispersal events to the Americas between the late Oligocene and early Miocene. We also addressed the problem of misidentifca- tion that has characterized species-level taxonomy in Nylanderia as a result of limited morphological variation in the worker caste by evaluating the integrity of species bound- aries in six of the most widespread Nylanderia species. We sampled across ranges of species in the N. bourbonica complex (N. bourbonica (Forel) + N. vaga (Forel)), the N. fulva complex (N. fulva (Mayr) + N. pubens (Forel)), and the N. guatemalensis com- plex (N. guatemalensis (Forel) + N. steinheili (Forel)) to clarify their phylogenetic place- ment. Deep splits within these complexes suggest that some species names – specifcally N. bourbonica and N. guatemalensis –eachareappliedtomultiplecrypticspecies.In exhaustively sampling Nylanderia diversity in the West Indies, a ‘hot spot’ for invasive taxa, we found fve adventive species among 22 in the region; many remain morpho- logically indistinguishable from one another, despite being distantly related. We stress that overcoming the taxonomic impediment through the use of molecular phylogeny and revisionary study is essential for conservation and invasive species management. Correspondence: Andrea Lucky, Entomology & Nematology Department, University of Florida, 1881 Natural Area Dr., Gainesville, FL, 32611-0620, U.S.A. E-mail: [email protected] © 2020 The Royal Entomological Society 1 2 J. L. Williams et al. Introduction native species and rapidly identifed before they can expand their ranges further. The taxonomic impediment ‘The “habitus” of a species, as every taxonomist knows, is The ant genus Nylanderia something one may take in at a glance, but be quite unable to express without wearisome prolixity.’ Nylanderia and six closely related genera (collectively called –WilliamMortonWheeler(1910). the ‘Prenolepis genus-group’) have a tumultuous taxonomic The term ‘taxonomic impediment’ (Taylor, 1983) refers to history that has only recently reached some level of stability the ongoing challenge of naming and characterizing vast num- (reviewed in LaPolla et al., 2010; see also Lapolla et al., 2012). bers of species, namely those with inconspicuous diversity LaPolla et al. (2010) found support in multigene sequence owing to broad distributions or limited morphological variation. data for the monophyly of Nylanderia.Additionalmorpho- Although ants are unusually well-characterized among insects, logical characters distinguishing Nylanderia from other genera with over 13 000 species formally described, more than 7000 were discovered in a global taxonomic revision of the genus ant species are estimated to remain undescribed (Hölldobler Prenolepis Say (Williams & LaPolla, 2016), and recent molec- & Wilson, 1990; AntWeb, 2019). More than a quarter of the ular phylogenetic and phylogenomic studies have continued to ants on Earth lack formal descriptions because, in some cases, support the monophyly of Nylanderia (Blaimer et al.,2015; particular groups remain unstudied, whereas other groups are Matos-Maraví et al.,2018).Emery(1906)originallydescribed impeded by morphological crypsis; historical taxonomic con- Nylanderia over a century ago and a genus-wide taxonomic revi- fusion can compound both of these problems. Many species sion is needed because taxonomic confusion frequently leads to descriptions are more than a century old, are based only on the misidentifed or unnamed specimens. Regional revisions have worker caste, and have not been revisited in higher-level revi- included taxonomic treatment of species in some areas where sionary study. Surprisingly, one of the most species-rich ant gen- Nylanderia species richness is relatively low, including the era, Nylanderia (Emery, 1906) – which currently includes 123 Afrotropics (LaPolla et al., 2011), the Nearctic (Kallal, 2012) extant species and 25 subspecies worldwide (Bolton, 2019) – is and the West Indies (LaPolla & Kallal, 2019). Taxonomic revi- severely underdescribed, with an estimate of hundreds more sion is still needed for Nylanderia in regions where the genus species awaiting description (LaPolla et al., 2011). is most diverse: Mesoamerica, South America, Southeast Asia Phylogeny, taxonomy and species-level identifcation have and Australasia. These regions are major centres of Nylanderia long been characterized by confusion in this genus as a result species diversity, and Southeast Asia likely represents the bio- of widespread morphological convergence and a high number geographical origin of the genus (Matos-Maraví et al., 2018). In of widely distributed adventive species. As in many genera order to stabilize the chaotic taxonomy of this genus, nomencla- that are species-rich and hard to identify, obstacles to resolving ture needs to refect actual species boundaries and relationships the systematics and clarifying the nomenclature of this group among lineages. For this, a phylogeny with representative sam- include: pling from all major lineages worldwide is needed. Nylanderia is a near-globally distributed genus, but it is not 1. High species richness and abundance world- clear whether regional faunas represent monophyletic lineages wide – Nylanderia is one of the most commonly collected and it is impossible to understand how geography has shaped ant genera worldwide and includes hundreds of species them without frst knowing the major clades. LaPolla et al. (Ward, 2000; LaPolla et al., 2011). (2010) suggested that Nylanderia includes fve biogeographi- 2. Limited morphological variation – there are few eas- cally distinct clades: (i) Nearctic; (ii) Neotropics; (iii) Afrotrop- ily discretizable worker morphological characters between ics; (iv) Indomalaya; and (v) Australasia, but this study was species, and variation within a species often overlaps con- focused specifcally on genus-level relationships and only sam- siderably with that of other, similar species (Trager, 1984). pled c. 24 of the estimated hundreds of Nylanderia species. The 3. Globetrotting species – at least 15 species have been trans- hypothesis that there are fve major lineages corresponding to ported across the globe by humans and are easily mistaken these regions must be tested in order to advance global revision- for native species (Williams and Lucky, in press). ary study. Without a grasp on the global phylogeny it is diffcult to place diagnostic morphological characters in a global context. These challenges have long confounded attempts to clarify Taxonomic revisions and phylogenies over the past decade the biology and natural history of the genus at the species have brought a measure of much-needed clarity to the system- level. Recognition of the need to manage emerging invasive atics of Nylanderia at the regional level, but more questions threats such as the tawny crazy ant, N. fulva (Mayr), has added than answers persist about the origins and identities of some new urgency to the need for establishing a solid taxonomic of the most widespread globetrotting species in the genus, such foundation in this lineage (Gotzek et al., 2012). Nylanderia fulva as: (i) how many times ‘invasiveness’ has arisen in Nylande- is just one of several taxonomically diffcult species that are ria, and to which major clade or clades these invasive lineages accidentally transported along human trade routes. Resolving belong; (ii) whether the globetrotting species are monophyletic; the systematics and clarifying the nomenclature of the genus is (iii) whether species boundaries are reasonably delimited or if necessary so that non-native species can be distinguished from some species have multiple names applied to them based on © 2020 The Royal Entomological Society, Systematic Entomology,doi:10.1111/syen.12423
Recommended publications
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • Download PDF File
    ISSN 1994-4136 (print) ISSN 1997-3500 (online) Myrmecological News Volume 26 February 2018 Schriftleitung / editors Florian M. STEINER, Herbert ZETTEL & Birgit C. SCHLICK-STEINER Fachredakteure / subject editors Jens DAUBER, Falko P. DRIJFHOUT, Evan ECONOMO, Heike FELDHAAR, Nicholas J. GOTELLI, Heikki O. HELANTERÄ, Daniel J.C. KRONAUER, John S. LAPOLLA, Philip J. LESTER, Timothy A. LINKSVAYER, Alexander S. MIKHEYEV, Ivette PERFECTO, Christian RABELING, Bernhard RONACHER, Helge SCHLÜNS, Chris R. SMITH, Andrew V. SUAREZ Wissenschaftliche Beratung / editorial advisory board Barry BOLTON, Jacobus J. BOOMSMA, Alfred BUSCHINGER, Daniel CHERIX, Jacques H.C. DELABIE, Katsuyuki EGUCHI, Xavier ESPADALER, Bert HÖLLDOBLER, Ajay NARENDRA, Zhanna REZNIKOVA, Michael J. SAMWAYS, Bernhard SEIFERT, Philip S. WARD Eigentümer, Herausgeber, Verleger / publisher © 2018 Österreichische Gesellschaft für Entomofaunistik c/o Naturhistorisches Museum Wien, Burgring 7, 1010 Wien, Österreich (Austria) Myrmecological News 26 31-45 Vienna, February 2018 How common is trophobiosis with hoppers (Hemi ptera: Auchenorrhyncha) inside ant nests (Hymeno ptera: Formicidae)? Novel interactions from New Guinea and a worldwide overview Petr KLIMES, Michaela BOROVANSKA, Nichola S. PLOWMAN & Maurice LEPONCE Abstract Trophobiotic interactions between ants and honeydew-providing hemi pterans are widespread and are one of the key mechanisms that maintain ant super-abundance in ecosystems. Many of them occur inside ant nests. However, these cryptic associations are poorly understood, particularly those with hoppers (suborder Auchenorrhyncha). Here, we study tree-dwelling ant and Hemi ptera communities in nests along the Mt. Wilhelm elevational gradient in Papua New Guinea and report a new case of this symbiosis between Pseudolasius EMERY, 1887 ants and planthoppers. Fur- thermore, we provide a worldwide review of other ant-hopper interactions inside ant-built structures and compare their nature (obligate versus facultative) and distribution within the suborder Auchenorrhyncha.
    [Show full text]
  • The Coexistence
    Myrmecological News 20 37-42 Vienna, September 2014 Discovery of a second mushroom harvesting ant (Hymenoptera: Formicidae) in Malayan tropical rainforests Christoph VON BEEREN, Magdalena M. MAIR & Volker WITTE Abstract Ants have evolved an amazing variety of feeding habits to utilize diverse food sources. However, only one ant species, Euprenolepis procera (EMERY, 1900) (Formicidae: Formicinae), has been described as a specialist harvester of wild- growing mushrooms. Mushrooms are a very abundant food source in certain habitats, but utilizing them is expected to require specific adaptations. Here, we report the discovery of another, sympatric, and widespread mushroom harvesting ant, Euprenolepis wittei LAPOLLA, 2009. The similarity in nutritional niches of both species was expected to be accom- panied by similarities in adaptive behavior and differences due to competitive avoidance. Similarities were found in mush- room acceptance and harvesting behavior: Both species harvested a variety of wild-growing mushrooms and formed characteristic mushroom piles inside the nest that were processed continuously by adult workers. Euprenolepis procera was apparently dominant at mushroom baits displacing the smaller, less numerous E. wittei foragers. However, inter- specific competition for mushrooms is likely relaxed by differences in other niche dimensions, particularly the temporal activity pattern. The discovery of a second, widespread mushroom harvesting ant suggests that this life style is more common than previously thought, at least in Southeast Asia, and has implications for the ecology of tropical rainforests. Exploitation of the reproductive organs of fungi likely impacts spore development and distribution and thus affects the fungal community. Key words: Social insects, ephemeral food, niche differentiation, sporocarp, fungivory, Malaysia, obligate mycophagist, fungal fruit body.
    [Show full text]
  • Appendix 1 Table A1
    Oikos OIK-01723 Staab, M., Blüthgen, N. and Klein, A.-M. 2014. Tree diversity alters the structure of a tri-trophic network in a biodiversity experiment. – Oikos doi: 10.1111/oik.01723 Appendix 1 Table A1. Number of trophobiotic interactions for plant, Hemiptera and ant species in an early successional tree plantation in southest China. The numbers in the first column refer to the species codes in Fig. 1, Fig. 2 and Fig. A1. Taxonomic names of plant species follows the Flora of China (<www.efloras.org/flora_page.aspx?flora_id=2>), of aphid species the Aphid Species File Database (<http://aphid.speciesfile.org>) and of ant species Antweb (<www.antweb.org>). Number Species Family Interact Figures ions Trees 1 Castanea henryi (Skan) Rehd. & Wils. Fagaceae 4 2 Castanopsis sclerophylla (Lindl. et Pax.) Fagaceae 14 Schott. 3 Choerospondias axillaris (Roxb.) Burtt & Hill Anacardiaceae 10 4 Cyclobalanopsis glauca (Thunb.) Oers. Fagaceae 7 5 Cyclobalanopsis myrsinaefolia Oerst. Fagaceae 3 6 Koelreuteria bipinnata Franch. Sapindaceae 1 7 Liquidambar formosana Hance Hamamelidaceae 4 8 Lithocarpus glaber (Thunb.) Nakai Fagaceae 4 9 Nyssa sinensis Oliver Nyssaceae 2 10 Quercus acutissima Carruth. Fagaceae 44 11 Quercus fabri Hance Fagaceae 28 1 12 Quercus serrata Murray Fagaceae 28 13 Rhus chinensis Mill. Anacardiaceae 17 14 Sapindus saponaria L. Sapindaceae 1 15 Schima superba Gardn. & Champ. Theaceae 27 Hemiptera 1 Aphis odinae (van der Goot, 1917) Aphididae 18 2 Aphis sp. CN01 Aphididae 2 3 Centrotinae Larvae 1 Membracidae 7 4 Centrotinae Larvae 2 Membracidae 1 5 Centrotinae sp. CN02 Membracidae 1 6 Centrotinae sp. CN03 Membracidae 4 7 Centrotinae sp.
    [Show full text]
  • Crazy Ant (Paratrechina Sp
    Midsouth Entomologist 3: 44–47 ISSN: 1936-6019 www.midsouthentomologist.org.msstate.edu Report The Invasive Rasberry Crazy Ant, Nylanderia sp. near pubens (Hymenoptera: Formicidae), Reported from Mississippi MacGown. J.1* and B. Layton1 Department of Entomology & Plant Pathology, Mississippi State University, Mississippi State, MS, 39762 *Corresponding Author: [email protected] Received: 18-XII-2009 Accepted: 23-XII-2009 Introduction The genus Nylanderia (Hymenoptera: Formicidae: Lasiini) currently includes 134 valid species and subspecies worldwide (LaPolla et al. 2010). Fifteen described species, including nine native and six introduced species, have been collected in the continental United States (Bolton et al. 2006, Trager 1984, Meyers 2008). Formerly, Nylanderia was considered to be a subgenus of Paratrechina and was only recently elevated to the generic level by LaPolla et al. (2010); consequently, it is referred to as Paratrechina in most of the literature. In 2002, large populations of an unknown Nylanderia species were discovered in Houston, Texas. After examination by taxonomic specialists, these ants were determined to be similar to Nylanderia pubens, the hairy crazy ant (Meyers 2008), known to occur in the Neotropical Region and in Florida (Wetterer and Keularts 2008), and similar to N. fulva (Mayr), which is native to South America (Meyers 2008). However, due to taxonomic uncertainty, this species has not been definitively identified as N. pubens, N. fulva or any of its eight subspecies, or even as an undescribed species. Therefore, at this time it is being identified as N. sp. near pubens (Meyers and Gold 2008), but it could also be referred to as N. sp.
    [Show full text]
  • Exotic Ants (Hymenoptera, Formicidae) of Ohio
    JHR 51: 203–226 (2016) Exotic ants (Hymenoptera, Formicidae) of Ohio 203 doi: 10.3897/jhr.51.9135 RESEARCH ARTICLE http://jhr.pensoft.net Exotic ants (Hymenoptera, Formicidae) of Ohio Kaloyan Ivanov1 1 Department of Recent Invertebrates, Virginia Museum of Natural History, 21 Starling Ave., Martinsville, VA 24112, USA Corresponding author: Kaloyan Ivanov ([email protected]) Academic editor: Jack Neff | Received 9 May 2016 | Accepted 30 June 2016 | Published 29 August 2016 http://zoobank.org/DB4AA574-7B14-4544-A501-B9A8FA1F0C93 Citation: Ivanov K (2016) Exotic ants (Hymenoptera, Formicidae) of Ohio. Journal of Hymenoptera Research 51: 203–226. doi: 10.3897/jhr.51.9135 Abstract The worldwide transfer of plants and animals outside their native ranges is an ever increasing problem for global biodiversity. Ants are no exception and many species have been transported to new locations often with profound negative impacts on local biota. The current study is based on data gathered since the publication of the “Ants of Ohio” in 2005. Here I expand on our knowledge of Ohio’s myrmecofauna by contributing new records, new distributional information and natural history notes. The list presented here contains 10 species with origins in a variety of geographic regions, including South America, Eu- rope, Asia, and Indo-Australia. Two distinct groups of exotics, somewhat dissimilar in their geographic origin, occur in Ohio: a) 3 species of temperate Eurasian origin that have established reproducing outdoor populations; and b) 7 tropical tramp species currently confined to man-made structures. OnlyNylanderia flavipes (Smith, 1874) is currently seen to be of concern although its effects on local ant communities ap- pear to be restricted largely to already disturbed habitats.
    [Show full text]
  • Fossil Ants (Hymenoptera: Formicidae): Ancient Diversity and the Rise of Modern Lineages
    Myrmecological News 24 1-30 Vienna, March 2017 Fossil ants (Hymenoptera: Formicidae): ancient diversity and the rise of modern lineages Phillip BARDEN Abstract The ant fossil record is summarized with special reference to the earliest ants, first occurrences of modern lineages, and the utility of paleontological data in reconstructing evolutionary history. During the Cretaceous, from approximately 100 to 78 million years ago, only two species are definitively assignable to extant subfamilies – all putative crown group ants from this period are discussed. Among the earliest ants known are unexpectedly diverse and highly social stem- group lineages, however these stem ants do not persist into the Cenozoic. Following the Cretaceous-Paleogene boun- dary, all well preserved ants are assignable to crown Formicidae; the appearance of crown ants in the fossil record is summarized at the subfamilial and generic level. Generally, the taxonomic composition of Cenozoic ant fossil communi- ties mirrors Recent ecosystems with the "big four" subfamilies Dolichoderinae, Formicinae, Myrmicinae, and Ponerinae comprising most faunal abundance. As reviewed by other authors, ants increase in abundance dramatically from the Eocene through the Miocene. Proximate drivers relating to the "rise of the ants" are discussed, as the majority of this increase is due to a handful of highly dominant species. In addition, instances of congruence and conflict with molecular- based divergence estimates are noted, and distinct "ghost" lineages are interpreted. The ant fossil record is a valuable resource comparable to other groups with extensive fossil species: There are approximately as many described fossil ant species as there are fossil dinosaurs. The incorporation of paleontological data into neontological inquiries can only seek to improve the accuracy and scale of generated hypotheses.
    [Show full text]
  • GENERAL HOUSEHOLD PESTS Ants Are Some of the Most Ubiquitous Insects Found in Community Environments. They Thrive Indoors and O
    GENERAL HOUSEHOLD PESTS Ants are some of the most ubiquitous insects found in community environments. They thrive indoors and outdoors, wherever they have access to food and water. Ants outdoors are mostly beneficial, as they act as scavengers and decomposers of organic matter, predators of small insects and seed dispersers of certain plants. However, they can protect and encourage honeydew-producing insects such as mealy bugs, aphids and scales that are feed on landscape or indoor plants, and this often leads to increase in numbers of these pests. A well-known feature of ants is their sociality, which is also found in many of their close relatives within the order Hymenoptera, such as bees and wasps. Ant colonies vary widely with the species, and may consist of less than 100 individuals in small concealed spaces, to millions of individuals in large mounds that cover several square feet in area. Functions within the colony are carried out by specific groups of adult individuals called ‘castes’. Most ant colonies have fertile males called “drones”, one or more fertile females called “queens” and large numbers of sterile, wingless females which function as “workers”. Many ant species exhibit polymorphism, which is the existence of individuals with different appearances (sizes) and functions within the same caste. For example, the worker caste may include “major” and “minor” workers with distinct functions, and “soldiers” that are specially equipped with larger mandibles for defense. Almost all functions in the colony apart from reproduction, such as gathering food, feeding and caring for larvae, defending the colony, building and maintaining nesting areas, are performed by the workers.
    [Show full text]
  • Ants of the Genus Formica in the Tropics by Willam Morton Wheeler
    174 Psyche [August ANTS OF THE GENUS FORMICA IN THE TROPICS BY WILLAM MORTON WHEELER. The genus Formica belongs to the northern hemisphere and is best represented in the north temperate or subboreal zone, from which the number of species dimishes rapidly towards the pole and towards the equator. One species, Formica fusca, is so eurythermal that it and its many varieties may be said to be nearly coextensive in range with all the remaining species of the genus. Certain data recently accumulated show that through commerce a few of the species have succeeded in establishing themselves in the tropics. These data and the original distri- bution of the genus are briefly considered in the following paragraphs. A map of the distribution of the genus Formica shows that it covers nearly the whole of Europe as far north as North Cape, where Sparre-Schneider (1909) has taken it between latitude 69 to 70 N., that ls.within the arctic circle. In Asia the range is even wider, since it probably reaches the same high latitude and extends as far south as Soochow, China and the Himalayas (28 to 30 N.). A corresponding southward distribution in Europe is, of course, precluded by the Mediterranean. In the New World Formica covers most of the Nearctic Realm. I have shown (1913) that in Alaska F. fusca and its varieties marcida Wheeler and neorufibarbis Emery range at least as far north as 64 to 67 that is up to Fort Yukon, on the arctic circle. Eastward F, fusca occurs on the coast of Labrador, but no Formicidee are known to exist in Greenland and Iceland, according to Pjetum and Lundhein, cited by Forel (1910).
    [Show full text]
  • Tawny Crazy Ant Updated: June 2019
    Invasive Insects: Risks and Pathways Project TAWNY CRAZY ANT UPDATED: JUNE 2019 Invasive insects are a huge biosecurity challenge. We profile some of the most harmful insect invaders overseas to show why we must keep them out of Australia. Species Tawny crazy ant / Paratrechina fulva. Also known as Nylanderia fulva, rasberry crazy ant, hairy crazy ant. Main impacts Dominates ecosystems, eating invertebrates, displacing other ants, attacking mammals and birds, tending sap-sucking bugs that harm plants, and spreading plant diseases. Invades homes and gardens, causes electrical malfunctions in businesses and homes, spreads pathogens in hospitals, harms livestock and crops. Native range South America.1 Invasive range Colombia, Peru, Mexico, Panama, Caribbean islands, United States.2,3 Main pathways of global spread Unknown. ENVIRONMENTAL IMPACTS OVERSEAS Tawny crazy ant pupae and worker. Photo: Alex Wild and Ed Le Brun The tawny crazy ant displaces other ants ants also invade forested habitats in high eradication effort in Australia, justified – in Colombia it displaces 9 of 14 native densities, so they threaten more habitats4. partly by impacts of this nature. species1 and in colonised sites in Texas it has attained within a year ‘densities up to The impacts of tawny crazy ants on Another problem is that tawny crazy ants 2 orders of magnitude greater than the wildlife other than ants have not been protect sap-sucking bugs from which combined abundance of all other ants’4. studied, but they are suspected to be they obtain honeydew. In Colombia this In some locations in the United States, it serious, based on observations in Texas has led to desiccation of grasslands due 7 is replacing (in much higher densities) the and Colombia.
    [Show full text]
  • Description of a New Genus of Primitive Ants from Canadian Amber
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-11-2017 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Borysenko, Leonid H., "Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae)" (2017). Insecta Mundi. 1067. http://digitalcommons.unl.edu/insectamundi/1067 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0570 Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Leonid H. Borysenko Canadian National Collection of Insects, Arachnids and Nematodes AAFC, K.W. Neatby Building 960 Carling Ave., Ottawa, K1A 0C6, Canada Date of Issue: August 11, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Leonid H. Borysenko Description of a new genus of primitive ants from Canadian amber, with the study of relationships between stem- and crown-group ants (Hymenoptera: Formicidae) Insecta Mundi 0570: 1–57 ZooBank Registered: urn:lsid:zoobank.org:pub:C6CCDDD5-9D09-4E8B-B056-A8095AA1367D Published in 2017 by Center for Systematic Entomology, Inc.
    [Show full text]